1
|
Këlliçi S, Puca E, Fida M, Puca E, Çomo N. Dermatological diseases in conflict areas: A neglected crisis. Burns 2025; 51:107447. [PMID: 40117997 DOI: 10.1016/j.burns.2025.107447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Affiliation(s)
- Suela Këlliçi
- Department of Pharmacy, Faculty of Medicine, University of Medicine, Tirana, Albania
| | - Entela Puca
- American Hospital, Tirane, Albania; Western Balkans University, Tirane, Albania
| | - Monika Fida
- Department of Infectious Diseases and Dermatology, Faculty of Medicine, Tirane, Albania
| | - Edmond Puca
- Service of Infectious Diseases, University Hospital Center, Tirane, Albania.
| | - Najada Çomo
- Department of Infectious Diseases and Dermatology, Faculty of Medicine, Tirane, Albania; Service of Infectious Diseases, University Hospital Center, Tirane, Albania
| |
Collapse
|
2
|
Vicente-da-Silva J, Pereira JOSL, do Carmo FA, Patricio BFDC. Skin and Wound Healing: Conventional Dosage versus Nanobased Emulsions Forms. ACS OMEGA 2025; 10:12837-12855. [PMID: 40224422 PMCID: PMC11983225 DOI: 10.1021/acsomega.5c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
The skin plays a crucial role in the body's homeostasis through its thermoregulation functions, metabolic activity, and, mainly, its barrier function. Once this system has its homeostasis disturbed, through the promotion of tissue discontinuity, an injury happens and a restoration process starts. Different products can be used to promote, accelerate, or stimulate the healing process, such as hydrogels, emulsions, and ointments (main conventional formulations). Despite the historical use and wide market and consumer acceptance, new systems emerged for wound management with the main challenge to overcome conventional form limitations, in which nanosystems are found, mainly nanobased emulsion forms (nano- and microemulsions, NE and ME). Here, we discuss the skin function and wound healing process, highlighting the cellular and molecular processes, the different wound classifications, and factors that affect physiological healing. We also investigated the recent patents (2012-2023) filed at the United States Patent and Trademark Office, where we found few patents for conventional forms (hydrogels = 5; emulsions = 4; ointments = 6) but a larger number of patents for nanobased emulsions filed in this time (NE = 638; ME = 4,072). Furthermore, we address the use of nanobased emulsions (NE and ME) and their particularities, differences, and application in wound treatment. This work also discusses the challenges, bottlenecks, and regulatory framework for nanosystems, industrial, academic, and government interest in nanotechnology, and future perspectives about this key factor for the nanosystems market and consumer acceptance.
Collapse
Affiliation(s)
- João
Vitor Vicente-da-Silva
- PostGraduate
Program in Molecular and Cellular Biology, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Pharmaceutical
and Technological Innovation Laboratory, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Juliana Oliveira
da Silva Lopes Pereira
- Pharmaceutical
and Technological Innovation Laboratory, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Flávia Almada do Carmo
- Laboratory
of Pharmaceutical Industrial Technology, Department of Drugs and Pharmaceutics,
Faculty of Pharmacy, Federal University
of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
- PostGraduate
Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Beatriz Ferreira de Carvalho Patricio
- PostGraduate
Program in Molecular and Cellular Biology, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Pharmaceutical
and Technological Innovation Laboratory, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| |
Collapse
|
3
|
Charrasse S, Poquillon T, Saint-Omer C, Schunemann A, Weill M, Racine V, Aouacheria A. Computational histology reveals that concomitant application of insect repellent with sunscreen impairs UV protection in an ex vivo human skin model. Parasit Vectors 2025; 18:84. [PMID: 40038831 DOI: 10.1186/s13071-025-06712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Histological alterations such as nuclear abnormalities are sensitive biomarkers associated with diseases, tissue injury and environmental insults. While visual inspection and human interpretation of histology images are useful for initial characterization, such low-throughput procedures suffer from inherent limitations in terms of reliability, objectivity and reproducibility. Artificial intelligence and digital morphometry offer unprecedented opportunities to quickly and accurately assess nuclear morphotypes in relation to tissue damage including skin injury. METHODS In this work, we designed NoxiScore, a pipeline providing an integrated, deep learning-based software solution for fully automated and quantitative analysis of nucleus-related features in histological sections of human skin biopsies. We used this pipeline to evaluate the efficacy and safety of three dermato-cosmetic products massively sold at the time of the study in the Montpellier area (South of France): a sunscreen containing UV filters, a mosquito repellent (with synthetic active ingredient IR3535) and a product combining a natural insect repellent plus a sunscreen. Hematoxylin and eosin or hematoxylin-eosin saffron staining was performed to assess skin structure before morphometric parameter computation. RESULTS We report the identification of a specific nuclear feature based on variation in texture information that can be used to assess skin tissue damage after oxidative stress or UV exposure. Our data show that application of the commercial sun cream provided efficient protection against UV effects in our ex vivo skin model, whereas application of the mosquito repellent as a single product exerted no protective or toxic effect. Notably, we found that concurrent application of the insect repellent with the sunscreen significantly decreased the UVB protective effect of the sunscreen. Last, histometric analysis of human skin biopsies from multiple donors indicates that the sunscreen-insect repellent combo displayed variable levels of protection against UV irradiation. CONCLUSIONS To our knowledge, our study is the first to evaluate the potential toxicity of combining real-life sunscreen and insect repellent products using ex vivo human skin samples, which most closely imitate the cutaneous physiology. The NoxiScore wet-plus-dry methodology has the potential to provide information about the pharmaco-toxicological profile of topically applied formulations and may also be useful for diagnostic purposes and evaluation of the skin exposome including pesticide exposure, air pollution and water contaminants.
