1
|
Lehmann PV, Karulin AY, Becza N, Yao L, Liu Z, Chepke J, Maul-Pavicic A, Wolf C, Köppert S, Valente AV, Gorbachev AV, Tary-Lehmann M, Kirchenbaum GA. Theoretical and practical considerations for validating antigen-specific B cell ImmunoSpot assays. J Immunol Methods 2025:113817. [PMID: 39864733 DOI: 10.1016/j.jim.2025.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Owing to their ability to reliably detect even very rare antigen-specific B cells in cellular isolates such as peripheral blood mononuclear cells (PBMC), and doing so robustly in a high throughput-compatible manner, B cell ELISPOT/FluoroSpot (collectively "B cell ImmunoSpot") tests have become increasingly attractive for immune monitoring in regulated settings. Presently, there are no guidelines for the qualification and validation of B cell ImmunoSpot assay results. Here, we propose such guidelines, building on the experience acquired from T cell ImmunoSpot testing in an environment adhering to the requirements of regulatory bodies yet taking the unique features of B cell assays into account. A streamlined protocol is proposed that permits the performance of all tests needed for the formal validation of an antigen-specific B cell ImmunoSpot assay in only three experiments, utilizing 2.2 × 107 PBMC per donor. Subsequently, utilizing only 1-2 × 106 PBMC per sample (obtainable from 1 to 2 mL of blood), a validated multiplexed assay enables accurate quantification of the frequency of antigen-specific memory B cell-derived blasts secreting IgM, IgG, IgA or IgE antibodies. Collectively, such multiplexed B cell ImmunoSpot assays offer immense value for B cell immune monitoring programs due to their ease of implementation, scalability, applicability to essentially any antigenic system, economy of PBMC utilization, and last but not least, the high content information gained.
Collapse
Affiliation(s)
- Paul V Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Alexey Y Karulin
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Lingling Yao
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Zhigang Liu
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Jack Chepke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Andrea Maul-Pavicic
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Carla Wolf
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Sebastian Köppert
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Alexis V Valente
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Anton V Gorbachev
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Magdalena Tary-Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Greg A Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| |
Collapse
|
2
|
Yu Y, Meza K, Colbert C, Hoft DF, Jaunarajs A, Blazevic A, Frey SE, Abate G. Optimizing Microneutralization and IFN-γ ELISPOT Assays to Evaluate Mpox Immunity. Vaccines (Basel) 2024; 13:27. [PMID: 39852806 PMCID: PMC11769350 DOI: 10.3390/vaccines13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Available assays to measure pox virus neutralizing antibody titers are laborious and take up to 5 days. In addition, assays to measure T cell responses require the use of specific antigens, which may not be the same for all pox viruses. This study reports the development of robust assays for the measurement of mpox-specific neutralizing antibodies and IFN-γ-producing T-cell responses. METHODS Fourteen samples from 7 volunteers who received Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) were used. The focused reduction neutralization test (FRNT) was performed using the mpox-specific A29 monoclonal antibody. Optimization and further development of FRNT were conducted using the plaque reduction neutralization test (PRNT) as the gold standard. The mpox-specific IFN-γ ELISPOT assay was optimized using different mpox antigen preparations. Results with pre-vaccination samples were compared with post-vaccination samples using the Wilcoxon matched-pairs test. RESULTS Pre-vaccination and post-vaccination sera (n = 7) had FRNT50 (i.e., titers that inhibited at least 50% of the virus) of 109.1 ± 161.8 and 303.7 ± 402.8 (mean ± SD), respectively. Regression analysis of fold changes in FRNT50 and PRNT50 showed that the two assays closely agree (n = 25 tests on paired samples, R2 of 0.787). Using UV-inactivated mpox as an antigen, the number of IFN-γ spot-forming T cells (SFC) in pre-vaccination samples (16.13 ± 15.86, mean ± SD) was significantly lower than SFC in post-vaccination samples (172.9 ± 313.3, mean ± SD) with p = 0.0078. CONCLUSIONS Our newly developed microneutralization test has a good correlation with PRNT. UV-inactivated mpox is an appropriate antigen for the ELISPOT assay that measures mpox cross-reactive T cells. These assays will be useful in future mpox vaccine studies.
