1
|
Bakhtiari M, Jordan SC, Mumme HL, Sharma R, Shanmugam M, Bhasin SS, Bhasin M. ARMH1 is a novel marker associated with poor pediatric AML outcomes that affect the fatty acid synthesis and cell cycle pathways. Front Oncol 2024; 14:1445173. [PMID: 39703843 PMCID: PMC11655347 DOI: 10.3389/fonc.2024.1445173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Despite remarkable progress in Pediatric Acute Myeloid Leukemia (pAML) treatments, the relapsed disease remains difficult to treat, making it pertinent to identify novel biomarkers of prognostic/therapeutic significance. Material and methods Bone marrow samples from 21 pAML patients were analyzed using single cell RNA sequencing, functional assays with ARMH1 knockdown and overexpression were performed in leukemia cell lines to evaluate impact on proliferation and migration, and chemotherapy sensitivity. Mitochondrial function was assessed via Seahorse assay, ARMH1 interacting proteins were studied using co-immunoprecipitation. Bulk RNA-seq was performed on ARMH1knockdown and over expressing cell lines to evaluate the pathways and networks impacted by ARMH1. Results Our data shows that ARMH1, a novel cancer-associated gene, is highly expressed in the malignant blast cells of multiple pediatric hematologic malignancies, including AML, T/B-ALL, and T/B-MPAL. Notably, ARMH1 expression is significantly elevated in blast cells of patients who relapsed or have a high-risk cytogenetic profile (MLL) compared to standard-risk (RUNX1, inv (16)). ARMH1 expression is also significantly correlated with the pediatric leukemia stem cell score of 6 genes (LSC6) associated with poor outcomes. Perturbation of ARMH1 (knockdown and overexpression) in leukemia cell lines significantly impacted cell proliferation and migration. The RNA-sequencing analysis on multiple ARMH1 knockdown and overexpressing cell lines established an association with mitochondrial fatty acid synthesis and cell cycle pathways.The investigation of the mitochondrial matrix shows that pharmacological inhibition of a key enzyme in fatty acid synthesis regulation, CPT1A, resulted in ARMH1 downregulation. ARMH1 knockdown also led to a significant reduction in CPT1A and ATP production as well as Oxygen Consumption Rate. Our data indicates that downregulating ARMH1 impacts cell proliferation by reducing key cell cycle regulators such as CDCA7 and EZH2. Further, we also established that ARMH1 is a key physical interactant of EZH2, associated with multiple cancers. Conclusion Our findings underscore further evaluation of ARMH1 as a potential candidate for targeted therapies and stratification of aggressive pAML to improve outcomes.
Collapse
Affiliation(s)
- Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
| | - Sean C. Jordan
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Hope L. Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Richa Sharma
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Swati S. Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Yan L, Li J, Yang Y, Zhang X, Zhang C. Old drug, new use: Recent advances for G-CSF. Cytokine 2024; 184:156759. [PMID: 39293182 DOI: 10.1016/j.cyto.2024.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Jing Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Yang Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| |
Collapse
|
3
|
Kolecka-Bednarczyk A, Frydrychowicz M, Budny B, Ruciński M, Dompe C, Gabryel P, Płachno BJ, Ruchała M, Ziemnicka K, Zieliński P, Budna-Tukan J. Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:8642. [PMID: 39201328 PMCID: PMC11354976 DOI: 10.3390/ijms25168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) leads as a primary cause of cancer-related premature mortality in Western populations. This study leverages cutting-edge gene-expression-profiling technologies to perform an in-depth molecular characterization of NSCLC specimens, with the objective of uncovering tumor-specific genomic alterations. By employing DNA microarray analysis, our research aims to refine the classification of NSCLC for early detection, guide molecular-targeted treatment approaches, enhance prognostication, and broaden the scientific understanding of the disease's biology. We identified widespread genomic abnormalities in our samples, including the recurrent loss of chromosomal regions 3p, 5q, 13q, and 21q and the gain of 12p. Furthermore, utilizing Metascape for bioinformatic analysis revealed critical biological pathways disrupted in NSCLC, offering promising leads for novel therapeutic interventions.
Collapse
Affiliation(s)
- Agata Kolecka-Bednarczyk
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Magdalena Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
| | - Claudia Dompe
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Cracow, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Paweł Zieliński
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
4
|
Arwanih EY, Rinaldi I, Wanandi SI, Louisa M. Identification of a novel mutation of the FLT3 gene located on the juxtamembrane domain from acute myeloid leukemia patients. Mol Biol Rep 2024; 51:867. [PMID: 39073493 DOI: 10.1007/s11033-024-09790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND FLT3 gene mutations are genetic abnormality that caused leukemogenesis. Furthermore, presence of FLT3 mutations is associated with poor prognosis in AML. This study aimed to identify FLT3 gene mutations so that it can be used as a genetic reference for the AML patients in Indonesian population. METHODS This cross-sectional study recruited 63 AML de novo patients between August 2021 and July 2023 at Cipto Mangukusumo General Hospital and Dharmais Cancer Hospital. We collected peripheral blood from the patients for DNA isolation. FLT3 gene mutation was detected using PCR method, then followed by the Sanger sequencing. Novel mutation in exon-14 continued to in silico study using SWISS MODEL server for modelling protein and PyMOL2 software for visualizing the protein model. RESULTS Frequency FLT3-ITD mutation was 22% and 6 (10%) patients had a novel mutation on juxtamembrane domain. The number of FLT3-ITD insertions was 24 bp to 111 bp, with a median of 72 bp. Novel mutation indicated a change in the protein sequence at amino acid number 572 from Tyrosine to Valine and formed a stop codon (UGA) at amino acid position ins572G573. In-silico study from novel mutation showed the receptor FLT3 protein was a loss of most of the juxtamembrane domain and the entire kinase domain. CONCLUSION A novel FLT3 gene mutation was found in this study in the juxtamembrane domain. Based on the sequencing analysis and in silico studies, this mutation is likely to affect the activity of the FLT3 receptor. Therefore, further studies on this novel mutation are needed.