Collapse
Affiliation(s)
| | - Titouan Poquillon
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
- QuantaCell SAS, Hôpital Saint Eloi, IRMB, 80 Av Augustin Fliche, 34090, Montpellier, France
| | | | | | - Mylène Weill
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Victor Racine
- QuantaCell SAS, Hôpital Saint Eloi, IRMB, 80 Av Augustin Fliche, 34090, Montpellier, France
| | | |
Collapse
|
4
|
Kosksi T, Bustos-Salgado P, Rejeb M, Selmi A, Debbabi N, Espinoza LC, Sosa L, Silva-Abreu M, Calpena AC, Chekir-Ghedira L. Development of Polymeric Nanoparticles Loaded with Phlomis crinita Extract: A Promising Approach for Enhanced Wound Healing. Int J Mol Sci 2025; 26:2124. [PMID: 40076748 PMCID: PMC11901007 DOI: 10.3390/ijms26052124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The use of nanoparticles improves the stability, solubility, and skin permeability of natural compounds in skincare products. Based on these advantages, this study aimed to incorporate the Phlomis crinita extract into polymeric nanoparticles to improve its topical skin delivery for wound healing purposes. The study involved the preparation of nanoparticles of PLGA and PLGA-PEG (PCE-PLGA-NPs and PCE-PLGA-PEG-NPs) using the solvent displacement method, physicochemical and biopharmaceutical characterization, tolerance studies by the HET-CAM assay and evaluation of skin integrity parameters, and in vitro efficacy via a scratch wound healing experiment. The prepared nanoparticles were nanometer-sized with spherical form and demonstrated an encapsulation efficiency greater than 90%. The major component (luteolin) was released following a kinetic model of hyperbola for PCE-PLGA-PEG-NPs and one-phase exponential association for PCE-PLGA-NPs. Moreover, the important permeability of luteolin skin was observed, especially for PCE-PLGA-PEG-NPs. Both formulations exhibited no irritation and no damaging effects on skin integrity, suggesting their safety. Finally, the results of the scratch wound healing experiment using 3T3-L1 cells revealed significant cell migration and proliferation, with an improved efficacy for PCE-PLGA-PEG-NPs compared to the free extract, demonstrating the potential of this formulation in the treatment of wound healing.
Collapse
Affiliation(s)
- Tahsine Kosksi
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Marwa Rejeb
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Arem Selmi
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Nawres Debbabi
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Lupe Carolina Espinoza
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
- Instituto de Investigaciones Microbiológicas (IIM), Facultad de Ciencias, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Marcelle Silva-Abreu
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Ana Cristina Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Leila Chekir-Ghedira
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| |
Collapse
|
5
|
Hyun J, Rheu KM, Lee BJ, Ryu B. Targeting Aging Skin with GABALAGEN ®: A Synergistic Marine Nutricosmetic Ingredient Validated Through Human Randomized Trials. Antioxidants (Basel) 2025; 14:245. [PMID: 40227205 PMCID: PMC11939556 DOI: 10.3390/antiox14030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
This study introduces GABALAGEN® (GBL), a marine-derived ingredient combining low-molecular-weight fish collagen and gamma-aminobutyric acid (GABA) produced via lactobacillus fermentation. GBL contains approximately 10% GABA, making up 39% of its free amino acid profile. A 12-week, randomized, double-blind, placebo-controlled trial with 100 adults (aged 35-60) assessed its effects on aging skin. Participants consumed 1500 mg/day of GBL in jelly form, with 94% completing the study. By Week 12, the GBL group showed a 20% increase in skin hydration and a 15% reduction in wrinkle depth. Improvements in skin density and elasticity were also observed, with no adverse effects reported. In vitro tests demonstrated strong antioxidant and anti-inflammatory effects, including enhanced superoxide dismutase activity and reduced pro-inflammatory cytokine expression in UVB-irradiated keratinocytes. GBL exemplifies sustainable innovation by upcycling fishery byproducts into high-value materials while addressing stability issues common to seafood-derived products. The fermentation process ensures safety and enhances GABA's antioxidant activity and bioavailability. This scalable method aligns with circular economic principles and global sustainability goals, extending GBL's potential to other functional materials which were proved their safety. GBL represents a breakthrough in nutricosmetics, combining efficacy, environmental sustainability, and industrial innovation.
Collapse
Affiliation(s)
- Jimin Hyun
- Department of Food Science & Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyoung-Min Rheu
- Marine Bioprocess Co., Ltd., Busan 47281, Republic of Korea (B.-J.L.)
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Busan 47281, Republic of Korea (B.-J.L.)
| | - Bomi Ryu
- Department of Food Science & Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Avsar P, Moore Z, Patton D, O'Connor T, Skoubo Bertelsen L, Tobin DJ, Brunetti G, Carville K, Iyer V, Wilson H. Exploring physiological differences in injury response by skin tone: A scoping review. J Tissue Viability 2025; 34:100871. [PMID: 40086146 DOI: 10.1016/j.jtv.2025.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
AIM To explore existing literature examining physiological differences in pressure ulcer response among individuals with differing skin tones. METHODS This was a scoping review. Articles meeting the inclusion criteria were retrieved from electronic databases including PubMed, CINAHL, Scopus, Cochrane, and EMBASE, using the keywords "pressure ulcer," "skin pigmentation," "melanin," and "risk factor." Data were extracted using a predesigned data extraction tool and analysed using a narrative synthesis. RESULTS Five papers met the inclusion criteria. Analysis of findings suggests there are potential mechanisms which may influence the skin's ability to withstand mechanical stress and its inflammatory response to damage among those with different skin tones; the structure of the stratum corneum, collagen density, fibroblast activity, mast cell density, and transepidermal water loss (TEWL). The stratum corneum can compromise skin resilience, while collagen density and fibroblast activity may impact skin strength and repair. Mast cells affect inflammation, which can exacerbate pressure ulcer damage, and increased TEWL in those with dark skin tones can result in lower water content in the stratum corneum, affecting hydration.Conversely, factors like melanosome size, hair follicle and hair fiber characteristics, sebaceous gland activity, vitamin D production, UVR protection, and desquamation rate, although relevant to overall skin health, may not directly affect the mechanical processes leading to pressure ulcer formation. CONCLUSIONS Physiological differences in skin structure may contribute to alterations in the response to pressure ulcer development among individuals with dark skin. Recognising these differences is important for targeted prevention strategies within diverse populations. However, further research is needed to explore the mechanisms underlying this association in greater detail.
Collapse
Affiliation(s)
- Pinar Avsar
- Skin Wounds and Trauma Research Centre, The Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; University of Wales, Cardiff, UK.
| | - Zena Moore
- Skin Wounds and Trauma Research Centre, The Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; University of Wales, Cardiff, UK; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Fakeeh College of Health Sciences, Jeddah, Saudi Arabia; School of Nursing and Midwifery, Griffith University, Queensland, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia; Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Belgium; Lida Institute, Shanghai, China; National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute Queensland, Queensland, Australia.
| | - Declan Patton
- Skin Wounds and Trauma Research Centre, The Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; School of Nursing and Midwifery, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Fakeeh College of Health Sciences, Jeddah, Saudi Arabia; School of Nursing and Midwifery, Griffith University, Queensland, Australia; Faculty of Science, Medicine and Health, University of Wollongong, Australia.
| | - Tom O'Connor
- Skin Wounds and Trauma Research Centre, The Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Fakeeh College of Health Sciences, Jeddah, Saudi Arabia; Lida Institute, Shanghai, China.