Collapse
Affiliation(s)
- Yinyi Yu
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Krystal Meza
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Chase Colbert
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | | | - Azra Blazevic
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Sharon E. Frey
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Getahun Abate
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| |
Collapse
|
3
|
Krivoshik SR, Dzielak L, Masters AR, Hall J, Johnson AJ. Development of an Enzyme-Linked Immunosorbent Spot Assay for the Assessment of Adeno-Associated Virus Peptides to Examine Immune Safety. Hum Gene Ther 2024; 35:506-516. [PMID: 38264994 DOI: 10.1089/hum.2023.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies have shown promise as novel treatments for rare genetic disorders such as hemophilia A and spinal muscular atrophy. However, cellular immune responses mediated by cytotoxic (CD8+) and helper (CD4+) T cells may target vector-transduced cells as well as healthy immune cells, impacting safety and efficacy. In this study, we describe the optimization and reproducibility of interferon-γ (IFNγ)-based and interleukin-2 (IL-2)-based enzyme-linked immunosorbent spot (ELISpot) assays for measuring T cell responses against AAV peptide antigens. For method optimization, peripheral blood mononuclear cells (PBMCs) were isolated from healthy human donors and stimulated with commercially available major histocompatibility complex (MHC) class I or II-specific peptides as positive controls. Peptide pools were designed from published AAV8 and AAV9 capsid protein sequences and then used to assess the presence of AAV-specific T cell responses. Our results demonstrate a measurable increase in IFNγ and IL-2-producing cells after AAV peptide presentation. Furthermore, there was an observed difference in the magnitude and specificity of response to peptide pools based on AAV serotype and donor. Finally, using individual peptides, we identified a region of the AAV9 capsid protein that can elicit an immunogenic response. This work shows the applicability of ELISpot in assessing anti-AAV immune responses and provides insight into how novel recombinant AAV vectors could be designed to reduce immunogenic potential.
Collapse
Affiliation(s)
- Sara Rose Krivoshik
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Lindsey Dzielak
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - April R Masters
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Jennifer Hall
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Alison J Johnson
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| |
Collapse
|
4
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
5
|
Freen-van Heeren JJ, Palomares Cabeza V, Lopez DC, Kivits D, Rensink I, Turksma AW, Ten Brinke A. Assessing Antigen-Specific T Cell Responses Through IFN-γ Enzyme-Linked Immune Absorbent Spot (ELISpot). Methods Mol Biol 2024; 2782:209-226. [PMID: 38622405 DOI: 10.1007/978-1-0716-3754-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
T cells are instrumental in protecting the host against invading pathogens and the development of cancer. To do so, they produce effector molecules such as granzymes, interleukins, interferons, and perforin. For the development and immunomonitoring of therapeutic applications such as cell-based therapies and vaccines, assessing T cell effector function is paramount. This can be achieved through various methods, such as 51Cr release assays, flow cytometry, and enzyme-linked immune absorbent spot (ELISpot) assays. For T cell ELISpots, plates are coated with antibodies directed against the effector molecule of interest (e.g., IFN-g). Subsequently, peripheral blood mononuclear cells (PBMCs) or isolated T cells are cultured on the plate together with stimuli of choice, and the production of effector molecules is visualized via labeled detection antibodies. For clinical studies, ELISpot is currently the gold standard to determine antigen-specific T cell frequencies. In contrast to 51Cr release assays, ELISpot allows for the exact enumeration of responding T cells, and compared to flow cytometry, ELISpot is more cost-effective and high throughput. Here, we optimize and describe, in a step-by-step fashion, how to perform a controlled IFN-γ ELISpot experiment to determine the frequency of responding or antigen-specific T cells in healthy human volunteers. Of note, this protocol can also be employed to assess the frequency of antigen-specific T cells induced in, e.g., vaccination studies or present in cellular products.
