1
|
Song H, Yu M, Song Y, Deng S. A retrospective analysis of spinal teratomas and spinal lipomas: overlaps and differences in presentation, surgical treatments, and outcomes. Spine J 2024:S1529-9430(24)00983-5. [PMID: 39251040 DOI: 10.1016/j.spinee.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Spinal teratomas and lipomas, both adult and pediatric cases, are rare diseases with many similarities, but have yet to be systematically compared. PURPOSE To systematically compare spinal teratomas and lipomas to optimize management. STUDY DESIGN Retrospective. PATIENT SAMPLE Symptomatic spinal teratoma and lipoma patients surgically treated at our center. OUTCOME MEASURES Anatomical distribution, clinical manifestations, resection status, and outcomes. METHODS Spinal teratoma and lipoma patients with complete data treated during 2008 to 2023 in our center were enrolled. Electrophysiological monitoring was routinely performed after 2012. Patient characteristics, anatomical distribution, clinical manifestations, surgical resection, and outcomes were analyzed. RESULTS We enrolled 86 teratoma patients (71 adults) and 51 lipoma patients (39 adults). Most tumors were lumbosacral lesions; cervical/thoracic involvement was more common with lipomas. Pain, the most frequent manifestation, was more common in teratomas. Gross total resection (GTR) was achieved in 51.1% and 49% of teratomas and lipomas, respectively. Electrophysiological monitoring increased the GTR rate from 38.8% to 48.6%. Age independently predicted (OR: 1.040, 95% CI: 1.008-1.078) GTR/near-total resection (NTR). Symptom relief occurred in 81.4% teratoma patients and 64.7% lipoma patients. Recurrence/symptomatic progression occurred in 19 teratomas and 7 lipomas after a median of 95 and 115 months, respectively. Adult lipoma patients without spinal dysraphism had lower recurrence rates. GTR (HR: 0.172, 95% CI: 0.02557-0.7028) and lesion length (HR: 1.351, 95% CI: 1.138-1.607) independently predicted recurrence/progression. CONCLUSIONS GTR should be pursued for adult/pediatric spinal teratomas and pediatric spinal lipomas. For adult spinal lipoma patients without dysraphism, conservative surgery could be considered.
Collapse
Affiliation(s)
- Hongmei Song
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Mingxin Yu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Yang Song
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun, Jilin province, China
| | - Shuanglin Deng
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun, Jilin province, China.
| |
Collapse
|
2
|
Boix-Lemonche G, Nagymihaly RM, Lumi X, Petrovski G. The human lens is capable of trilineage differentiation towards osteo-, chondro-, and adipogenesis-a model for studying cataract pathogenesis. Front Bioeng Biotechnol 2023; 11:1164795. [PMID: 37324433 PMCID: PMC10264667 DOI: 10.3389/fbioe.2023.1164795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
The potential for trilineage differentiation of cells in tissues represents a model for studying disease pathogenesis and regeneration pathways. Human lens trilineage differentiation has not yet been demonstrated, and so has calcification and osteogenic differentiation of human lens epithelial cells in the whole human lens. Such changes can pose a risk for complications during cataract surgery. Human lens capsules (n = 9) from cataract patients undergoing uneventful surgery were trilineage-differentiated toward osteogenesis, chondrogenesis, and adipogenesis. Furthermore, whole human healthy lenses (n = 3) collected from cadaveric eyes were differentiated into bone and characterized by immunohistochemistry. The cells in the human lens capsules were capable of undergoing trilineage differentiation, while the whole human healthy lenses could undergo osteogenesis differentiation, expressing osteocalcin, collagen I, and pigment epithelium-derived factor. We, hereby, show an ex vivo model for cataract formation through different stages of opacification, as well as provide in vivo evidence from patients undergoing calcified lens extraction with bone-like consistency.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Department of Ophthalmology, Center for Eye Research and Innovative Diagnostics, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Center for Eye Research and Innovative Diagnostics, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| |
Collapse
|
3
|
Conte F, Beier JP, Ruhl T. Adipose and lipoma stem cells: A donor-matched comparison. Cell Biochem Funct 2023; 41:202-210. [PMID: 36576019 DOI: 10.1002/cbf.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Lipomas are slow growing benign fat tumors that develop in soft tissues of the mesoderm. Thus, the specific (dys-)function of mesenchymal stem cells (MSCs) has been suggested in the development of lipomas, but details of the tumor pathogenesis remain unclear. Existing studies comparing stem cells from native adipose (adipose stem cells [ASCs]) and lipomatous tissues (LSCs) have reported contradicting findings. However, harvesting ASCs and LSCs from different individuals might have influenced proper comparison. Therefore, we aimed to characterize donor-matched ASCs and LSCs to investigate metabolic activity, proliferation, capability for tri-linear differentiation (chondrogenesis, adipogenesis, osteogenesis), and the secretome of mature adipocytes and lipomacytes. Both stem cell types did not differ in metabolic activity, but ASCs demonstrated stronger proliferation than LSCs. While there was no difference in proteoglycan accumulation during chondrogenic differentiation, adipogenesis was higher in ASCs, with more lipid vacuole formation. Conversely, LSCs showed increased osteogenesis by higher calcium deposition. Lipomacytes showed stronger secretory activity and released higher levels of certain adipokines. Our findings indicated that LSCs possessed important characteristics of MSCs, including ASCs. However, LSCs' low proliferation and adipogenic differentiation behavior did not appear to account for enhanced tissue proliferation, but the secretome of lipomacytes could contribute to lipomatous neoplasm.
