1
|
Bielawiec P, Dziemitko S, Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A, Harasim-Symbor E. Cannabigerol-A useful agent restoring the muscular phospholipids milieu in obese and insulin-resistant Wistar rats? Front Mol Biosci 2024; 11:1401558. [PMID: 38919749 PMCID: PMC11196617 DOI: 10.3389/fmolb.2024.1401558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Numerous strategies have been proposed to minimize obesity-associated health effects, among which phytocannabinoids appear to be effective and safe compounds. In particular, cannabigerol (CBG) emerges as a potent modulator of the composition of membrane phospholipids (PLs), which plays a critical role in the development of insulin resistance. Therefore, here we consider the role of CBG treatment on the composition of PLs fraction with particular emphasis on phospholipid subclasses (e.g., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI)) in the red gastrocnemius muscle of Wistar rats fed the standard or high-fat, high-sucrose (HFHS) diet. The intramuscular PLs content was determined by gas-liquid chromatography and based on the composition of individual FAs, we assessed the stearoyl-CoA desaturase 1 (SCD1) index as well as the activity of n-3 and n-6 polyunsaturated fatty acids (PUFAs) pathways. Expression of various proteins engaged in the inflammatory pathway, FAs elongation, and desaturation processes was measured using Western blotting. Our research has demonstrated the important association of obesity with alterations in the composition of muscular PLs, which was significantly improved by CBG supplementation, enriching the lipid pools in n-3 PUFAs and decreasing the content of arachidonic acid (AA), which in turn influenced the activity of PUFAs pathways in various PLs subclasses. CBG also inhibited the local inflammation development and profoundly reduced the SCD1 activity. Collectively, restoring the PLs homeostasis of the myocyte membrane by CBG indicates its new potential medical application in the treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Bielawiec
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
2
|
Rakotoarivelo V, Allam-Ndoul B, Martin C, Biertho L, Di Marzo V, Flamand N, Veilleux A. Investigating the alterations of endocannabinoidome signaling in the human small intestine in the context of obesity and type 2 diabetes. Heliyon 2024; 10:e26968. [PMID: 38515705 PMCID: PMC10955212 DOI: 10.1016/j.heliyon.2024.e26968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Background Human studies have linked obesity-related diseases, such as type-2 diabetes (T2D), to the modulation of endocannabinoid signaling. Cannabinoid CB1 and CB2 receptor activation by the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), both derived from arachidonic acid, play a role in homeostatic regulation. Other long chain fatty acid-derived endocannabinoid-like molecules have extended the metabolic role of this signaling system through other receptors. In this study, we aimed to assess in depth the interactions between the circulating and intestinal tone of this extended eCB system, or endocannabinoidome (eCBome), and their involvement in the pathogenesis of diabetes. Methods Plasma and ileum samples were collected from subjects with obesity and harboring diverse degrees of insulin resistance or T2D, who underwent bariatric surgery. The levels of eCBome mediators and their congeners were then assessed by liquid chromatography coupled to tandem mass spectrometry, while gene expression was screened with qPCR arrays. Findings Intestinal and circulating levels of eCBome mediators were higher in subjects with T2D. We found an inverse correlation between the intestinal and circulating levels of monoacylglycerols (MAGs). Additionally, we identified genes known to be implicated in both lipid metabolism and intestinal function that are altered by the context of obesity and glucose homeostasis. Interpretation Although the impact of glucose metabolism on the eCBome remains poorly understood in subjects with advanced obesity state, our results suggest a strong causative link between altered glucose homeostasis and eCBome signaling in the intestine and the circulation.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Université Laval, Québec City, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Bénédicte Allam-Ndoul
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Université Laval, Québec City, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF, Québec, QC, Canada
| | - Cyril Martin
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Université Laval, Québec City, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Laurent Biertho
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Université Laval, Québec City, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF, Québec, QC, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Canada
| | - Nicolas Flamand
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Université Laval, Québec City, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Alain Veilleux
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF, Québec, QC, Canada
| |
Collapse
|
3
|
Wu M, Lyu Y, Xu H, Luo H, Yin X, Zheng H. Raspberry polysaccharides attenuate hepatic inflammation and oxidative stress in diet-induced obese mice by enhancing butyrate-mediated intestinal barrier function. Int J Biol Macromol 2024; 262:130007. [PMID: 38340928 DOI: 10.1016/j.ijbiomac.2024.130007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Obesity and associated liver diseases are becoming global public health challenges. Raspberry (Rubus chingii Hu.), as a medicine food homology plant, possesses a series of health-promoting properties, but its protective effect on obesity-related liver injury and the potential mechanisms remain obscure. Herein high-fat diet (HFD)-fed mice were orally treated with raspberry polysaccharides (RCP) for 14 weeks. Treatment with RCP alleviated obesity and associated symptoms including hyperglycemia, hyperlipemia, endotoxemia, as well as hepatic inflammation and oxidant stress in HFD-induced obese mice. RCP restructured the gut microbiota and host metabolism especially by increasing the levels of Dubosiella and its metabolite butyrate. Besides, exogenous butyrate supplementation protected against intestinal barrier disruption, and thereby reduced inflow of lipopolysaccharide and mitigated inflammation and oxidative injury in the liver of obese mice. Therefore, we suggest that RCP can be utilized as a novel prebiotics to improve obesity-induced hepatic oxidative injury by enhancing butyrate-mediated intestinal barrier function.