Collapse
Affiliation(s)
- Elly Yanah Arwanih
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomics Core Facilities, Indonesian Mecidal Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
5
|
Sun SL, Wu JZ, Wang JJ, Zhou H, Zhang CQ, Tong ZJ, Wang YB, Sha JK, Wang QX, Liu JC, Zheng XR, Li QQ, Zhang MY, Yang J, Wei TH, Wang ZX, Yu YC, Ding N, Leng XJ, Xue X, Li HM, Dai WC, Yin XY, Yang Y, Duan JA, Li NG, Shi ZH. Preclinical characterization of danatinib as a novel FLT3 inhibitor with excellent efficacy against resistant acute myeloid leukemia. Biomed Pharmacother 2023; 169:115905. [PMID: 38000356 DOI: 10.1016/j.biopha.2023.115905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic benefits of available FLT3 inhibitors for AML are limited by drug resistance, which is related to mutations, as well toxicity caused by off-target effects. In this study, we introduce a new small molecule FLT3 inhibitor called danatinib, which was designed to overcome the limitations of currently approved agents. Danatinib demonstrated greater potency and selectivity, resulting in cytotoxic activity specific to FLT3-ITD and/or FLT3-TKD mutated models. It also showed a superior kinome inhibition profile compared to several currently approved FLT3 inhibitors. In diverse FLT3-TKD models, danatinib exhibited substantially improved activity at clinically relevant doses, outperforming approved FLT3 inhibitors. In vivo safety evaluations performed on the granulopoiesis of transgenic myeloperoxidase (MPO) zebrafish and mice models proved danatinib to have an acceptable safety profile. Danatinib holds promise as a new and improved FLT3 inhibitor for the treatment of AML, offering long-lasting remissions and improved overall survival rates.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Chen-Qian Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin-Rui Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao-Ying Yin
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
6
|
JiaXin Y, XiaoFeng C, PengFei C, Songchen Z, Ziling L. Repeatedly next-generation sequencing during treatment follow-up of patients with small cell lung cancer. Medicine (Baltimore) 2023; 102:e34143. [PMID: 37390276 PMCID: PMC10313243 DOI: 10.1097/md.0000000000034143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
Somatic alterations in tumors are a frequent occurrence. In small cell lung cancer (SCLC), these include mutations in the tumor suppressors TP53 and retinoblastoma (RB1). We used next generation sequencing (NGS) to study specific genetic variants and compare genetic and clinicopathological features of SCLC with healthy control genome. Ten SCLC patients receiving standard chemotherapy, between 2018 and 2019, from the First Hospital of Jilin University were included in this study. Prior patient treatment, NGS was performed using DNA isolated from blood plasma. New NGS analyses were performed after 2 and 4 treatment cycles. Four patients presented with different metastases at diagnosis. Overall, most genes tested presented missense or frameshift variants. TP53, RB1, CREBBP, FAT1 genes presented gain of stop codons. At the single-gene level, the most frequently altered genes were TP53 (8/10 patients, 80%) and RB1 (4/10 patients, 40%), followed by bromodomain containing 4 (BRD4), CREBBP, FAT1, FMS-like tyrosine kinase 3 (FLT3), KDR, poly ADP-ribose polymerase (PARP1), PIK3R2, ROS1, and splicing factor 3b subunit 1 (SF3B1) (2/10 patients, 20%). We identified 5 genes, which have not been previously reported to bear mutations in the context of SCLC. These genes include BRD4, PARP1, FLT3, KDR, and SF3B1. We observed that among the studied individuals, patients with a high number of genetic events, and in which such mutations were not eradicated after treatment, showed a worse prognosis. There has not yet been given enough attention to the above-mentioned genes in SCLC, which will have great clinical prospects for treatment.
Collapse
Affiliation(s)
- Yin JiaXin
- First Hospital of Jilin University, Changchun, China
| | - Cong XiaoFeng
- First Hospital of Jilin University, Changchun, China
| | - Cui PengFei
- First Hospital of Jilin University, Changchun, China
| | - Zhao Songchen
- First Hospital of Jilin University, Changchun, China
| | - Liu Ziling
- First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
8
|
Muacevic A, Adler JR, Rinaldi I, Wanandi SI. Resistance Mechanism of Acute Myeloid Leukemia Cells Against Daunorubicin and Cytarabine: A Literature Review. Cureus 2022; 14:e33165. [PMID: 36726936 PMCID: PMC9885730 DOI: 10.7759/cureus.33165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy commonly found in adult patients. Low overall survival and resistance to therapy are the main issues in AML. The first line of treatment for AML chemotherapy is the induction phase, namely, the phase to induce remission by administering a combination of daunorubicin (DNR) for three days followed by administration of cytarabine (Ara-C) with continuous infusion for seven days, which is referred to as "3 + 7." Such induction therapy has been the standard therapy for AML for the last four decades. This review article is made to discuss daunorubicin and cytarabine from their chemical structure, pharmacodynamics, pharmacokinetics, and mechanisms of resistance in AML.
Collapse
|
9
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Al-Amer OM, Oyouni AAA, Alshehri MA, Alasmari A, Alzahrani OR, Aljohani SAS, Alasmael N, Theyab A, Algahtani M, Al Sadoun H, Alsharif KF, Hamad A, Abdali WA, Hawasawi YM. Association of SNPs within TMPRSS6 and BMP2 genes with iron deficiency status in Saudi Arabia. PLoS One 2021; 16:e0257895. [PMID: 34780475 PMCID: PMC8592490 DOI: 10.1371/journal.pone.0257895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Globally, iron-deficiency anemia (IDA) remains a major health obstacle. This health condition has been identified in 47% of pre-school students (aged 0 to 5 years), 42% of pregnant females, and 30% of non-pregnant females (aged 15 to 50 years) worldwide according to the WHO. Environmental and genetic factors play a crucial role in the development of IDA; genetic testing has revealed the association of a number of polymorphisms with iron status and serum ferritin. AIM The current study aims to reveal the association of TMPRSS6 rs141312 and BMP2 rs235756 with the iron status of females in Saudi Arabia. METHODS A cohort of 108 female university students aged 18-25 years was randomly selected to participate: 50 healthy and 58 classified as iron deficient. A 3-5 mL sample of blood was collected from each one and analyzed based on hematological and biochemical iron status followed by genotyping by PCR. RESULTS The genotype distribution of TMPRSS6 rs141312 was 8% (TT), 88% (TC) and 4% (CC) in the healthy group compared with 3.45% (TT), 89.66% (TC) and 6.89% (CC) in the iron-deficient group (P = 0.492), an insignificant difference in the allelic distribution. The genotype distribution of BMP2 rs235756 was 8% (TT), 90% (TC) and 2% (CC) in the healthy group compared with 3.45% (TT), 82.76% (TC) and 13.79% (CC) in iron-deficient group (P = 0.050) and was significantly associated with decreased ferritin status (P = 0.050). In addition, TMPRSS6 rs141312 is significantly (P<0.001) associated with dominant genotypes (TC+CC) and increased risk of IDA while BMP2 rs235756 is significantly (P<0.026) associated with recessive homozygote CC genotypes and increased risk of IDA. CONCLUSION Our finding potentially helps in the early prediction of iron deficiency in females through the genetic testing.