Collapse
Affiliation(s)
- Francesco Conte
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Zhou Y, Tao D, Shao Z, Wang X, Xu J, Li Y, Li K. Expression profiles of exosomal tRNA-derived fragments and their biological functions in lipomas. Front Cell Dev Biol 2022; 10:942133. [PMID: 36035989 PMCID: PMC9399354 DOI: 10.3389/fcell.2022.942133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence that exosomes derived from the lipoma tissue (Exo-LT) have a stronger capacity to promote the proliferation and migration of adipose-derived stem cells (ADSCs) than those from the adipose tissue (Exo-AT). But the Exo-LT do not have a significant effect on the adipogenic differentiation of the ADSCs. Recently, certain exosomal tRNA-derived fragments (tRFs) have been shown to play a crucial role in the pathogenesis of certain tumors. Therefore, it is necessary to identify the differently expressed tRFs in Exo-LT to further elucidate their molecular functions in lipomas. High-throughput sequencing was performed to examine the tRFs and mRNAs from the all samples belonging to the Exo-LT and Exo-AT groups. Target prediction and bioinformatics analysis were performed to explore their downstream mRNAs and biological functions. In total, 456 differently expressed tRFs and tiRNAs were identified in the Exo-LT group, 12 of which were up-regulated and 12 were down-regulated, respectively. Notably, tRF-1001 was most obviously down-regulated and tRF-3004a was most obviously up-regulated in the Exo-LT group. Moreover, among the target genes of tRF-1001 and tRF-3004a, both JAG2 and VSIG4 were significantly down-regulated in the Exo-LT group, while WNT5A, COL1A1, and PPARGC1A were highly expressed in both the Exo-LT and Exo-AT groups. The significant down-regulation of JAG2 and VSIG4 in the Exo-LT group could be due to the fact that Exo-LT had a stronger capacity to promote the proliferation and migration of ADSCs compared to the Exo-AT. The high expression of WNT5A, COL1A1, and PPARGC1A in both the Exo-LT and Exo-AT groups could be due to the similar ability of Exo-LT and Exo-AT to promote the adipogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Daixi Tao
- Department of Changsha Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Zifei Shao
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jinhao Xu
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yiyang Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Kun Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- *Correspondence: Kun Li,
| |
Collapse
|
5
|
Cao L, Tong Y, Wang X, Zhang Q, Qi Y, Zhou C, Yu X, Wu Y, Miao X. Effect of Amniotic Membrane/Collagen-Based Scaffolds on the Chondrogenic Differentiation of Adipose-Derived Stem Cells and Cartilage Repair. Front Cell Dev Biol 2021; 9:647166. [PMID: 34900977 PMCID: PMC8657407 DOI: 10.3389/fcell.2021.647166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: Repairing articular cartilage damage is challenging. Clinically, tissue engineering technology is used to induce stem cell differentiation and proliferation on biological scaffolds to repair defective joints. However, no ideal biological scaffolds have been identified. This study investigated the effects of amniotic membrane/collagen scaffolds on the differentiation of adipose-derived stem cells (ADSCs) and articular cartilage repair. Methods: Adipose tissue of New Zealand rabbits was excised, and ADSCs were isolated and induced for differentiation. An articular cartilage defect model was constructed to identify the effect of amniotic membrane/collagen scaffolds on cartilage repair. Cartilage formation was analyzed by imaging and toluene blue staining. Knee joint recovery in rabbits was examined using hematoxylin and eosin, toluidine, safranine, and immunohistochemistry at 12 weeks post-operation. Gene expression was examined using ELISA, RT-PCR, Western blotting, and immunofluorescence. Results: The adipose tissue was effectively differentiated into ADSCs, which further differentiated into chondrogenic, osteogenic, and lipogenic lineages after 3 weeks’ culture in vitro. Compared with platelet-rich plasmon (PRP) scaffolds, the amniotic membrane scaffolds better promoted the growth and differentiation of ADSCs. Additionally, scaffolds containing the PRP and amniotic membrane efficiently enhanced the osteogenic differentiation of ADSCs. The levels of COL1A1, COL2A1, COL10A1, SOX9, and ACAN in ADSCs + amniotic membrane + PRP group were significantly higher than the other groups both in vitro and in vivo. The Wakitani scores of the ADSC + amniotic membrane + PRP group were lower than that in ADSC + PRP (4.4 ± 0.44**), ADSC + amniotic membrane (2.63 ± 0.38**), and control groups (6.733 ± 0.21) at week 12 post-operation. Osteogenesis in rabbits of the ADSC + amniotic membrane + PRP group was significantly upregulated when compared with other groups. Amniotic membranes significantly promoted the expression of cartilage regeneration-related factors (SOX6, SOX9, RUNX2, NKX3-2, MEF2C, and GATA4). The ADSC + PRP + amniotic membrane group exhibited the highest levels of TGF-β, PDGF, and FGF while exhibiting the lowest level of IL-1β, IL6, and TNF-α in articular cavity. Conclusion: Amniotic membrane/collagen combination-based scaffolds promoted the proliferation and cartilage differentiation of ADSCs, and may provide a new treatment paradigm for patients with cartilage injury.