Collapse
Affiliation(s)
- Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuxin Lyu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangying Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Ghanemi A, Mac-Way F. Obesity and Bone Mineral Density Protection Paradox in Chronic Kidney Disease: Secreted Protein Acidic and Rich in Cysteine as a Piece of the Puzzle? Life (Basel) 2023; 13:2172. [PMID: 38004312 PMCID: PMC10672555 DOI: 10.3390/life13112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity is a health condition that represents a risk factor for numerous diseases and complications. However, obesity might also have-to some extent-some "benefits" in certain situations. This includes potential bone protection in patients suffering from chronic kidney disease. In an attempt to explain such a paradox, we highlight secreted protein acidic and rich in cysteine (SPARC) as a hypothetical mediator of this protection. Indeed, SPARC properties provide a logical rationale to describe such bone protection via its overexpression combined with its calcium-binding and collagen-binding properties. We believe that exploring such hypotheses could open new doors to elucidate unknown pathways towards developing a new generation of molecular therapies.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Endocrinology and Nephrology Axis, L’Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Quebec, QC G1R 2J6, Canada;
- Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Fabrice Mac-Way
- Endocrinology and Nephrology Axis, L’Hôtel-Dieu de Québec Hospital, CHU de Québec Research Center, Quebec, QC G1R 2J6, Canada;
- Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Boubertakh B, Courtemanche O, Marsolais D, Di Marzo V, Silvestri C. New role for the anandamide metabolite prostaglandin F 2α ethanolamide: Rolling preadipocyte proliferation. J Lipid Res 2023; 64:100444. [PMID: 37730163 PMCID: PMC10622703 DOI: 10.1016/j.jlr.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
White adipose tissue regulation is key to metabolic health, yet still perplexing. The chief endocannabinoid anandamide metabolite, prostaglandin F2α ethanolamide (PGF2αEA), inhibits adipogenesis, that is, the formation of mature adipocytes. We observed that adipocyte progenitor cells-preadipocytes-following treatment with PGF2αEA yielded larger pellet sizes. Thus, we hypothesized that PGF2αEA might augment preadipocyte proliferation. Cell viability MTT and crystal violet assays, cell counting, and 5-bromo-2'-deoxyuridine incorporation in cell proliferation ELISA analyses confirmed our prediction. Additionally, we discovered that PGF2αEA promotes cell cycle progression through suppression of the expression of cell cycle inhibitors, p21 and p27, as shown by flow cytometry and qPCR. Enticingly, concentrations of this compound that showed no visible effect on cell proliferation or basal transcriptional activity of peroxisome proliferator-activated receptor gamma could, in contrast, reverse the anti-proliferative and peroxisome proliferator-activated receptor gamma-transcription activating effects of rosiglitazone (Rosi). MTT and luciferase reporter examinations supported this finding. The PGF2αEA pharmaceutical analog, bimatoprost, was also investigated and showed very similar effects. Importantly, we suggest the implication of the mitogen-activated protein kinase pathway in these effects, as they were blocked by the selective mitogen-activated protein kinase kinase inhibitor, PD98059. We propose that PGF2αEA is a pivotal regulator of white adipose tissue plasticity, acting as a regulator of the preadipocyte pool in adipose tissue.