Collapse
Affiliation(s)
| | - Virginia Palomares Cabeza
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - David Cobeta Lopez
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Domenique Kivits
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Irma Rensink
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Annelies W Turksma
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands.
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Lehmann PV, Liu Z, Becza N, Valente AV, Wang J, Kirchenbaum GA. Monitoring Memory B Cells by Next-Generation ImmunoSpot ® Provides Insights into Humoral Immunity that Measurements of Circulating Antibodies Do Not Reveal. Methods Mol Biol 2024; 2768:167-200. [PMID: 38502394 DOI: 10.1007/978-1-0716-3690-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Memory B cells (Bmem) provide the second wall of adaptive humoral host defense upon specific antigen rechallenge when the first wall, consisting of preformed antibodies originating from a preceding antibody response, fails. This is the case, as recently experienced with SARS-CoV-2 infections and previously with seasonal influenza, when levels of neutralizing antibodies decline or when variant viruses arise that evade such. While in these instances, reinfection can occur, in both scenarios, the rapid engagement of preexisting Bmem into the recall response can still confer immune protection. Bmem are known to play a critical role in host defense, yet their assessment has not become part of the standard immune monitoring repertoire. Here we describe a new generation of B cell ELISPOT/FluoroSpot (collectively ImmunoSpot®) approaches suited to dissect, at single-cell resolution, the Bmem repertoire ex vivo, revealing its immunoglobulin class/subclass utilization, and its affinity distribution for the original, and for variant viruses/antigens. Because such comprehensive B cell ImmunoSpot® tests can be performed with minimal cell material, are scalable, and robust, they promise to be well-suited for routine immune monitoring.
Collapse
Affiliation(s)
- Paul V Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Zhigang Liu
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Alexis V Valente
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Junbo Wang
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Greg A Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH, USA.
| |
Collapse
|
7
|
Lehmann AA, Roen DR, Megyesi Z, Lehmann PV. Reagent Tracker ™ Platform Verifies and Provides Audit Trails for the Error-Free Implementation of T-Cell ImmunoSpot ® Assays. Methods Mol Biol 2024; 2768:105-115. [PMID: 38502390 DOI: 10.1007/978-1-0716-3690-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
ELISPOT and FluoroSpot assays, collectively called ImmunoSpot assays, permit to reliable detection of rare antigen-specific T cells in freshly isolated cell material, such as peripheral blood mononuclear cells (PBMC). Establishing their frequency within all PBMC permits to assess the magnitude of antigen-specific T-cell immunity; the simultaneous measurement of their cytokine signatures reveals these T-cells' lineage and effector functions, that is, the quality of T-cell-mediated immunity. Because of their unparalleled sensitivity, ease of implementation, robustness, and frugality in PBMC utilization, T-cell ImmunoSpot assays are increasingly becoming part of the standard immune monitoring repertoire. For regulated workflows, stringent audit trails of the data generated are a requirement. While this has been fully accomplished for the analysis of T-cell ImmunoSpot assay results, such are missing for the wet laboratory implementation of the actual test performed. Here we introduce a solution for enhancing and verifying the error-free implementation of T-cell ImmunoSpot assays.
Collapse
Affiliation(s)
- Alexander A Lehmann
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA.