| | - Lone Skoubo Bertelsen
- Skin Wounds and Trauma Research Centre, The Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland.
| | - Desmond J Tobin
- Irish Melanoma Forum, Scientific Comm. Alopecia UK, UK; Frontiers in Physiology, Skin Physiology, UK; British Society for Investigative Dermatology, UK; Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Giulio Brunetti
- Tissue Engineering Research Group (TERG), The Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland.
| | | | - Vignesh Iyer
- Bruin Biometrics LLC, Global Medical Affairs and Market Access, Ireland.
| | - Hannah Wilson
- Skin Wounds and Trauma Research Centre, The Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
7
|
Rosa GP, Barreto MC, Seca AML, Pinto DCGA. Antiaging Potential of Lipophilic Extracts of Caulerpa prolifera. Mar Drugs 2025; 23:83. [PMID: 39997207 PMCID: PMC11857742 DOI: 10.3390/md23020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
The cosmeceutical industry has increasingly turned its attention to marine macroalgae, recognizing their significant bioactive potential as sources of natural compounds for skincare applications. A growing number of products now incorporate extracts or isolated compounds from various macroalgae species. However, many species remain underexplored, highlighting a valuable opportunity for further research. Among these, Caulerpa prolifera (Forsskål) J.V. Lamouroux has emerged as a promising candidate for cosmeceutical applications. This study provides the most comprehensive phytochemical assessment of C. prolifera to date, revealing its potential as a source of bioactive extracts and compounds. The analysis identified key components of its lipophilic profile, predominantly saturated and unsaturated fatty acids, alongside di-(2-ethylhexyl) phthalate-an endocrine disruptor potentially biosynthesized or bioaccumulated by the algae. While the crude extract exhibited moderate tyrosinase inhibitory activity, its overall antioxidant capacity was limited. Fractionation of the extract, however, yielded subfractions with distinct bioactivities linked to changes in chemical composition. Notably, enhanced inhibitory activities against elastase and collagenase were observed in subfractions enriched with 1-octadecanol and only traces of phthalate. Conversely, antioxidant activity diminished with the loss of specific compounds such as β-sitosterol, erucic acid, nervonic acid, and lignoceric acid. This work advances the understanding of the relationship between the chemical composition of C. prolifera and its bioactivities, emphasizing its potential as a source of cosmeceutical ingredients, leading to a more comprehensive valorization of this macroalga.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (G.P.R.); (M.C.B.); (A.M.L.S.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Carmo Barreto
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (G.P.R.); (M.C.B.); (A.M.L.S.)
| | - Ana M. L. Seca
- University of the Azores, Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes (cE3c), Azorean Biodiversity Group & Global Change and Sustainability Institute (CHANGE), 9501-321 Ponta Delgada, Portugal; (G.P.R.); (M.C.B.); (A.M.L.S.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Nouri Z, Biglari S, Tabatabaiefar MA, Vahidnezhad F, Hozhabrpour A, March ME, Margolis DJ, Gudjonsson JE, Hakonarson H, Vahidnezhad H. Filaggrinopathies-FLG/FLG2: Diagnostic Complexities and Immunotherapy. J Invest Dermatol 2025:S0022-202X(24)03045-8. [PMID: 39927906 DOI: 10.1016/j.jid.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
FLG and FLG2 proteins are expressed in the outer layers of the epidermis, where they are vital in epidermal differentiation and skin barrier formation. Filaggrinopathies involving dysfunctions in these proteins are associated with a spectrum of phenotypic presentations, from monogenic to multifactorial conditions. This review examines biosynthesis and function of FLG and FLG2 proteins and evaluates their molecular pathogenesis in filaggrinopathies. Moreover, genotype-phenotype correlations are assessed, emphasizing genetic diagnosis complexities and diverse immune dysregulation patterns. Finally, it examines ongoing immunotherapeutic approaches by targeting different cytokines as promising treatment options for filaggrinopathies management.
Collapse
Affiliation(s)
- Zahra Nouri
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sajjad Biglari
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Fatemeh Vahidnezhad
- Department of Computer Science and Engineering Technology, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Amir Hozhabrpour
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious disease, Iran University of Medical Sciences, Tehran, Iran
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David J Margolis
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Zuccotti A, Al-Fatyan F, Ferretti GDS, Bertolini I, Long DT, Sahin O, Rodriguez-Blanco J, Barnoud T. Molecular Mechanisms and Therapeutic Implications of Long Non-coding RNAs in Cutaneous Biology and Disease. J Cell Physiol 2025; 240:e70006. [PMID: 39943735 PMCID: PMC11939017 DOI: 10.1002/jcp.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 03/21/2025]
Abstract
Human skin is the largest organ of the human body and accounts for approximately fifteen percent of the total bodyweight. Its main physiological role is to protect the body against a wide range of environmental factors including pathogens, ultraviolet light, and injury. Importantly, the skin can regenerate and heal upon injury in large part by the differentiation of keratinocytes. Not surprisingly, dysregulation of cutaneous differentiation and self-renewal can result in a variety of skin-related pathologies, including autoimmune disease and cancer. Increasing evidence supports the premise that long non-coding RNAs (lncRNAs) act as critical mediators of gene expression and regulate important biological processes within the skin. Notably, dysregulation of lncRNAs has been shown to influence diverse physiological and pathological consequences. More recently, numerous reports have revealed new mechanistic insight on the role that lncRNAs play in skin homeostasis as well as their contribution to the pathogenesis of skin-related disorders. Here, we review the biological functions of cutaneous lncRNAs and their impact on skin homeostasis. We also describe the fundamental roles of lncRNAs in the pathogenesis of skin-related disorders, including fibrotic, autoimmune, and malignant diseases. Lastly, we will highlight how a better understanding of lncRNAs at the molecular level may reveal novel therapeutic approaches for the improvement of cutaneous disorders.
Collapse
Affiliation(s)
- Alessandro Zuccotti
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Farah Al-Fatyan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Giulia D. S. Ferretti
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Irene Bertolini
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David T. Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jezabel Rodriguez-Blanco
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
10
|
Del Rosso JQ, Kircik L. Skin 101: Understanding the Fundamentals of Skin Barrier Physiology-Why is This Important for Clinicians? THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2025; 18:7-15. [PMID: 40078856 PMCID: PMC11896616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This article reviews epidermal barrier dysfunctions and more thoroughly discusses the stratum corneum (SC) permeability barrier, physiologic self-repair mechanisms in healthy skin, and the clinical and structural effects of an overstressed SC permeability barrier. Discussion includes epidermal barrier impairments induced by both exogenous exposures and endogenous factors such as specific dermatologic disorders. Due the plethora of skin care products on the market and the variability of their contents and vehicle formulations, this article addresses core concepts required to optimize skin care product selection, including for specific disease states such as atopic dermatitis, psoriasis, acne vulgaris, and rosacea. To summarize, the selection of skin care products is directed at maintaining SC hydration, including assisting the SC in self-repair when conditions are adverse. This approach optimizes the ability to sustain healthy skin structure, function and appearance.