Collapse
Affiliation(s)
- Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Mohammed Ali Alshehri
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Abdulrahman Alasmari
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Othman R. Alzahrani
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Saad Ali S. Aljohani
- Department of Basic Medical Sciences, Faculty of Medicine, Alrayan Colleges, Almadinah Almunawarah, Kingdom of Saudi Arabia
| | - Noura Alasmael
- King Abdullah University for Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Abdullah Hamad
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Yousef MohammedRabaa Hawasawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Theyab A, Algahtani M, Alsharif KF, Hawsawi YM, Alghamdi A, Alghamdi A, Akinwale J. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. ACTA ACUST UNITED AC 2021; 26:628-636. [PMID: 34494505 DOI: 10.1080/16078454.2021.1965725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 20 years, granulocyte colony-stimulating factor (G-CSF) has driven the attention of researchers as a therapeutic agent for curing patients suffering from neutropenia. Despite the successful use of G-CSF, it currently requires daily injections, which are inconvenient, expensive, and distressing for children. Therefore, an alternative strategy for using G-CSF for treatment is needed. Understanding the G-CSF structure, expression, mechanism of action, and how it induces neutrophils mobilization is crucial to producing promising cancer therapy. The ability of G-CSF to mobilize hematopoietic stem cells from the bone marrow into the blood circulation was consequently exploited and altered the practice of hematopoietic stem cell transplantation. This is the motivation for the current review, which sheds light on the history of G-CSF and then focuses on the mechanism of action upon binding to its receptor (G-CSFR) and how that had led to the stimulation of neutrophils mobilization. The findings of this review show new insight into the mechanism of G-CSF that induces neutrophils mobilization. Thus, Understanding the G-CSF will provide a more effective treatment for all neutropenia patients.
Collapse
Affiliation(s)
- Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, Collage of Applied Medical Science, Taif University, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of internal medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | | | - Jude Akinwale
- Discovery - Protein Production at Crescendo Biologics Limited, Cambridge, England, United Kingdom
| |
Collapse
|
12
|
FLT3 Amplification as Double Minute Chromosomes in a Patient with Chronic Myelomonocytic Leukemia. DISEASE MARKERS 2021; 2021:9932837. [PMID: 34194582 PMCID: PMC8203365 DOI: 10.1155/2021/9932837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Double minute chromosomes (dmins) are a form of gene amplification presenting as small spherical paired chromatin bodies. Dmins are rare in hematologic malignancies and are generally associated with a poor prognosis. Some case reports identified MYC or MLL gene amplification performing as dmin in myeloid neoplasms. FLT3 (FMS-related tyrosine kinase 3) acts as an oncogene in myeloid neoplasms which is associated with several signal transduction pathways. Genomic amplification of FLT3 has not been reported in hematological disease. The current study attempts to demonstrate the existence of double minute chromosomes via FLT3 gene amplification in a patient diagnosed with chronic myelomonocytic leukemia (CMML). Routine G-banded karyotype, array-based comparative genomic hybridization, and fluorescence in situ hybridization analyses were used to characterize the cytogenetic abnormality in the patient's bone marrow. FLT3 amplification as dmins in a patient with CMML was revealed. This case study reports a rare double minute chromosome via FLT3 amplification in CMML by using array-based comparative genomic hybridization and fluorescence in situ hybridization analyses. The study also proposed another possible mechanism of FLT3 genes in leukemogenesis.
Collapse
|
13
|
Wang J, Pan X, Song Y, Liu J, Ma F, Wang P, Liu Y, Zhao L, Kang D, Hu L. Discovery of a Potent and Selective FLT3 Inhibitor ( Z)- N-(5-((5-Fluoro-2-oxoindolin-3-ylidene)methyl)-4-methyl-1 H-pyrrol-3-yl)-3-(pyrrolidin-1-yl)propanamide with Improved Drug-like Properties and Superior Efficacy in FLT3-ITD-Positive Acute Myeloid Leukemia. J Med Chem 2021; 64:4870-4890. [PMID: 33797247 DOI: 10.1021/acs.jmedchem.0c02247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overcoming the FLT3-ITD mutant has been a promising drug design strategy for treating acute myeloid leukemia (AML). Herein, we discovered a novel FLT3 inhibitor 17, which displayed potent inhibitory activity against the FLT3-ITD mutant (IC50 = 0.8 nM) and achieved good selectivity over c-KIT kinase (over 500-fold). Compound 17 selectively inhibited the proliferation of FLT3-ITD-positive AML cell lines MV4-11 (IC50 = 23.5 nM) and MOLM-13 (IC50 = 35.5 nM) and exhibited potent inhibitory effects against associated acquired resistance mutations. In cellular mechanism studies, compound 17 strongly inhibited FLT3-mediated signaling pathways and induced apoptosis by arresting the cell cycle in the sub-G1 phase. In in vivo studies, compound 17 demonstrated a good bioavailability (73.6%) and significantly suppressed tumor growth in MV4-11 (10 mg/kg, TGI 93.4%) and MOLM-13 (20 mg/kg, TGI 98.0%) xenograft models without exhibiting obvious toxicity. These results suggested that compound 17 may be a promising drug candidate for treating FLT3-ITD-positive AML.