| | - Diana R Roen
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Zoltán Megyesi
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Paul V Lehmann
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| |
Collapse
|
8
|
Karulin AY, Katona M, Megyesi Z, Kirchenbaum GA, Lehmann PV. Artificial Intelligence-Based Counting Algorithm Enables Accurate and Detailed Analysis of the Broad Spectrum of Spot Morphologies Observed in Antigen-Specific B-Cell ELISPOT and FluoroSpot Assays. Methods Mol Biol 2024; 2768:59-85. [PMID: 38502388 DOI: 10.1007/978-1-0716-3690-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Antigen-specific B-cell ELISPOT and multicolor FluoroSpot assays, in which the membrane-bound antigen itself serves as the capture reagent for the antibodies that B cells secrete, inherently result in a broad range of spot sizes and intensities. The diversity of secretory footprint morphologies reflects the polyclonal nature of the antigen-specific B cell repertoire, with individual antibody-secreting B cells in the test sample differing in their affinity for the antigen, fine epitope specificity, and activation/secretion kinetics. To account for these heterogeneous spot morphologies, and to eliminate the need for setting up subjective counting parameters well-by-well, CTL introduces here its cutting-edge deep learning-based IntelliCount™ algorithm within the ImmunoSpot® Studio Software Suite, which integrates CTL's proprietary deep neural network. Here, we report detailed analyses of spots with a broad range of morphologies that were challenging to analyze using standard parameter-based counting approaches. IntelliCount™, especially in conjunction with high dynamic range (HDR) imaging, permits the extraction of accurate, high-content information of such spots, as required for assessing the affinity distribution of an antigen-specific memory B-cell repertoire ex vivo. IntelliCount™ also extends the range in which the number of antibody-secreting B cells plated and spots detected follow a linear function; that is, in which the frequencies of antigen-specific B cells can be accurately established. Introducing high-content analysis of secretory footprints in B-cell ELISPOT/FluoroSpot assays, therefore, fundamentally enhances the depth in which an antigen-specific B-cell repertoire can be studied using freshly isolated or cryopreserved primary cell material, such as peripheral blood mononuclear cells.
Collapse
|
9
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
10
|
Köppert S, Wolf C, Becza N, Sautto GA, Franke F, Kuerten S, Ross TM, Lehmann PV, Kirchenbaum GA. Affinity Tag Coating Enables Reliable Detection of Antigen-Specific B Cells in Immunospot Assays. Cells 2021; 10:cells10081843. [PMID: 34440612 PMCID: PMC8394687 DOI: 10.3390/cells10081843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Assessment of humoral immunity to SARS-CoV-2 and other infectious agents is typically restricted to detecting antigen-specific antibodies in the serum. Rarely does immune monitoring entail assessment of the memory B-cell compartment itself, although it is these cells that engage in secondary antibody responses capable of mediating immune protection when pre-existing antibodies fail to prevent re-infection. There are few techniques that are capable of detecting rare antigen-specific B cells while also providing information regarding their relative abundance, class/subclass usage and functional affinity. In theory, the ELISPOT/FluoroSpot (collectively ImmunoSpot) assay platform is ideally suited for antigen-specific B-cell assessments since it provides this information at single-cell resolution for individual antibody-secreting cells (ASC). Here, we tested the hypothesis that antigen-coating efficiency could be universally improved across a diverse set of viral antigens if the standard direct (non-specific, low affinity) antigen absorption to the membrane was substituted by high-affinity capture. Specifically, we report an enhancement in assay sensitivity and a reduction in required protein concentrations through the capture of recombinant proteins via their encoded hexahistidine (6XHis) affinity tag. Affinity tag antigen coating enabled detection of SARS-CoV-2 Spike receptor binding domain (RBD)-reactive ASC, and also significantly improved assay performance using additional control antigens. Collectively, establishment of a universal antigen-coating approach streamlines characterization of the memory B-cell compartment after SARS-CoV-2 infection or COVID-19 vaccinations, and facilitates high-throughput immune-monitoring efforts of large donor cohorts in general.