Collapse
Affiliation(s)
- James Q Del Rosso
- Dr. Del Rosso is Research Director at JDR Dermatology Research in Las Vegas, Nevada; Senior Vice President of Clinical Research and Strategic Development at Advanced Dermatology and Cosmetic Surgery in Maitland, Florida; and Adjunct Clinical Professor (Dermatology) at Touro University Nevada in Henderson, Nevada
| | - Leon Kircik
- Dr. Kircik is Medical Director at Skin Sciences, PLLC, in Louisville, Kentucky
| |
Collapse
|
11
|
Kreouzi M, Theodorakis N, Nikolaou M, Feretzakis G, Anastasiou A, Kalodanis K, Sakagianni A. Skin Microbiota: Mediator of Interactions Between Metabolic Disorders and Cutaneous Health and Disease. Microorganisms 2025; 13:161. [PMID: 39858932 PMCID: PMC11767725 DOI: 10.3390/microorganisms13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis. Similarly, obesity-induced dysregulation of sebaceous lipid composition increases saturated fatty acids, favoring pathogenic strains of Cutibacterium acnes, which produce inflammatory metabolites that exacerbate acne. Advances in metabolomics and microbiome sequencing have unveiled critical biomarkers, such as short-chain fatty acids and microbial signatures, predictive of therapeutic outcomes. For example, elevated butyrate levels in psoriasis have been associated with reduced Th17-mediated inflammation, while the presence of specific Lactobacillus strains has shown potential to modulate immune tolerance in atopic dermatitis. Furthermore, machine learning models are increasingly used to integrate multi-omics data, enabling personalized interventions. Emerging therapies, such as probiotics and postbiotics, aim to restore microbial diversity, while phage therapy selectively targets pathogenic bacteria like Staphylococcus aureus without disrupting beneficial flora. Clinical trials have demonstrated significant reductions in inflammatory lesions and improved quality-of-life metrics in patients receiving these microbiota-targeted treatments. This review synthesizes current evidence on the bidirectional interplay between metabolic disorders and skin microbiota, highlighting therapeutic implications and future directions. By addressing systemic metabolic dysfunction and microbiota-mediated pathways, precision strategies are paving the way for improved patient outcomes in dermatologic care.
Collapse
Affiliation(s)
- Magdalini Kreouzi
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece;
| | - Nikolaos Theodorakis
- NT-CardioMetabolics, Clinic for Metabolism and Athletic Performance, 47 Tirteou Str., 17564 Palaio Faliro, Greece;
- Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Maria Nikolaou
- Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece;
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Athanasios Anastasiou
- Biomedical Engineering Laboratory, National Technical University of Athens, 15780 Athens, Greece;
| | - Konstantinos Kalodanis
- Department of Informatics & Telematics, Harokopio University of Athens, 17676 Kallithea, Greece;
| | - Aikaterini Sakagianni
- Intensive Care Unit, Sismanogleio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece
| |
Collapse
|
12
|
Panda P, Mohanty T, Mohapatra R. Advancements in Transdermal Drug Delivery Systems: Harnessing the Potential of Macromolecular Assisted Permeation Enhancement and Novel Techniques. AAPS PharmSciTech 2025; 26:29. [PMID: 39789371 DOI: 10.1208/s12249-024-03029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity. Concurrently, innovative methodologies such as iontophoresis, electroporation, microneedles, ultrasound, and sonophoresis have emerged as potent tools to enhance drug transport by creating transient microchannels or altering the skin's microenvironment. Among the novel approaches, the development of nanocarriers such as Liposome, niosomes, and transethosomes etc. has garnered substantial attention. These elastic vesicular systems, comprising lipids and edge activators, exhibit superior skin penetration owing to their deformability and enhanced payload delivery capabilities. Furthermore, the integration of nanocarriers with physical enhancement techniques demonstrates a synergistic potential, effectively addressing the limitations of conventional TDD systems. This comprehensive convergence of macromolecular-assisted enhancers, advanced physical techniques, and next-generation nanocarriers underscores the evolution of TDD, paving the way for optimized therapeutic outcomes.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Tejaswini Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
13
|
Ahuja K, Raju S, Dahiya S, Motiani RK. ROS and calcium signaling are critical determinant of skin pigmentation. Cell Calcium 2025; 125:102987. [PMID: 39708588 DOI: 10.1016/j.ceca.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca2+) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca2+ dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca2+ signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca2+ transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca2+ handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca2+ signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca2+ signaling to human pigmentary disorders.
Collapse
Affiliation(s)
- Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sakshi Dahiya
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
14
|
Janssens-Böcker C, Doberenz C, Monteiro M, de Oliveira Ferreira M. Influence of Cosmetic Skincare Products with pH < 5 on the Skin Microbiome: A Randomized Clinical Evaluation. Dermatol Ther (Heidelb) 2025; 15:141-159. [PMID: 39709312 PMCID: PMC11785879 DOI: 10.1007/s13555-024-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION The human skin acts as a protective barrier against external pathogens and hosts a diverse microbiome consisting of bacteria, fungi, viruses, and archaea. Disruptions to the skin microbiome can impact immune function, leading to inflammatory and autoimmune conditions. The importance of pH for the microbiome is paramount. Cosmetic skincare products interact with the skin microbiome and skin pH, playing a key role in maintaining microbial balance. Research suggests that products with non-physiological pH levels may disrupt the skin microbiota. Our clinical study aimed to evaluate the effects of low-pH cosmetic products (pH < 5) on the skin microbiome, contributing to improved skin health. METHODS The clinical study focused on evaluating the skin microbiome diversity following the application for 28 days of four different low-pH cosmetic products (vitamin C, resveratrol, a collagen mask, and a native algae mask) on the forearms of post-menopausal women with skin pH > 5.5. RESULTS The diversity of the natural skin microbiome increased consistently throughout the study, evident in both the untreated area and after the application of the Vitamin C Concentrate, Resveratrol Concentrate, Collagen Mask, and Native Algae Mask, as indicated by Shannon's diversity index. The native algae mask notably reduced the Corynebacterium genus and significantly lowered the pH. The skin pH changes corresponded with microbiota stability. CONCLUSIONS In conclusion, enhanced diversity of the natural skin microbiome was observed over the study duration. None of the investigational products caused significant disruption to the skin microbiome diversity, as evidenced by the stable Shannon's diversity index and relative abundance of specific genera. Notably, the native algae mask significantly decreased the presence of the opportunistic pathogenic Corynebacterium genus, which is likely attributable to a minor reduction in skin pH following extended product use. The findings suggest that the use of low-pH skincare products, like the native algae mask, do not disrupt skin microbiome diversity and may have the potential to positively impact skin microbiome diversity and health by reducing certain pathogenic microbial populations.