Collapse
Affiliation(s)
- Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Xiang Pan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Yi Song
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Ping Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Yan Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Lin Zhao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Di Kang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| |
Collapse
|
14
|
Soncini D, Orecchioni S, Ruberti S, Minetto P, Martinuzzi C, Agnelli L, Todoerti K, Cagnetta A, Miglino M, Clavio M, Contini P, Varaldo R, Bergamaschi M, Guolo F, Passalacqua M, Nencioni A, Monacelli F, Gobbi M, Neri A, Abbadessa G, Eathiraj S, Schwartz B, Bertolini F, Lemoli RM, Cea M. The new small tyrosine kinase inhibitor ARQ531 targets acute myeloid leukemia cells by disrupting multiple tumor-addicted programs. Haematologica 2020; 105:2420-2431. [PMID: 33054082 PMCID: PMC7556675 DOI: 10.3324/haematol.2019.224956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Debora Soncini
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Samantha Ruberti
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Paola Minetto
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Martinuzzi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Katia Todoerti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonia Cagnetta
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marino Clavio
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Riccardo Varaldo
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Micaela Bergamaschi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fabio Guolo
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Marco Gobbi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto M. Lemoli
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
15
|
Genomic markers of midostaurin drug sensitivity in FLT3 mutated and FLT3 wild-type acute myeloid leukemia patients. Oncotarget 2020; 11:2807-2818. [PMID: 32754299 PMCID: PMC7381100 DOI: 10.18632/oncotarget.27656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy with the most common genomic alterations in NPM1, DNMT3A, and FLT3. Midostaurin was the first FLT3 inhibitor FDA approved for AML and is standard of care for FLT3 mutant patients undergoing induction chemotherapy [1, 2]. As there is a spectrum of response, we hypothesized that biological factors beyond FLT3 could play a role in drug sensitivity and that select FLT3-ITD negative samples may also demonstrate sensitivity. Thus, we aimed to identify features that would predict response to midostaurin in FLT3 mutant and wild-type samples. We performed an ex vivo drug sensitivity screen on primary and relapsed AML samples with corresponding targeted sequencing and RNA sequencing. We observed a correlation between FLT3-ITD mutations and midostaurin sensitivity as expected and observed KRAS and TP53 mutations correlating with midostaurin resistance in FLT3-ITD negative samples. Further, we identified genes differentially expressed in sensitive vs. resistant samples independent of FLT3-ITD status. Within FLT3-ITD mutant samples, over-expression of RGL4, oncogene and regulator of the Ras-Raf-MEK-ERK cascade, distinguished resistant from sensitive samples. Overall, this study highlights the complexity underlying midostaurin response. And, our results suggest that therapies that target both FLT3 and MAPK/ERK signaling may help circumvent some cases of resistance.
Collapse
|
16
|
Sun C, Choi IY, Gonzalez YIR, Andersen P, Talbot CC, Iyer SR, Lovering RM, Wagner KR, Lee G. Duchenne muscular dystrophy hiPSC-derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice. JCI Insight 2020; 5:134287. [PMID: 32343677 PMCID: PMC7308059 DOI: 10.1172/jci.insight.134287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy. In the present study, when human induced pluripotent stem cells (hiPSCs) were differentiated into myoblasts, the myoblasts derived from DMD patient hiPSCs (DMD hiPSC-derived myoblasts) exhibited an identifiable DMD-relevant phenotype: myogenic fusion deficiency. Based on this model, we developed a DMD hiPSC-derived myoblast screening platform employing a high-content imaging (BD Pathway 855) approach to generate parameters describing morphological as well as myogenic marker protein expression. Following treatment of the cells with 1524 compounds from the Johns Hopkins Clinical Compound Library, compounds that enhanced myogenic fusion of DMD hiPSC-derived myoblasts were identified. The final hits were ginsenoside Rd and fenofibrate. Transcriptional profiling revealed that ginsenoside Rd is functionally related to FLT3 signaling, while fenofibrate is linked to TGF-β signaling. Preclinical tests in mdx mice showed that treatment with these 2 hit compounds can significantly ameliorate some of the skeletal muscle phenotypes caused by dystrophin deficiency, supporting their therapeutic potential. Further study revealed that fenofibrate could inhibit mitochondrion-induced apoptosis in DMD hiPSC-derived cardiomyocytes. We have developed a platform based on DMD hiPSC-derived myoblasts for drug screening and identified 2 promising small molecules with in vivo efficacy.
Collapse
Affiliation(s)
- Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Yazmin I. Rovira Gonzalez
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, and
| | - Peter Andersen
- Institute for Cell Engineering
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. Conover Talbot
- The Johns Hopkins School of Medicine Institute for Basic Biomedical Sciences, Baltimore, Maryland, USA
| | | | - Richard M. Lovering
- Department of Orthopaedics and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathryn R. Wagner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Gabsang Lee
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering
| |
Collapse
|
17
|
Tremblay G, Cariou C, Recher C, Dolph M, Brandt P, Blanc AS, Forsythe A. Cost-effectiveness of midostaurin in the treatment of newly diagnosed FLT3-mutated acute myeloid leukemia in France. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2020; 21:543-555. [PMID: 31970530 DOI: 10.1007/s10198-019-01149-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Midostaurin (MIDO) combined with standard chemotherapy was approved by the European Medicines Agency in 2017 for the treatment of adults with newly diagnosed FLT3-mutated acute myeloid leukemia (AML) based on results from the RATIFY trial. METHODS A cost-effectiveness model was developed to compare MIDO and standard-of-care (SOC) to SOC alone in France. Per Haute Autorité de Santé (HAS) guidelines, a partitioned survival model with eight health states was used: diagnosis/induction, complete remission, relapse, hematopoietic stem cell transplantation (HSCT), HSCT recovery, post-HSCT recovery (stabilized after HSCT recovery), post-HSCT relapse, and mortality. A lifetime horizon was used beginning at diagnosis with a "cure model,", which assumed natural mortality after trial cut-off. Utility values were obtained from a systematic literature review and included disutilities. Resource utilization was based on HAS clinical guidelines and a survey of French physicians and included drugs and administration, adverse events, routine medical care, HSCT, and end-of-life care costs. RESULTS In RATIFY and after extrapolation, MIDO improved survival compared to SOC, translating into MIDO-treated patients gaining 1.12 life years (LYs) and 1.23 quality-adjusted life years (QALYs) versus SOC. The incremental cost-effectiveness ratio (ICER) for MIDO versus SOC was €68,781 per LY and €62,305 per QALY. Sensitivity analyses showed consistency with base case findings. CONCLUSIONS MIDO represents a clinically significant advancement in the management of newly diagnosed FLT3-mutated AML. In this analysis, MIDO add-on therapy showed gains in LYs and QALYs versus SOC alone and was found to be a cost-effective option at a €100,000 per QALY threshold for end-of-life treatment.