Collapse
Affiliation(s)
- Sebastian Köppert
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Carla Wolf
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (G.A.S.); (T.M.R.)
| | - Fridolin Franke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (G.A.S.); (T.M.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Paul V. Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Greg A. Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
11
|
A novel strategy for interpreting the T-SPOT.TB test results read by an ELISPOT plate imager. PLoS One 2019; 14:e0222920. [PMID: 31553764 PMCID: PMC6760805 DOI: 10.1371/journal.pone.0222920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
Background The T-SPOT.TB can be read by an ELISPOT plate imager as an alternative to a labor-intensive and time-consuming manual reading, but its accuracy has not been sufficiently discussed to date. Methods 1,423 test results obtained from manual reading using a microscope and an ELISPOT plate imager were compared. The agreement of qualitative test results was assessed using Cohen's kappa coefficient. The relationship of spot counts was studied using Bland-Altman analysis. Results The overall percent agreement of the qualitative test results was 95.43% with a kappa coefficient of 0.91. Positive test results with the maximum net spot count of 8 and borderline test results showed relatively high discordance. The agreement of spot counts in panel A, panel B, and nil control was good, and variability did not increase with higher spot counts. On the basis of study findings, a novel strategy for interpreting the test results by an ELISPOT plate imager was proposed. Conclusions To increase diagnostic accuracy, positive test results with the maximum net spot count of 8 and borderline test results should be manually confirmed. Our strategy could be a practical guide for laboratories to build their own strategies for interpreting the test results by an ELISPOT plate imager.
Collapse
|
12
|
Karulin AY, Megyesi Z, Caspell R, Hanson J, Lehmann PV. Multiplexing T- and B-Cell FLUOROSPOT Assays: Experimental Validation of the Multi-Color ImmunoSpot ® Software Based on Center of Mass Distance Algorithm. Methods Mol Biol 2018; 1808:95-113. [PMID: 29956177 DOI: 10.1007/978-1-4939-8567-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over the past decade, ELISPOT has become a highly implemented mainstream assay in immunological research, immune monitoring, and vaccine development. Unique single cell resolution along with high throughput potential sets ELISPOT apart from flow cytometry, ELISA, microarray- and bead-based multiplex assays. The necessity to unambiguously identify individual T and B cells that do, or do not co-express certain analytes, including polyfunctional cytokine producing T cells has stimulated the development of multi-color ELISPOT assays. The success of these assays has also been driven by limited sample/cell availability and resource constraints with reagents and labor. There are few commercially available test kits and instruments available at present for multi-color FLUOROSPOT. Beyond commercial descriptions of competing systems, little is known about their accuracy in experimental settings detecting individual cells that secrete multiple analytes vs. random overlays of spots. Here, we present a theoretical and experimental validation study for three and four color T- and B-cell FLUOROSPOT data analysis. The ImmunoSpot® Fluoro-X™ analysis system we used includes an automatic image acquisition unit that generates individual color images free of spectral overlaps and multi-color spot counting software based on the maximal allowed distance between centers of spots of different colors or Center of Mass Distance (COMD). Using four color B-cell FLUOROSPOT for IgM, IgA, IgG1, IgG3; and three/four color T-cell FLUOROSPOT for IL-2, IFN-γ, TNF-α, and GzB, in serial dilution experiments, we demonstrate the validity and accuracy of Fluoro-X™ multi-color spot counting algorithms. Statistical predictions based on the Poisson spatial distribution, coupled with scrambled image counting, permit objective correction of true multi-color spot counts to exclude randomly overlaid spots.
Collapse
Affiliation(s)
| | | | | | - Jodi Hanson
- Cellular Technology Ltd., Shaker Heights, OH, USA
| | | |
Collapse
|
13
|
Abstract
Multi-color FLUOROSPOT assays for simultaneous detection of several T-cell cytokines and/or classes/sub-classes of immunoglobulins secreted by B cells have recently become a major new avenue of development of ELISPOT technology. Advances in assay techniques and the availability of commercial test kits stimulated development of multi-color FLUOROSPOT data analysis platforms. The ImmunoSpot® Fluoro-X™ Software Suite was developed by CTL as an integrated data acquisition, analysis, and management solution for automated high-throughput processing of multi-color T- and B-cell FLUOROSPOT assay plates. The Fluoro-X™ software counting module is based on SmartSpot™/AutoGate™ technologies and utilizes CTL's Center of Mass Distance algorithm for the detection of multi-color spots. The Fluoro-X™ software provides an objective, user error-free means for analyzing multi-color FLUOROSPOT data. An integrated quality control module, with optional GLP and CFR Part 11 compliant package and role-based security, enables data validation, review, and approval with complete audit trails. The extensive multi-format data output and presentation capabilities of the Fluoro-X™ software allow further analysis of FLUOROSPOT data using any commercial flow cytometry software and facilitate the generation of professional reports and presentation. In this article, we present a detailed step-by-step workflow for the analysis of a human four-color IFN-γ, IL-2, TNF-α, and GzB antigen-specific T-cell assay using the Fluoro-X Software Suite.