Collapse
Affiliation(s)
| | | | - Marta Monteiro
- Inovapotek, Pharmaceutical Research & Development, Porto, Portugal
| | | |
Collapse
|
15
|
Chen W, Jian X, Yu B. Review of Applications of Microneedling in Melasma. J Cosmet Dermatol 2025; 24:e16707. [PMID: 39731267 DOI: 10.1111/jocd.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Melasma, a common skin pigmentation disease, can negatively impact patients' mental health, social interactions, and physical appearance. Although we now have several treatments accessible, such as medicines, chemical peels, and phototherapy, which can help ease symptoms to some extent, the requirement for a long-term effective and safe treatment for patients is far from met. In the face of this problem, microneedling, as an innovative treatment, provides a new avenue for treating melasma. Although microneedling has been extensively investigated for treating other skin issues such as inflammation, scarring, and photoaging, research into its use in melasma treatment is still in its early stages. OBJECTIVE This study aimed to gather and assess clinical information on microneedling's effectiveness in treating melasma, covering research gaps and serving as a beneficial reference for clinical therapy. METHODS We searched PubMed, Cochrane, Scopus, Embase, and Web of Science databases for articles with the keywords "microneedling," "percutaneous collagen induction", and "melasma." Following a thorough assessment, we selected 64 clinical studies that matched the requirements for in-depth analysis. RESULTS After thoroughly reviewing these data, we concluded that microneedling has tremendous potential for treating melasma. Microneedling can significantly improve treatment outcomes, especially when paired with additional therapies such as topical medicines or phototherapy. CONCLUSION Overall, the evidence reported in this study demonstrates that microneedling is an essential advancement in melasma treatment. Not only can it improve the efficacy of topical drugs and other treatment modalities, but it also has an excellent safety and tolerability profile, making it desirable to patients and clinicians. While the current findings are encouraging, more study is needed to refine treatment protocols, investigate the long-term consequences of microneedling, and establish it as the standard of care for melasma treatment. We anticipate that microneedling will play an increasingly important role in the future of melasma treatment, providing our patients with more hope and a broader choice of treatment alternatives.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xingling Jian
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
16
|
Menichetti A, Mordini D, Montalti M. Penetration of Microplastics and Nanoparticles Through Skin: Effects of Size, Shape, and Surface Chemistry. J Xenobiot 2024; 15:6. [PMID: 39846538 PMCID: PMC11755607 DOI: 10.3390/jox15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Abstract
Skin represents an effective barrier against the penetration of external agents into the human body. Nevertheless, recent research has shown that small particles, especially in the nanosized range, can not only penetrate through the skin but also work as vectors to transport active molecules such as contrast agents or drugs. This knowledge has opened new perspectives on nanomedicine and controlled drug delivery. On the other hand, micro- and nanoplastics represent a form of emerging pollutants, and their concentration in the environment has been reported to drastically increase in the last years. The possible penetration of these particles through the skin has become a major concern for human health. If the actual primary toxicity of these materials is still debated, their possible role in the transport of toxic molecules through the skin, originating as secondary toxicity, is surely alarming. In this review paper, we analyze and critically discuss the most recent scientific publications to underline how these two processes, (i) the controlled delivery of bioactive molecules by micro- and nano-structures and (ii) the unwanted and uncontrolled penetration of toxic species through the skin mediated by micro- and nanoparticles, are deeply related and their efficiency is strongly affected by the nature, size, and shape of the particles.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| |
Collapse
|
17
|
Poyil MM, Alsharif MHK, El-Bidawy MH, Bin Dayel S, Khan MS, Omar ZMM, Mohamed AA, Fayyad RM, Alarabi TGM, Khairy HA, Bahakim NO, Samhan MA, El-Lateef AELSA. Anti-Inflammatory Potential and Synergic Activities of Eclipta prostrata (L.) L. Leaf-Derived Ointment Formulation in Combination with the Non-Steroidal Anti-Inflammatory Drug Diclofenac in Suppressing Atopic Dermatitis (AD). Life (Basel) 2024; 15:35. [PMID: 39859974 PMCID: PMC11766900 DOI: 10.3390/life15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Atopic dermatitis (AD) or eczema is an important inflammatory chronic skin disease that brings many complications in its management and treatment. Although several chemical agents are used for treatment, the search for better anti-inflammatory and antibacterial agents of plant origin has been ongoing, since natural compounds, it is commonly believed, are less dangerous than synthetic ones. Therefore, the present study explored a medicinal plant-Eclipta prostrata (L.) L.-for its anti-inflammatory activity alone and in combination with a non-steroidal anti-inflammatory drug (NSAID), diclofenac. The plant extract was used to make a cream formulation for treating atopic dermatitis and as an antibacterial agent against Staphylococcus aures, the major infectious agent associated with AD. The phytochemical analysis of the E. prostrata extract showed the presence of various phytochemicals, including flavonoids, Tannin, saponin, terpenoids, glycosides, phenol, alkaloids, quinone, and protein. The GC-MS profiling of methanolic E. prostrata extract was performed predicted the presence of twenty important phytochemicals, including 2-[5-(2-Hydroxypropyl) oxolan-2-yl]propanoic acid, dl-Menthol, dodecane, undecane, 4,7-dimethyl-, dodecane, 2,6,10-trimethyl-, decane, 2,3,5,8-tetramethyl-, cholest-5-en-3-ol, (3.alpha.)-, TMS derivative, cyclopropane carboxylic acid, 1-hydroxy-, (2,6-di-t-butyl-4-methylphenyl) ester, alpha.-farnesene, propanoic acid, 2-methyl-, 2-ethyl-1-propyl-1,3-propanediyl ester, diethyl phthalate, corticosterone, 2-methylpropionate, hentriacontan-13-ol, O-TMS, phthalic acid, 2,4-dimethylpent-3-yl dodecyl ester, hexasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11-dodecamethyl-, acetic acid, 4-t-butyl-4-hydroxy-1,5-dimethyl-hex-2-ynyl ester, octadecane, 2-methyl- octacosane, 1-iodo-, nonacosane, and eicosyl isopropyl ether. Using an egg albumin denaturation inhibition assay, the anti-inflammatory activities of E. prostrata alone and in combination with diclofenac were investigated, and they showed 93% and 99% denaturation inhibition at 5 mg concentration of E. prostrata in alone and combination with diclofenac, respectively. Heat-induced haemolysis showed 2.5% and 2.4% of haemolysis at 5 mg of E. prostrata alone and in combination with diclofenac, respectively. An MTT assay performed using L929 cells proved that the extract has no cytotoxic effect. The plant extract displayed potential antibacterial activity against Staphylococcus aureus; the growth was inhibited at 1 mg/mL of E. prostrata extract. Thus, based on this evidence, the authors suggest that E. prostrata extract should be studied further for its anti-inflammatory and antibacterial activities and topical application in the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Muhammad M. Poyil
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Mohammed H. Karrar Alsharif
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Mahmoud H. El-Bidawy
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
- Department of Physiology, Faculty of Medicine, Cairo University, Kasr Al-Aini, Cairo 11956, Egypt
| | - Salman Bin Dayel
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed Sarosh Khan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Zainab Mohammed M. Omar
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | | | - Reda M. Fayyad
- Department Pharmacology, General Medicine Practice Program, Batterjee Medical College, Asser 61961, Saudi Arabia;
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo 11511, Egypt
| | | | - Hesham A. Khairy
- Department of Basic Medical Science, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Nasraddin Othman Bahakim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
| | - Mohamed A. Samhan
- Department of Basic Medical Science, Dar Al-Uloom University, Riyadh 11512, Saudi Arabia;
| | - Abd El-Lateef Saeed Abd El-Lateef
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.H.E.-B.); (M.S.K.); (Z.M.M.O.); (N.O.B.); (A.E.-L.S.A.E.-L.)