Collapse
Affiliation(s)
| | | | - Christian Recher
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole-Centre Hospitalier Université de Toulouse, Toulouse, France
| | - Mike Dolph
- Purple Squirrel Economics, New York, USA
| | | | | | | |
Collapse
|
18
|
Al-Amer O, Hawasawi Y, Oyouni AAA, Alshehri M, Alasmari A, Alzahrani O, Aljohani SAS. Study the association of transmembrane serine protease 6 gene polymorphisms with iron deficiency status in Saudi Arabia. Gene 2020; 751:144767. [PMID: 32422234 DOI: 10.1016/j.gene.2020.144767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intheclinical setting, iron deficiencyanaemia(IDA) represents a majorglobalhealthconcern. This health condition is reported in 30% of non-pregnant women, 42% of pregnant women (aged 15-50 years), 12.7% of men (15 years or older) and in 47% of preschool children (aged 0 to 5 years). Several genetic polymorphisms associated with iron status havebeen identified by using genome-wide association studies. AIM This study aimed to identify the functional polymorphismsrs855791 and rs2111833 in the transmembrane serine protease 6 (TMPRSS6) gene in female university students with IDA inthe Kingdom of Saudi Arabia. METHODS About 108 female students, aged from 18 to 25 years, were randomly selected and included to this study. Fifty-eightparticipants were iron deficient, and fifty participants were healthy. Blood samples were collected from all participants andassessed based on theirhaematologicaland biochemical iron status indices. Genotyping was carried out byusing PCR. RESULTS The genotype distribution oftheTMPRSS6rs855791 region in female studentsfromTabuk University,northern Saudi Arabia,was0% (CC), 77.6% (CT) and 22.4% (TT) in the iron-deficient students compared to 2% (CC), 96% (CT) and 2% (TT) in the healthy students,indicating significant differences in the allelic distribution betweentheiron-deficient group andthehealthy group. The genotype distribution of theTMPRSS6rs2111833 polymorphism was 8.6% (GG), 89.7% (GA) and 1.7% (AA) inthe iron-deficient students compared to 6% (GG), 92% (GA) and 2% (AA) in the healthy students,respectively,showing no differences between the iron-deficient group andthehealthy group in allelic distribution. CONCLUSION Our data demonstrated that theTMPRSS6 polymorphism rs855791 is significantly associated with decreased iron status, whereasTMPRSS6 polymorphismrs2111833 is not linked with iron deficiency status in female university students innorthern Saudi Arabia.
Collapse
Affiliation(s)
- Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Yousef Hawasawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, P.O. Box 40047, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Alshehri
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Saad Ali S Aljohani
- Department of Basic Medical Sciences, Faculty of Medicine, Alrayan Colleges, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
19
|
Floren M, Restrepo Cruz S, Termini CM, Marjon KD, Lidke KA, Gillette JM. Tetraspanin CD82 drives acute myeloid leukemia chemoresistance by modulating protein kinase C alpha and β1 integrin activation. Oncogene 2020; 39:3910-3925. [PMID: 32203165 PMCID: PMC7210072 DOI: 10.1038/s41388-020-1261-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
A principal challenge in treating acute myeloid leukemia (AML) is chemotherapy refractory disease. As such, there remains a critical need to identify key regulators of chemotherapy resistance in AML. In this study, we demonstrate that the membrane scaffold, CD82, contributes to the chemoresistant phenotype of AML. Using an RNA-seq approach, we identified the increased expression of the tetraspanin family member, CD82, in response to the chemotherapeutic, daunorubicin. Analysis of the TARGET and BEAT AML databases identifies a correlation between CD82 expression and overall survival of AML patients. Moreover, using a combination of cell lines and patient samples, we find that CD82 overexpression results in significantly reduced cell death in response to chemotherapy. Investigation of the mechanism by which CD82 promotes AML survival in response to chemotherapy identified a crucial role for enhanced protein kinase c alpha (PKCα) signaling and downstream activation of the β1 integrin. In addition, analysis of β1 integrin clustering by super-resolution imaging demonstrates that CD82 expression promotes the formation of dense β1 integrin membrane clusters. Lastly, evaluation of survival signaling following daunorubicin treatment identified robust activation of p38 mitogen-activated protein kinase (MAPK) downstream of PKCα and β1 integrin signaling when CD82 is overexpressed. Together, these data propose a mechanism where CD82 promotes chemoresistance by increasing PKCα activation and downstream activation/clustering of β1 integrin, leading to AML cell survival via activation of p38 MAPK. These observations suggest that the CD82-PKCα signaling axis may be a potential therapeutic target for attenuating chemoresistance signaling in AML.
Collapse
Affiliation(s)
- Muskan Floren
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Sebastian Restrepo Cruz
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kristopher D Marjon
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
20
|
Contribution Value of Akt, c-Myc, CIP2A, and PP2A Genes Expression in Leukemogenesis: A Bright Perspective on the Molecular Pattern of Patients with Acute Myeloid Leukemia (AML). INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.100223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M, McCubrey JA. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915-929. [PMID: 31657972 DOI: 10.1080/14728222.2019.1685501] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge.Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using the Medline Database from 2000 to the present.Expert opinion: The involvement of RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC and TP53 pathways as drivers of the disease and drug resistance is a challenge. Moreover, miRs regulate the expression of key genes in these pathways. What we and others are proposing is the prospect of targeting miRs and their downstream targets to improve conventional approaches to treat HCC. Combination approaches are often promising because multiple signaling pathways are deregulated due to diverse mutations and events.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
22
|
Montesinos P, Bergua J, Infante J, Esteve J, Guimaraes JE, Sierra J, Sanz MÁ. Update on management and progress of novel therapeutics for R/R AML: an Iberian expert panel consensus. Ann Hematol 2019; 98:2467-2483. [PMID: 31667544 DOI: 10.1007/s00277-019-03820-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
A significant proportion of adult patients with acute myeloid leukemia (AML) fail to achieve complete remission or will relapse later on after achieving it. Prognosis for relapsed or refractory (R/R) AML patients remains discouraging, with the main curative option still relying on hematopoietic stem cell transplant (HSCT) for those who are eligible. Beyond morphological bone marrow and peripheral blood assessment, evaluation of patient performance status and comorbidities, as well as genetic/molecular characterization, is crucial to make an accurate diagnosis and prognosis, which will be useful to select the most appropriate treatment. Emerging strategies are mainly focusing on the development of immune- and molecular-based approaches. Novel targeted therapies are generally well tolerated, potentially allowing them to be administered alone or in combination with classical chemotherapy agents. Enrolment in clinical trials should be considered first option for R/R AML patients, either as a bridge to HSCT or to benefit from novel therapies that eventually may prolong survival and improve quality of life. An Iberian expert panel has reviewed the recent advances in the management of R/R AML with the aim to develop updated evidence and expert opinion-based recommendations.