Collapse
|
14
|
Tzeng SJ. The Isolation, Differentiation, and Quantification of Human Antibody-secreting B Cells from Blood: ELISpot as a Functional Readout of Humoral Immunity. J Vis Exp 2016. [PMID: 28060295 DOI: 10.3791/54582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The hallmark of humoral immunity is to generate functional ASCs, which synthesize and secrete Abs specific to an antigen (Ag), such as a pathogen, and are used for host defense. For the quantitative determination of the functional status of the humoral immune response of an individual, both serum Abs and circulating ASCs are commonly measured as functional readouts. In humans, peripheral blood is the most convenient and readily accessible sample that can be used for the determination of the humoral immune response elicited by host B cells. Distinct B-cell subsets, including ASCs, can be isolated directly from peripheral blood via selection with lineage-specific Ab-conjugated microbeads or via cell sorting with flow cytometry. Moreover, purified naïve and memory B cells can be activated and differentiated into ASCs in culture. The functional activities of ASCs to contribute to Ab secretion can be quantified by ELISpot, which is an assay that converges enzyme-linked immunoabsorbance assay (ELISA) and western blotting technologies to enable the enumeration of individual ASCs at the single-cell level. In practice, the ELISpot assay has been increasingly used to evaluate vaccine efficacy because of the ease of handling of a large number of blood samples. The methods of isolating human B cells from peripheral blood, the differentiation of B cells into ASCs in vitro, and the employment of ELISpot for the quantification of total IgM- and IgG-ASCs will be described here.
Collapse
Affiliation(s)
- Shiang-Jong Tzeng
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University;
| |
Collapse
|
15
|
How frequently are predicted peptides actually recognized by CD8 cells? Cancer Immunol Immunother 2016; 65:847-55. [PMID: 27108305 PMCID: PMC4917593 DOI: 10.1007/s00262-016-1840-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
Detection of antigen-specific CD8 cells frequently relies on the use of peptides that are predicted to bind to HLA Class I molecules or have been shown to induce immune responses. There is extensive knowledge on individual HLA alleles’ peptide-binding requirements, and immunogenic peptides for many antigens have been defined. The 32 individual peptides that comprise the CEF peptide pool represent such well-defined peptide determinants for Cytomegalo-, Epstein–barr-, and Influenza virus. We tested the accuracy of these peptide recognition predictions on 42 healthy human donors that have been high-resolution HLA-typed. According to the predictions, 241 recall responses should have been detected in these donors. Actual testing showed that 36 (15 %) of the predicted CD8 cell responses occurred in the high frequency range, 41 (17 %) in mid-frequencies, and 45 (19 %) were at the detection limit. In 119 instances (49 %), the predicted peptides were not targeted by CD8 cells detectably. The individual CEF peptides were recognized in an unpredicted fashion in 57 test cases. Moreover, the frequency of CD8 cells responding to a single peptide did not reflect on the number of CD8 cells targeting other determinants on the same antigen. Thus, reliance on one or a few predicted peptides provides a rather inaccurate assessment of antigen-specific CD8 cell immunity, strongly arguing for the use of peptide pools for immune monitoring.