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo 11511, Egypt
| |
Collapse
|
18
|
Teymouri S, Yousefi MH, Heidari S, Farokhi S, Afkhami H, Kashfi M. Beyond antibiotics: mesenchymal stem cells and bacteriophages-new approaches to combat bacterial resistance in wound infections. Mol Biol Rep 2024; 52:64. [PMID: 39699690 DOI: 10.1007/s11033-024-10163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wound management is a major global health problem. With the rising incidence of diabetic wounds, accidents, and other injuries, the demand for prompt wound treatment has become increasingly critical. Millions of people suffer from serious, large wounds resulting from major accidents, surgeries, and wars. These wounds require considerable time to heal and are susceptible to infection. Furthermore, chronic wounds, particularly in elderly and diabetic patients, often require frequent medical interventions to prevent complications. Consequently, wound management imposes a significant economic burden worldwide. The complications arising from wound infections can vary from localized issues to systemic effects. The most severe local complication of wound infection is the non-healing, which results from the disruption of the wound-healing process. This often leads to significant pain, discomfort, and psychological trauma for the patient. Systemic complications may include cellulitis, osteomyelitis, and septicemia. Mesenchymal stem cells are characterized by their high capacity for division, making them suitable candidates for the treatment of tissue damage. Additionally, they produce antimicrobial peptides and various cytokines, which enhance their antimicrobial activity. Evidence shows that phages are effective in treating wound-related infections, and phage therapy has proven to be highly effective for patients when administered correctly. The purpose of this article is to explore the use of bacteriophages and mesenchymal stem cells in wound healing and infection management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Rusic D, Ivic M, Slugan A, Leskur D, Modun D, Durdov T, Vukovic D, Bukic J, Bozic J, Seselja Perisin A. Pilot Study on the Effects of a Cosmetic Serum Containing Niacinamide, Postbiotics and Peptides on Facial Skin in Healthy Participants: A Randomized Controlled Trial. Life (Basel) 2024; 14:1677. [PMID: 39768384 PMCID: PMC11727686 DOI: 10.3390/life14121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The literature describes niacinamide, but also postbiotics and peptides, as ingredients that improve skin barrier function, but also affect melanin and sebum levels in individuals. However, the combined effects of these ingredients in a single cosmetic serum have not been sufficiently investigated. Therefore, the aim of this randomized controlled study, conducted at the University of Split School of Medicine (Croatia), was to evaluate the effects of cosmetic products containing these active ingredients. This study was registered with ClinicalTrials.gov (NCT06189105) and has been completed. Primary outcomes were the levels of trans epidermal water loss, skin hydration, erythema, melanin, and sebum, all measured in 25 healthy Caucasian participants. Significant differences between hydration levels were observed at week 4 (61.0 ± 11.2 vs. 68.6 ± 13.3 AU, control and intervention). Moreover, a significant decrease in erythema values from the first to last measurement in the intervention group was observed, (379.9 ± 106.8 vs. 333.6 ± 73.5 AU, baseline values and week 4, intervention group). Interestingly, both the increase in skin hydration levels and the decrease in skin erythema after niacinamide serum application were significant in study participants who did not use sun protection products. It is well known that ultraviolet radiation has detrimental effects on human skin, and our results suggest that niacinamide could help counteract these effects.
Collapse
Affiliation(s)
- Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Magdalena Ivic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Ana Slugan
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Toni Durdov
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Dubravka Vukovic
- Department of Dermatovenerology, University Hospital Split, 21000 Split, Croatia;
| | - Josipa Bukic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Ana Seselja Perisin
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| |
Collapse
|
20
|
Han J, Choi Y, Kang S. Synergistic Strategies of Biomolecular Transport Technologies in Transdermal Healthcare Systems. Adv Healthc Mater 2024; 13:e2401753. [PMID: 39087395 PMCID: PMC11616266 DOI: 10.1002/adhm.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.