Collapse
Affiliation(s)
- Pau Montesinos
- Hematology Department, Hospital Universitari I Politècnic La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Bergua
- Division of Hematology/Oncology, Hospital San Pedro Alcántara, Cáceres, Spain
| | - Joana Infante
- Serviço de Hematologia e Transplantação de Medula Óssea, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, Lisbon, Portugal
| | - Jordi Esteve
- Department of Hematology, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - José Eduardo Guimaraes
- Serviço de Hematologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Jordi Sierra
- Hematology Department, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau and Jose Carreras Leukemia Research Institutes, Autonomous University of Barcelona, Barcelona, Spain
| | - Miguel Ángel Sanz
- Hematology Department, Hospital Universitari I Politècnic La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
23
|
Wu SY, Wen YC, Ku CC, Yang YC, Chow JM, Yang SF, Lee WJ, Chien MH. Penfluridol triggers cytoprotective autophagy and cellular apoptosis through ROS induction and activation of the PP2A-modulated MAPK pathway in acute myeloid leukemia with different FLT3 statuses. J Biomed Sci 2019; 26:63. [PMID: 31470848 PMCID: PMC6717358 DOI: 10.1186/s12929-019-0557-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Chemotherapy is the main treatment for acute myeloid leukemia (AML), but the cure rates for AML patients remain low, and the notorious adverse effects of chemotherapeutic drugs drastically reduce the life quality of patients. Penfluridol, a long-acting oral antipsychotic drug, has an outstanding safety record and exerts oncostatic effects on various solid tumors. Until now, the effect of penfluridol on AML remains unknown. Methods AML cell lines harboring wild-type (WT) Fms-like tyrosine kinase 3 (FLT3) and internal tandem duplication (ITD)-mutated FLT3 were used to evaluate the cytotoxic effects of penfluridol by an MTS assay. A flow cytometric analysis and immunofluorescence staining were employed to determine the cell-death phenotype, cell cycle profile, and reactive oxygen species (ROS) and acidic vesicular organelle (AVO) formation. Western blotting and chemical inhibitors were used to explore the underlying mechanisms involved in penfluridol-mediated cell death. Results We observed that penfluridol concentration-dependently suppressed the cell viability of AML cells with FLT3-WT (HL-60 and U937) and FLT3-ITD (MV4–11). We found that penfluridol treatment not only induced apoptosis as evidenced by increases of nuclear fragmentation, the sub-G1 populations, poly (ADP ribose) polymerase (PARP) cleavage, and caspase-3 activation, but also triggered autophagic responses, such as the light chain 3 (LC3) turnover and AVO formation. Interestingly, blocking autophagy by the pharmacological inhibitors, 3-methyladenine and chloroquine, dramatically enhanced penfluridol-induced apoptosis, indicating the cytoprotective role of autophagy in penfluridol-treated AML cells. Mechanistically, penfluridol-induced apoptosis occurred through activating protein phosphatase 2A (PP2A) to suppress Akt and mitogen-activated protein kinase (MAPK) activities. Moreover, penfluridol’s augmentation of intracellular ROS levels was critical for the penfluridol-induced autophagic response. In the clinic, we observed that patients with AML expressing high PP2A had favorable prognoses. Conclusions These findings provide a rationale for penfluridol being used as a PP2A activator for AML treatment, and the combination of penfluridol with an autophagy inhibitor may be a novel strategy for AML harboring FLT3-WT and FLT3-ITD. Electronic supplementary material The online version of this article (10.1186/s12929-019-0557-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Cao ZX, Wen Y, He JL, Huang SZ, Gao F, Guo CJ, Liu QQ, Zheng SW, Gong DY, Li YZ, Zhang RQ, Chen JP, Peng C. Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti-Acute Myeloid Leukemia Efficacy In Vitro and In Vivo. Mol Pharmacol 2019; 96:589-599. [PMID: 31462456 DOI: 10.1124/mol.119.116129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Licorice is a medicinal herb widely used to treat inflammation-related diseases in China. Isoliquiritigenin (ISL) is an important constituent of licorice and possesses multiple bioactivities. In this study, we examined the selective anti-AML (acute myeloid leukemia) property of ISL via targeting FMS-like tyrosine kinase-3 (FLT3), a certified valid target for treating AML. In vitro, ISL potently inhibited FLT3 kinase, with an IC50 value of 115.1 ± 4.2 nM, and selectively inhibited the proliferation of FLT3-internal tandem duplication (FLT3-ITD) or FLT3-ITD/F691L mutant AML cells. Moreover, it showed very weak activity toward other tested cell lines or kinases. Western blot immunoassay revealed that ISL significantly inhibited the activation of FLT3/Erk1/2/signal transducer and activator of transcription 5 (STAT5) signal in AML cells. Meanwhile, a molecular docking study indicated that ISL could stably form aromatic interactions and hydrogen bonds within the kinase domain of FLT3. In vivo, oral administration of ISL significantly inhibited the MV4-11 flank tumor growth and prolonged survival in the bone marrow transplant model via decreasing the expression of Ki67 and inducing apoptosis. Taken together, the present study identified a novel function of ISL as a selective FLT3 inhibitor. ISL could also be a potential natural bioactive compound for treating AML with FLT3-ITD or FLT3-ITD/F691L mutations. Thus, ISL and licorice might possess potential therapeutic effects for treating AML, providing a new strategy for anti-AML.