Collapse
Affiliation(s)
- Le Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yuling Tong
- Department of General Practice, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wang
- Shaoxing Shangyu Hospital of Traditional Chinese medicine, Shaoxing, China
| | - Qiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xinning Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yongping Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xudong Miao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
7
|
Hong P, Xu X, Hu X, Yang H, Wu Y, Chen J, Li K, Tang Z. Therapeutic potential of small extracellular vesicles derived from lipoma tissue in adipose tissue regeneration-an in vitro and in vivo study. Stem Cell Res Ther 2021; 12:222. [PMID: 33789709 PMCID: PMC8011093 DOI: 10.1186/s13287-021-02291-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To explore the adipogenic effects of the small extracellular vesicles derived from the lipoma tissues (sEV-LT), and to find a new cell-free therapeutic approach for adipose tissue regeneration. METHODS Adipose tissue-derived stem cells (ADSCs) and small extracellular vesicles derived from the adipose tissues (sEV-AT) were isolated from human adipose tissue, while sEV-LT were isolated from human lipomatous tissue. ADSCs were characterized by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. sEV was identified by electron microscopy, nanoparticle tracking, and western blotting. ADSCs were treated with sEV-LT and sEV-AT, respectively. Fluorescence confocal microscopy was used to investigate whether sEV-LT and sEV-AT could be taken by ADSCs. The proliferation and migration abilities and adipogenic differentiation assay of ADSCs were evaluated by CCK-8 assays, scratch test, and oil red O staining test, and the expression levels of adipogenic-related genes C/EBP-δ, PPARγ2, and Adiponectin in ADSCs were assessed by real-time quantitative PCR (RT-PCR). The sEV-LT and sEV-AT transplantation tubes were implanted subcutaneously in SD rats, and the neotissues were qualitatively and histologically evaluated at 2, 4, 8, and 12 weeks after transplantation. Hematoxylin and eosin (H&E) staining was subsequently used to observe and compare the adipogenesis and angiogenesis in neotissues, while immunohistochemistry was used to examine the expression and the distribution of C/EBP-α, PPARγ, Adiponectin, and CD31 at the 4th week. RESULTS The in vitro experiments showed that both sEV-LT and sEV-AT could be taken up by ADSCs via endocytosis. The scratch experiment and CCK-8 experiment showed that the migration area and proliferation number of ADSCs in sEV-LT group and sEV-AT group were significantly higher than those in the non-sEV group (p < 0.05). Compared with sEV-AT group, sEV-LT group had larger migration area and proliferation number of ADSCs (p < 0.05). Oil red O staining and RT-PCR experiments showed that, compared with the non-sEVs group, the lipid droplets and the mRNA expression levels of adipogenesis-related genes PPARγ2 and Adiponectin of ADSCs in sEV-LT group and sEV-AT group were significantly upregulated (p < 0.05); however, there was no statistical significance in the expression level of C/EBP-δ (p > 0.05). In addition, no significant difference in the amount of lipid droplets and adipogenesis-related genes between the sEV-LT groups and sEV-AT was seen (p > 0.05). At 2, 4, 8, and 12 weeks, the adipocyte area and the number of capillaries in neotissues in the sEV-LT groups and sEV-AT groups were significantly increased compared with the Matrigel group (p < 0.05); however, there was no dramatic difference between sEV-LT groups and sEV-AT groups (p > 0.05). At the 4th week, neotissues in the sEV-LT groups and sEV-AT groups all showed upregulated expression of C/EBP-α, PPARγ, Adiponectin, and CD31 protein, while neotissues in the Matrigel group only showed positive expression of CD31 protein. CONCLUSIONS This study demonstrated that sEV-LT exerted promotion effects on adipose tissue regeneration by accelerating the proliferation, migration, and adipogenic differentiation of ADSCs in vitro and recruiting adipocytes and promoting angiogenesis in vivo. The sEV-LT could serve as an alternative cell-free therapeutic strategy for generating adipose tissue, thus providing a promising application prospect in tissue engineering.