Collapse
Affiliation(s)
- Jieun Han
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Yi‐Jeong Choi
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program of BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Research Institute of Advanced Materials (RIAM)Seoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Nano Systems Institute SOFT FoundrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
21
|
Sharifi A, Mashjoor S, Makhmalzadeh BS, Khorsandi L, Shushizadeh MR. Baicalin-loaded proline and hydroxy proline functionalized chitosan derivative nanofiber composite as burning wound dressings. APPLIED MATERIALS TODAY 2024; 41:102519. [DOI: 10.1016/j.apmt.2024.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Kim J, Lee M, Cho W, Yoo E, Kim J, Gwon Y, Okayasu M, Lee J. Effect of Ceramides Derivatives from the Peach on Skin Function Improvement in UV-Irradiated Hairless Mice. Foods 2024; 13:3824. [PMID: 39682897 DOI: 10.3390/foods13233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the protective effects of a ceramides derivates from the peach (PF3) on photoaging by UV-irradiated hairless mice. Mice were randomly divided into seven groups: AIN93G without UVB exposure (normal control, NC), AIN93G with UVB exposure (control, C), AIN93G supplemented 100 mg/kg body weight (BW) of L-ascorbic acid with UVB exposure (AA), AIN93G supplemented 100 mg/kg BW of arbutin with UVB exposure (Arbutin), AIN93G supplemented 10 mg/kg BW of PF3 with UVB exposure (10PF3), AIN93G supplemented 20 mg/kg BW of PF3 with UVB exposure (20PF3), and AIN93G supplemented 40 mg/kg BW of PF3 with UVB exposure (40PF3). The study examined the impact of PF3 on skin hydration, wrinkle formation, and melanogenesis using enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (real-time PCR), and Western blot analysis. The PF3 demonstrated significant protective effects against photoaging by reducing skin wrinkle formation, decreasing epidermal and dermal thickening, and improving skin hydration. It also enhanced the expression of moisture-related factors (hyaluronic acid synthase [HAS], long-chain ceramides [LCBs], dihydroceramide desaturase 1 [DEGS1], and type I collagen [COL1A]) and antioxidant enzyme activities while reducing pro-inflammatory cytokines and oxidative stress markers. The PF3 supplementation positively modulated skin wrinkle formation-related factors, increasing collagen-related gene expression and decreasing matrix metalloproteinases. Additionally, PF3 showed potential in regulating melanogenesis by reducing the nitric oxide and cAMP content, as well as the expression of melanogenesis-related proteins. These comprehensive findings suggest that PF3 supplementation may be an effective strategy for preventing and treating UVB-induced skin photoaging through multiple mechanisms, including improved skin structure, hydration, antioxidant defense, and reduced inflammation and pigmentation.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wonhee Cho
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eunhee Yoo
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea
| | - Yuri Gwon
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea
| | - Musashi Okayasu
- OKAYASU Co., Ltd., 1004-2 Hirakata, Koshigaya City 343-0002, Japan
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
23
|
Rochman M, Klinger AM, Caldwell JM, Sadovsky Y, Rothenberg ME. Amniotic fluid modifies esophageal epithelium differentiation and inflammatory responses. Am J Physiol Gastrointest Liver Physiol 2024; 327:G629-G639. [PMID: 39189791 PMCID: PMC11559652 DOI: 10.1152/ajpgi.00197.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
The interplay between genetic and environmental factors during pregnancy can predispose to inflammatory diseases postnatally, including eosinophilic esophagitis (EoE), a chronic allergic disease triggered by food. Herein, we examined the effects of amniotic fluid (AF) on esophageal epithelial differentiation and responsiveness to proallergic stimuli. Multiplex analysis of AF revealed the expression of 66 cytokines, whereas five cytokines including IL-4 and thymic stromal lymphopoietin (TSLP) were not detected. Several proinflammatory cytokines including TNFα and IL-12 were highly expressed in the AF from women who underwent preterm birth, whereas EGF was the highest in term birth samples. Exposure of esophageal epithelial cells to AF resulted in transient phosphorylation of ERK1/2 and the transcription of early response genes, highlighting the direct impact of AF on esophageal epithelial cells. In a three-dimensional spheroid model, AF modified the esophageal epithelial differentiation program and enhanced the transcription of IL-13-target genes, including CCL26 and CAPN14, which encodes for a major genetic susceptibility locus for eosinophilic esophagitis. Notably, CAPN14 exhibited upregulation in spheroids exposed to preterm but not term AF following differentiation. Collectively, our findings call attention to the role of AF as a potential mediator of the intrauterine environment that influences subsequent esophageal disorders.NEW & NOTEWORTHY The interaction between amniotic fluid and the esophageal epithelium during pregnancy modifies esophageal epithelial differentiation and subsequent responsiveness to inflammatory stimuli, including interleukin 13 (IL-13). This interaction may predispose individuals to inflammatory conditions of the esophagus, such as eosinophilic esophagitis (EoE), in later stages of life.
Collapse
Affiliation(s)
- Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrea M Klinger
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| |
Collapse
|
24
|
Brito S, Baek M, Bin BH. Skin Structure, Physiology, and Pathology in Topical and Transdermal Drug Delivery. Pharmaceutics 2024; 16:1403. [PMID: 39598527 PMCID: PMC11597055 DOI: 10.3390/pharmaceutics16111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Several industries are increasingly focused on enhancing the delivery of active ingredients through the skin to optimize therapeutic outcomes. By facilitating the penetration of active ingredients through the skin barrier, these enhancers can significantly improve the efficacy of various formulations, ranging from skincare products to therapeutic agents targeting systemic circulation. As the understanding of skin physiology and the mechanisms of drug absorption deepen, these industries are adopting permeation enhancers more widely, ultimately leading to better patient outcomes and expanded treatment options. However, the structure and physiological function of the skin can vary according to different factors, such as the area of the body and between individuals. These variations, along with external environmental exposures, aging and pathological conditions, introduce complexities that must be carefully considered when designing effective delivery systems. Considering the intricacies of skin structure and physiology, tailoring systems to account for regional differences, individual variability, and changes induced by environmental factors or disease is critical to optimizing therapeutic outcomes. This review discusses the features of skin structure, physiology, and pathologies, as well as the application of permeation enhancers in these contexts. Furthermore, it addresses the use of animal skin models in transdermal delivery and dermatological studies, along with the latest developments in this field.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moonki Baek
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
25
|
Kim S, Hong KW, Oh M, An S, Han J, Park S, Kim G, Cho JY. Genetic Variants Associated with Sensitive Skin: A Genome-Wide Association Study in Korean Women. Life (Basel) 2024; 14:1352. [PMID: 39598151 PMCID: PMC11595562 DOI: 10.3390/life14111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
Sensitive skin (SS) is associated with discomfort, including burning, stinging, and itching. These symptoms are often exacerbated by environmental factors and personal care products. In this genome-wide association study (GWAS), we aimed to identify the genetic variants associated with SS in 1690 Korean female participants; 389 and 1301 participants exhibited sensitive and non-sensitive skin, respectively. Using a combination of self-reported questionnaires, patch tests, and sting tests, we selected 115 sensitive and 181 non-sensitive participants for genetic analysis. A GWAS was performed to identify the loci associated with SS. Although none of the single-nucleotide polymorphisms (SNPs) met the genome-wide significance threshold, we identified several SNPs with suggestive associations. SNP rs11689992 in the 2q11.3 region increased SS risk by approximately 3.67 times. SNP rs7614738 in the USP4 locus elevated SS risk by 2.34 times and was found to be an expression quantitative trait locus for GPX1, a gene involved in oxidative stress and inflammation. Additionally, SNPs rs12306124 in the RASSF8 locus and rs10483893 in the NRXN3 region were identified. These results suggest that the genetic variations affecting oxidative stress, cell growth regulation, and neurobiology potentially influence skin sensitivity, providing a basis for further investigation and the development of personalized approaches to manage sensitive skin.