Collapse
Affiliation(s)
- Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Centre NUTRISS, Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Olivier Courtemanche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Centre NUTRISS, Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Centre NUTRISS, Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
6
|
Tseng CH. Rosiglitazone has a null association with the risk of prostate cancer in type 2 diabetes patients. Front Endocrinol (Lausanne) 2023; 14:1185053. [PMID: 37560306 PMCID: PMC10407244 DOI: 10.3389/fendo.2023.1185053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background This study investigated the risk of prostate cancer in ever users and never users of rosiglitazone in diabetes patients in Taiwan. Methods The nationwide database of the National Health Insurance was used to enroll male patients who had a new diagnosis of type 2 diabetes mellitus at an age ≥ 25 years from 1999 to 2005. A total of 11,495 ever users and 11,495 never users of rosiglitazone matched on propensity score were selected and they were followed up for the incidence of prostate cancer from January 1, 2006 until December 31, 2011. Cox proportional hazard model incorporated with the inverse probability of treatment weighting using the propensity score was used to estimate hazard ratios. Results At the end of follow-up, incident cases of prostate cancer were found in 84 never users and 90 ever users of rosiglitazone. The calculated incidence was 173.20 per 100,000 person-years in never users and was 187.59 per 100,000 person-years in ever users. The overall hazard ratio (95% confidence intervals) for ever versus never users was 1.089 (0.808-1.466). The hazard ratios were 0.999 (0.643-1.552) for the first tertile (< 672 mg), 1.147 (0.770-1.709) for the second tertile (672-3584 mg) and 1.116 (0.735-1.695) for the third tertile (> 3584 mg) of cumulative dose. Sensitivity analyses consistently showed a null association between rosiglitazone and prostate cancer risk. Conclusion Rosiglitazone has a null effect on the risk of prostate cancer.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Institute of Environmental Health Sciences of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
7
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine ( SPARC)-Mediated Exercise Effects: Illustrative Molecular Pathways against Various Diseases. Diseases 2023; 11:diseases11010033. [PMID: 36810547 PMCID: PMC9944512 DOI: 10.3390/diseases11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The strong benefits of exercise, in addition to the development of both the therapeutic applications of physical activity and molecular biology tools, means that it has become very important to explore the underlying molecular patterns linking exercise and its induced phenotypic changes. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced protein that would mediate and induce some important effects of exercise. Herein, we suggest some underlying pathways to explain such SPARC-induced exercise-like effects. Such mechanistic mapping would not only allow us to understand the molecular processes of exercise and SPARC effects but would also highlight the potential to develop novel molecular therapies. These therapies would be based on mimicking the exercise benefits via either introducing SPARC or pharmacologically targeting the SPARC-related pathways to produce exercise-like effects. This is of a particular importance for those who do not have the ability to perform the required physical activity due to disabilities or diseases. The main objective of this work is to highlight selected potential therapeutic applications deriving from SPARC properties that have been reported in various publications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296; Fax: +1-(418)-654-2761
| |
Collapse
|
8
|
Ghanemi A, Yoshioka M, St-Amand J. DNA Damage as a Mechanistic Link between Air Pollution and Obesity? MEDICINES (BASEL, SWITZERLAND) 2022; 10:medicines10010004. [PMID: 36662488 PMCID: PMC9863819 DOI: 10.3390/medicines10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
It has been shown that the risk of developing obesity, a serious modern health problem, increases with air pollution. However, the molecular links are yet to be fully elucidated. Herein, we propose a hypothesis via which air pollution-induced DNA damage would be the mechanistic link between air pollution and the enhanced risk of obesity and overweight. Indeed, whereas air pollution leads to DNA damage, DNA damage results in inflammation, oxidative stress and metabolic impairments that could be behind energy balance changes contributing to obesity. Such thoughts, worth exploring, seems an important starting point to better understand the impact of air pollution on obesity development independently from the two main energy balance pillars that are diet and physical activity. This could possibly lead to new applications both for therapies as well as for policies and regulations.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
9
|
In Vitro Mimicking of Obesity-Induced Biochemical Environment to Study Obesity Impacts on Cells and Tissues. Diseases 2022; 10:diseases10040076. [PMID: 36278576 PMCID: PMC9590073 DOI: 10.3390/diseases10040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity represents a heavy burden for modern healthcare. The main challenge facing obesity research progress is the unknown underlying pathways, which limits our understanding of the pathogenesis and developing therapies. Obesity induces specific biochemical environments that impact the different cells and tissues. In this piece of writing, we suggest mimicking obesity-induced in vivo biochemical environments including pH, lipids, hormones, cytokines, and glucose within an in vitro environment. The concept is to reproduce such biochemical environments and use them to treat the tissue cultures, explant cultures, and cell cultures of different biological organs. This will allow us to clarify how the obesity-induced biochemistry impacts such biological entities. It would also be important to try different environments, in terms of the compositions and concentrations of the constitutive elements, in order to establish links between the effects (impaired regeneration, cellular inflammation, etc.) and the factors constituting the environment (hormones, cytokines, etc.) as well as to reveal dose-dependent effects. We believe that such approaches will allow us to elucidate obesity mechanisms, optimize animal models, and develop therapies as well as novel tissue engineering applications.