Collapse
Affiliation(s)
- Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yi Wen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jun-Lin He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shen-Zhen Huang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Fei Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Chuan-Jie Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Qing-Qing Liu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shu-Wen Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Dao-Yin Gong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Ruo-Qi Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jian-Ping Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| |
Collapse
|
25
|
Gil-Perez A, Montalban-Bravo G. Management of myelodysplastic syndromes after failure of response to hypomethylating agents. Ther Adv Hematol 2019; 10:2040620719847059. [PMID: 31156799 PMCID: PMC6515843 DOI: 10.1177/2040620719847059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Hypomethylating agents (HMAs) are the standard of care for patients with myelodysplastic syndrome (MDS). However, only around 50% of patients respond to these agents, and responses tend to be transient, with loss of response frequently happening within 2 years and being associated with very poor prognosis and limited therapeutic options. Identification of patients who will respond to HMAs is challenging. Mechanisms underlying resistance to HMAs are not clear yet. Recently, absence of response has been associated with increased cell-cycle quiescence among the hematopoietic progenitor cells. There are no standard-of-care options for patients after HMA failure. However, the increasing knowledge of MDS pathogenesis has led to the development of new potential therapies, including HMAs with longer half-life and exposure, inhibition of the antiapoptotic BCL2 protein with venetoclax or inhibition of immune-checkpoint regulatory proteins such as PD-1 or CTLA-4, innate immunity and targeting of CD33/CD3 with multiple monoclonal antibodies. In addition, multiple targeted agents are opening opportunities to treat subgroups of patients whose disease harbors mutations in TP53, IDH, FLT3, and genes involved in splicing machinery. Newer formulations of intensive chemotherapy and its different combinations may be considered a valid option in selected patients after HMA failure. Finally, decision making at the time of failure of response to HMAs should be personalized, taking into account that allogenic stem-cell transplantation remains the only therapeutic approach with curative potential in these patients. In the current review, we will focus on all the above aspects.
Collapse
Affiliation(s)
| | - Guillermo Montalban-Bravo
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77015, USA
| |
Collapse
|
26
|
Huang Y, Hu J, Lu T, Luo Y, Shi J, Wu W, Han X, Zheng W, He J, Cai Z, Wei G, Huang H, Sun J. Acute myeloid leukemia patient with FLT3-ITD and NPM1 double mutation should undergo allogeneic hematopoietic stem cell transplantation in CR1 for better prognosis. Cancer Manag Res 2019; 11:4129-4142. [PMID: 31190985 PMCID: PMC6512860 DOI: 10.2147/cmar.s194523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/22/2019] [Indexed: 12/29/2022] Open
Abstract
Background: According to the recent National Comprehensive Cancer Network (NCCN) guidelines, the risk level in acute myeloid leukemia (AML) patients with FLT3-ITD and NPM1 double mutation (AML FLT3-ITD+/NPM1+ ) depends on the allelic ratio of FLT3-ITD. But despite a low or high allelic ratio of FLT3-ITD, AML FLT3-ITD+/NPM1+ patients belong to the favorable or intermediate risk, for whom allogeneic stem cell transplantation is not obligated. However, some latest studies pointing out that NPM1 and FLT3-ITD double mutation patients showed an inferior prognosis, which have raised concern about the risk categorization and more effective treatment of AML FLT3-ITD+/NPM1+ patients. Methods: A total of 76 patients were selected for coexisting FLT3 and NPM1 mutations with normal cytogenetics. The prognostic risk factors were analyzed, and treatment strategies including allogeneic stem cell transplantati1on and chemotherapy were compared. Results: In 76 AML FLT3-ITD+/NPM1+ patients, 36.8% of patients had hyperleukocytosis (HL) and DNMT3A R882 mutation was the most common concomitant gene (23.7%). For 53 patients in the complete remission (CR), 22 had received allogeneic hematopoietic stem cell transplantation (allo-HSCT) on first complete remission (CR1). Patients in transplantation group had better overall survival (OS) and disease-free survival (DFS) than chemotherapy only (P=0.002 and 0.001, respectively). In multivariable Cox model analyses, HL and DNMT3A R882 mutation were independent adverse prognostic factors (all P<0.05) for AML FLT3-ITD+/NPM1+ patients. Nevertheless, allo-HSCT was an independent good factor of OS and DFS (P=0.001 and 0.000; HR =0.173 and 0.138; 95% CI were 0.062-0.483 and 0.049-0.389). And allo-HSCT could moderately improve the poor prognosis of AML FLT3-ITD+/NPM1+/DNMT3A R882+. Conclusion: Although, AML FLT3-ITD+/NPM1+ patients are categorized as favorable or intermediate risk levels according to recent NCCN and ELN guidelines, these patients should receive allo-HSCT in CR1 for a longer survival. AML FLT3-ITD+/NPM1+ patients with DNMT3A R882 mutation had a very poor prognosis, and allo-HSCT could moderately improve their survival.
Collapse
Affiliation(s)
- Yan Huang
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Juan Hu
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ting Lu
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wenjun Wu
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoyan Han
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jingsong He
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhen Cai
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Guoqing Wei
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jie Sun
- Bone Marrow Transplantation Center,the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.,Stem Cell Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
27
|
Tiong IS, Wei AH. New drugs creating new challenges in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:903-914. [PMID: 30861214 DOI: 10.1002/gcc.22750] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
The therapeutic landscape is rapidly changing, with eight new drugs approved by the Food and Drug Administration within the last 2 years, including midostaurin and gilteritinib for FLT3 mutant newly diagnosed and relapsed/refractory (R/R) acute myeloid leukemia (AML), respectively; CPX-351 (liposomal cytarabine and daunorubicin) for therapy-related AML and AML with myelodysplasia-related changes; gemtuzumab ozogamicin (anti-CD33 monoclonal antibody conjugated with calicheamicin) for newly diagnosed and R/R CD33-positive AML; enasidenib and ivosidenib for IDH2 and IDH1 mutant R/R AML, respectively. Novel therapies have also emerged for newly diagnosed AML in adults who are age 75 years or older, or who have comorbidities that preclude the use of intensive induction chemotherapy. These include venetoclax (BCL-2 inhibitor) in combination with hypomethylating agents (azacitidine or decitabine) or low-dose cytarabine (LDAC), and glasdegib (sonic hedgehog pathway inhibitor) in combination with LDAC. This flurry of new drug approvals has markedly altered the treatment landscape in AML and provided new opportunities, as well as new challenges for treating clinicians. This review will focus on how these drugs might shape clinical practice and the hurdles likely to be faced by new therapies seeking entry into this dynamic and rapidly changing therapeutic landscape.