Collapse
Affiliation(s)
- Seoyoung Kim
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung-Won Hong
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea;
| | - Mihyun Oh
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Susun An
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Jieun Han
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Sodam Park
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Goun Kim
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Lombardi F, Augello FR, Ciafarone A, Ciummo V, Altamura S, Cinque B, Palumbo P. 3D Models Currently Proposed to Investigate Human Skin Aging and Explore Preventive and Reparative Approaches: A Descriptive Review. Biomolecules 2024; 14:1066. [PMID: 39334833 PMCID: PMC11430810 DOI: 10.3390/biom14091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Skin aging is influenced by intrinsic and extrinsic factors that progressively impair skin functionality over time. Investigating the skin aging process requires thorough research using innovative technologies. This review explores the use of in vitro human 3D culture models, serving as valuable alternatives to animal ones, in skin aging research. The aim is to highlight the benefits and necessity of improving the methodology in analyzing the molecular mechanisms underlying human skin aging. Traditional 2D models, including monolayers of keratinocytes, fibroblasts, or melanocytes, even if providing cost-effective and straightforward methods to study critical processes such as extracellular matrix degradation, pigmentation, and the effects of secretome on skin cells, fail to replicate the complex tissue architecture with its intricated interactions. Advanced 3D models (organoid cultures, "skin-on-chip" technologies, reconstructed human skin, and 3D bioprinting) considerably enhance the physiological relevance, enabling a more accurate representation of skin aging and its peculiar features. By reporting the advantages and limitations of 3D models, this review highlights the importance of using advanced in vitro systems to develop practical anti-aging preventive and reparative approaches and improve human translational research in this field. Further exploration of these technologies will provide new opportunities for previously unexplored knowledge on skin aging.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Francesca Rosaria Augello
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Alessia Ciafarone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Valeria Ciummo
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Serena Altamura
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| |
Collapse
|
27
|
Zvonar Pobirk A, Roškar R, Bešter-Rogač M, Gašperlin M, Gosenca Matjaž M. The Impact of Phospholipid-Based Liquid Crystals' Microstructure on Stability and Release Profile of Ascorbyl Palmitate and Skin Performance. Molecules 2024; 29:3173. [PMID: 38999123 PMCID: PMC11243444 DOI: 10.3390/molecules29133173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The drug delivery potential of liquid crystals (LCs) for ascorbyl palmitate (AP) was assessed, with the emphasis on the AP stability and release profile linked to microstructural rearrangement taking place along the dilution line being investigated by a set of complementary techniques. With high AP degradation observed after 56 days, two stabilization approaches, i.e., the addition of vitamin C or increasing AP concentration, were proposed. As a rule, LC samples with the lowest water content resulted in better AP stability (up to 52% of nondegraded AP in LC1 after 28 days) and faster API release (~18% in 8 h) as compared to the most diluted sample (29% of nondegraded AP in LC8 after 28 days, and up to 12% of AP released in 8 h). In addition, LCs exhibited a skin barrier-strengthening effect with up to 1.2-fold lower transepidermal water loss (TEWL) and 1.9-fold higher skin hydration observed in vitro on the porcine skin model. Although the latter cannot be linked to LCs' composition or specific microstructure, the obtained insight into LCs' microstructure contributed greatly to our understanding of AP positioning inside the system and its release profile, also influencing the overall LCs' performance after dermal application.
Collapse
Affiliation(s)
- Alenka Zvonar Pobirk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (A.Z.P.); (R.R.); (M.G.)
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (A.Z.P.); (R.R.); (M.G.)
| | - Marija Bešter-Rogač
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Mirjana Gašperlin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (A.Z.P.); (R.R.); (M.G.)
| | - Mirjam Gosenca Matjaž
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (A.Z.P.); (R.R.); (M.G.)
| |
Collapse
|
28
|
Shi S, Zhang J, Quan S, Yang Y, Yao L, Xiao J. A highly biocompatible and bioactive transdermal nano collagen for enhanced healing of UV-damaged skin. Int J Biol Macromol 2024; 272:132857. [PMID: 38834124 DOI: 10.1016/j.ijbiomac.2024.132857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin damage caused by excessive UV radiation has gradually become one of the most prevalent skin diseases. Collagen has gradually found applications in the treatment of UV-damaged skin; however, their high molecular weight greatly limits their capacity to permeate the skin barrier and repair the damaged skin. Nano collagen has garnered growing attentions in the mimicking of collagen; while the investigation of its skin permeability and wound-healing capability remains vacancies. Herein, we have for the first time created a highly biocompatible and bioactive transdermal nano collagen demonstrating remarkable transdermal capacity and repair efficacy for UV-damaged skin. The transdermal nano collagen exhibited a stable triple-helix structure, effectively promoting the adhesion and proliferation of fibroblasts. Notably, the transdermal nano collagen displayed exceptional penetration capabilities, permeating fibroblast and healthy skin. Combo evaluations revealed that the transdermal nano collagen contributed to recovering the intensity and TEWL values of UV-damaged skin to normal level. Histological analysis further indicated that transdermal nano collagen significantly accelerated the repair of damaged skin by promoting the collagen regeneration and fibroblasts activation. This highly biocompatible and bioactive transdermal nano collagen provides a novel substituted strategy for the transdermal absorption of collagen, indicating great potential applications in cosmetics and dermatology.
Collapse
Affiliation(s)
- Shuangni Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| |
Collapse
|
29
|
Farhan M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024; 29:865. [PMID: 38398617 PMCID: PMC10893284 DOI: 10.3390/molecules29040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biochemical characteristics of polyphenols contribute to their numerous advantageous impacts on human health. The existing research suggests that plant phenolics, whether consumed orally or applied directly to the skin, can be beneficial in alleviating symptoms and avoiding the development of many skin disorders. Phenolic compounds, which are both harmless and naturally present, exhibit significant potential in terms of counteracting the effects of skin damage, aging, diseases, wounds, and burns. Moreover, polyphenols play a preventive role and possess the ability to delay the progression of several skin disorders, ranging from small and discomforting to severe and potentially life-threatening ones. This article provides a concise overview of recent research on the potential therapeutic application of polyphenols for skin conditions. It specifically highlights studies that have investigated clinical trials and the use of polyphenol-based nanoformulations for the treatment of different skin ailments.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|