Collapse
|
10
|
Santolla MF, Talia M, Cirillo F, Scordamaglia D, De Rosis S, Spinelli A, Miglietta AM, Nardo B, Filippelli G, De Francesco EM, Belfiore A, Lappano R, Maggiolini M. The AGEs/RAGE Transduction Signaling Prompts IL-8/CXCR1/2-Mediated Interaction between Cancer-Associated Fibroblasts (CAFs) and Breast Cancer Cells. Cells 2022; 11:2402. [PMID: 35954247 PMCID: PMC9368521 DOI: 10.3390/cells11152402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end products (AGEs) and the cognate receptor, named RAGE, are involved in metabolic disorders characterized by hyperglycemia, type 2 diabetes mellitus (T2DM) and obesity. Moreover, the AGEs/RAGE transduction pathway prompts a dysfunctional interaction between breast cancer cells and tumor stroma toward the acquisition of malignant features. However, the action of the AGEs/RAGE axis in the main players of the tumor microenvironment, named breast cancer-associated fibroblasts (CAFs), remains to be fully explored. In the present study, by chemokine array, we first assessed that interleukin-8 (IL-8) is the most up-regulated pro-inflammatory chemokine upon AGEs/RAGE activation in primary CAFs, obtained from breast tumors. Thereafter, we ascertained that the AGEs/RAGE signaling promotes a network cascade in CAFs, leading to the c-Fos-dependent regulation of IL-8. Next, using a conditioned medium from AGEs-exposed CAFs, we determined that IL-8/CXCR1/2 paracrine activation induces the acquisition of migratory and invasive features in MDA-MB-231 breast cancer cells. Altogether, our data provide new insights on the involvement of IL-8 in the AGEs/RAGE transduction pathway among the intricate connections linking breast cancer cells to the surrounding stroma. Hence, our findings may pave the way for further investigations to define the role of IL-8 as useful target for the better management of breast cancer patients exhibiting metabolic disorders.
Collapse
Affiliation(s)
- Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100 Cosenza, Italy
| | - Bruno Nardo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100 Cosenza, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
11
|
Wang H, Yan F, Cui Y, Chen F, Wang G, Cui W. Association between triglyceride glucose index and risk of cancer: A meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1098492. [PMID: 36714554 PMCID: PMC9877418 DOI: 10.3389/fendo.2022.1098492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Triglyceride glucose (TyG) index as a more convenient and reliable predictor of insulin resistance (IR) is thought to be associated with many diseases, but its relationship with cancer remains unclear. METHODS The meta-analysis was conducted to evaluate the effects of TyG index on cancer risk utilizing the available evidence. PubMed, EMBASE, Medline, Cochrane Library and Web of Science were searched from their inception up to July 2022. A random-effects model was used to calculate the effect estimates and 95% confidence intervals (CIs). RESULTS A total of 6 observational studies met our inclusion criteria, which including 992292 participants. The meta-analysis indicated that the higher TyG index increased cancer risk compared to the lower TyG index group (total effect size =1.14, 95% CI [1.08, 1.20], P<0.001). CONCLUSIONS Our meta-analysis found that higher TyG index may increase the risk of cancer. More prospective cohort studies and basic research are warranted to verify the relationship.
Collapse
Affiliation(s)
- Huan Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Feifei Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yani Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Feinan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
- *Correspondence: Guixia Wang, ; Weiwei Cui,
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Guixia Wang, ; Weiwei Cui,
| |
Collapse
|