Collapse
|
16
|
Figueroa CM, Morales-Cruz M, Suárez BN, Fernández JC, Molina AM, Quiñones CM, Griebenow K. Induction of Cancer Cell Death by Hyaluronic Acid-Mediated Uptake of Cytochrome C. ACTA ACUST UNITED AC 2015; 6. [PMID: 27182458 PMCID: PMC4864004 DOI: 10.4172/2157-7439.1000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective cancer treatment needs both, passive and active targeting approaches, to achieve highly specific drug delivery to the target cells while avoiding cytotoxicity to normal cells. Protein drugs are useful in this context because they can display excellent specificity and potency. However, their use in therapeutic formulations is limited due to their physical and chemical instability during storage and administration. Polysaccharides have been used to stabilize proteins during formulation and delivery. To accomplish both, stabilization and targeting simultaneously, the apoptosis-inducing protein cytochrome c (Cyt c) was modified with the polysaccharide hyaluronic acid (HA) because its corresponding receptor CD44 is overexpressed in many cancers. Cyt c-HA bioconjugates were formed using low and high molecular weight HA (8 kDa and 1 MDa) with a resultant Cyt c loading percentage of 4%. Circular dichroism and a cell-free caspase assay showed minor structural changes and high bioactivity (more than 80% caspase activation) of Cyt c, respectively, after bioconjugate formation. Two CD44-positive cancer cells lines, HeLa and A549 cells, and two CD44-negative normal cell lines, Huvec and NIH-3T3 cells, were incubated with the samples to assess selectivity and cytotoxicity. After 24 h of incubation with the samples, cancer cell viability was reduced at least 3-fold while CD44-negative control cell lines remained minimally affected. Fluorescence imaging confirmed selective internalization of the Cyt c-HA construct by CD44-positive cancer cell lines. These results demonstrate the development of a drug delivery system that incorporates passive and active targeting which is essential for cancer treatment.
Collapse
Affiliation(s)
- Cindy M Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Moraima Morales-Cruz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Bethzaida N Suárez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Jean C Fernández
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Anna M Molina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Carmen M Quiñones
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA
| |
Collapse
|
17
|
Characterization of the HCMV-Specific CD4 T Cell Responses that Are Associated with Protective Immunity. Viruses 2015; 7:4414-37. [PMID: 26258786 PMCID: PMC4576189 DOI: 10.3390/v7082828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022] Open
Abstract
Most humans become infected with human cytomegalovirus (HCMV). Typically, the immune system controls the infection, but the virus persists and can reactivate in states of immunodeficiency. While substantial information is available on the contribution of CD8 T cells and antibodies to anti-HCMV immunity, studies of the TH1, TH2, and TH17 subsets have been limited by the low frequency of HCMV-specific CD4 T cells in peripheral blood mononuclear cell (PBMC). Using the enzyme-linked Immunospot® assay (ELISPOT) that excels in low frequency measurements, we have established these in a sizable cohort of healthy HCMV controllers. Cytokine recall responses were seen in all seropositive donors. Specifically, interferon (IFN)-γ and/or interleukin (IL)-17 were seen in isolation or with IL-4 in all test subjects. IL-4 recall did not occur in isolation. While the ratios of TH1, TH2, and TH17 cells exhibited substantial variations between different individuals these ratios and the frequencies were relatively stable when tested in samples drawn up to five years apart. IFN-γ and IL-2 co-expressing polyfunctional cells were seen in most subjects. Around half of the HCMV-specific CD4 cells were in a reversible state of exhaustion. The data provided here established the TH1, TH2, and TH17 characteristic of the CD4 cells that convey immune protection for successful immune surveillance against which reactivity can be compared when the immune surveillance of HCMV fails.
Collapse
|
18
|
ELISPOTs Produced by CD8 and CD4 Cells Follow Log Normal Size Distribution Permitting Objective Counting. Cells 2015; 4:56-70. [PMID: 25612115 PMCID: PMC4381209 DOI: 10.3390/cells4010056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 11/24/2022] Open
Abstract
Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs.
Collapse
|