Collapse
Affiliation(s)
- Ing S Tiong
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Andrew H Wei
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Yoon KB, Lee HJ, Chung HJ, Lee J, Choi J, Heo JD, Kim YC, Han SY. Discovery of LDD-1075 as a potent FLT3 inhibitor. Oncol Lett 2019; 17:4735-4741. [PMID: 30944659 DOI: 10.3892/ol.2019.10096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a valuable pharmacological target in the treatment of acute myeloid leukemia (AML). LDD-1075 and LDD-1076 are indirubin derivatives, and LDD-1075 is the ester form of LDD-1076. LDD-1076 exhibited a potent in vitro FLT3 kinase activity inhibition with an IC50 of 7.89 nM, whereas, LDD-1075 demonstrated a relatively weak activity against FLT3 (IC50 of 3.19 µM). In contrast with the results of the FLT3 kinase activity inhibition assay, the LDD-1076 did not affect the growth of the MV4-11 cell line, which harbors the constitutively activated form of the FLT3 mutation. Notably, LDD-1075 exhibited a strong cytotoxic effect against the MV4-11 cells. When LDD-1075 was incubated with the MV4-11 cell lysate, the formation of LDD-1076 was observed. Treatment with LDD-1075 inhibited the FLT3 phosphorylation along with the phosphorylation of the signal transducer and activator of transcription 5 protein, which is a downstream signal transducer of FLT3. Treatment with LDD-1075 induced apoptosis and cell cycle arrest at the G1 phase. The present study demonstrated that the LDD-1076 formed by the bioconversion of LDD-1075 is a potent FLT3 inhibitor with anti-leukemic activity.
Collapse
Affiliation(s)
- Kyoung Bin Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Jungeun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jungil Choi
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| |
Collapse
|
29
|
Gokhale P, Chauhan APS, Arora A, Khandekar N, Nayarisseri A, Singh SK. FLT3 inhibitor design using molecular docking based virtual screening for acute myeloid leukemia. Bioinformation 2019; 15:104-115. [PMID: 31435156 PMCID: PMC6677903 DOI: 10.6026/97320630015104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023] Open
Abstract
Acute Myeloid Leukaemia (AML) is a blood cancer, which affects the red blood cells in the bone marrow. Of the possible proteins that are affected in AML, fms-like tyrosine kinase 3 (FLT3) has long been recognized as a potential therapeutic target as it affects the other signaling pathways and leads to a cascade of events. First-generation inhibitors sorafenib and midostaurin, as well as secondgeneration agents such as quizartinib and crenolanib are known. It is of interest to identify new compounds against FLT3 with improved activity using molecular docking and virtual screening. Molecular docking of existing inhibitors selected a top scoring bestestablished candidate Quizartinib having PubChem CID: 24889392. Similarity searching resulted in compound XGIQBUNWFCCMASUHFFFAOYSA-NPubChemCID: 44598530 which shows higher affinity scores. A comparative study of both the compounds using a drug-drug comparison, ADMET studies, boiled egg plot and pharmacophore parameters and properties confirmed the result and predicted the ligand to be an efficient inhibitor of FLT3.
Collapse
Affiliation(s)
- Padmini Gokhale
- In silico Research Laboratory,Eminent Biosciences,Mahalakshmi Nagar,Indore-452010,Madhya Pradesh,India
| | | | - Anushka Arora
- In silico Research Laboratory,Eminent Biosciences,Mahalakshmi Nagar,Indore-452010,Madhya Pradesh,India
| | - Natasha Khandekar
- In silico Research Laboratory,Eminent Biosciences,Mahalakshmi Nagar,Indore-452010,Madhya Pradesh,India
| | - Anuraj Nayarisseri
- In silico Research Laboratory,Eminent Biosciences,Mahalakshmi Nagar,Indore-452010,Madhya Pradesh,India
- Bioinformatics Research Laboratory,LeGene Biosciences Pvt Ltd.,Mahalakshmi Nagar,Indore-452010,Madhya Pradesh,India
- Computer Aided Drug Designing and Molecular Modeling Lab,Department of Bioinformatics,Alagappa University,Karaikudi-630 003,Tamil Nadu,India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab,Department of Bioinformatics,Alagappa University,Karaikudi-630 003,Tamil Nadu,India
| |
Collapse
|
30
|
The Importance of the Right Framework: Mitogen-Activated Protein Kinase Pathway and the Scaffolding Protein PTPIP51. Int J Mol Sci 2018; 19:ijms19103282. [PMID: 30360441 PMCID: PMC6213971 DOI: 10.3390/ijms19103282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
The protein tyrosine phosphatase interacting protein 51 (PTPIP51) regulates and interconnects signaling pathways, such as the mitogen-activated protein kinase (MAPK) pathway and an abundance of different others, e.g., Akt signaling, NF-κB signaling, and the communication between different cell organelles. PTPIP51 acts as a scaffold protein for signaling proteins, e.g., Raf-1, epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (Her2), as well as for other scaffold proteins, e.g., 14-3-3 proteins. These interactions are governed by the phosphorylation of serine and tyrosine residues of PTPIP51. The phosphorylation status is finely tuned by receptor tyrosine kinases (EGFR, Her2), non-receptor tyrosine kinases (c-Src) and the phosphatase protein tyrosine phosphatase 1B (PTP1B). This review addresses various diseases which display at least one alteration in these enzymes regulating PTPIP51-interactions. The objective of this review is to summarize the knowledge of the MAPK-related interactome of PTPIP51 for several tumor entities and metabolic disorders.
Collapse
|