Collapse
Affiliation(s)
- Pengyu Hong
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyang Xu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xin Hu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Yang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yue Wu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| | - Zhangui Tang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Najdanović JG, Cvetković VJ, Stojanović ST, Vukelić-Nikolić MĐ, Živković JM, Najman SJ. Vascularization and osteogenesis in ectopically implanted bone tissue-engineered constructs with endothelial and osteogenic differentiated adipose-derived stem cells. World J Stem Cells 2021; 13:91-114. [PMID: 33584982 PMCID: PMC7859989 DOI: 10.4252/wjsc.v13.i1.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A major problem in the healing of bone defects is insufficient or absent blood supply within the defect. To overcome this challenging problem, a plethora of approaches within bone tissue engineering have been developed recently. Bearing in mind that the interplay of various diffusible factors released by endothelial cells (ECs) and osteoblasts (OBs) have a pivotal role in bone growth and regeneration and that adjacent ECs and OBs also communicate directly through gap junctions, we set the focus on the simultaneous application of these cell types together with platelet-rich plasma (PRP) as a growth factor reservoir within ectopic bone tissue engineering constructs.
AIM To vascularize and examine osteogenesis in bone tissue engineering constructs enriched with PRP and adipose-derived stem cells (ASCs) induced into ECs and OBs.
METHODS ASCs isolated from adipose tissue, induced in vitro into ECs, OBs or just expanded were used for implant construction as followed: BPEO, endothelial and osteogenic differentiated ASCs with PRP and bone mineral matrix; BPUI, uninduced ASCs with PRP and bone mineral matrix; BC (control), only bone mineral matrix. At 1, 2, 4 and 8 wk after subcutaneous implantation in mice, implants were extracted and endothelial-related and bone-related gene expression were analyzed, while histological analyses were performed after 2 and 8 wk.
RESULTS The percentage of vascularization was significantly higher in BC compared to BPUI and BPEO constructs 2 and 8 wk after implantation. BC had the lowest endothelial-related gene expression, weaker osteocalcin immunoexpression and Spp1 expression compared to BPUI and BPEO. Endothelial-related gene expression and osteocalcin immunoexpression were higher in BPUI compared to BC and BPEO. BPEO had a higher percentage of vascularization compared to BPUI and the highest CD31 immunoexpression among examined constructs. Except Vwf, endothelial-related gene expression in BPEO had a later onset and was upregulated and well-balanced during in vivo incubation that induced late onset of Spp1 expression and pronounced osteocalcin immunoexpression at 2 and 8 wk. Tissue regression was noticed in BPEO constructs after 8 wk.
CONCLUSION Ectopically implanted BPEO constructs had a favorable impact on vascularization and osteogenesis, but tissue regression imposed the need for discovering a more optimal EC/OB ratio prior to considerations for clinical applications.
Collapse
Affiliation(s)
- Jelena G Najdanović
- Department of Biology and Human Genetics; Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Vladimir J Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš 18106, Serbia
| | - Sanja T Stojanović
- Department of Biology and Human Genetics; Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Marija Đ Vukelić-Nikolić
- Department of Biology and Human Genetics; Scientific Research Center for Biomedicine; Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Jelena M Živković
- Department of Biology and Human Genetics; Scientific Research Center for Biomedicine; Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Stevo J Najman
- Department of Biology and Human Genetics; Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš 18108, Serbia
| |
Collapse
|
9
|
Caponnetto F, Manini I, Bulfoni M, Zingaretti N, Miotti G, Di Loreto C, Cesselli D, Mariuzzi L, Parodi PC. Human Adipose-Derived Stem Cells in Madelung's Disease: Morphological and Functional Characterization. Cells 2020; 10:cells10010044. [PMID: 33396896 PMCID: PMC7824042 DOI: 10.3390/cells10010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Madelung Disease (MD) is a syndrome characterized by the accumulation of aberrant symmetric adipose tissue deposits. The etiology of this disease is yet to be elucidated, even though the presence of comorbidities, either genetic or environmental, has been reported. For this reason, establishing an in vitro model for MD is considered crucial to get insights into its physiopathology. We previously established a protocol for isolation and culture of stem cells from diseased tissues. Therefore, we isolated human adipose-derived stem cells (ASC) from MD patients and compared these cells with those isolated from healthy subjects in terms of surface phenotype, growth kinetic, adipogenic differentiation potential, and molecular alterations. Moreover, we evaluated the ability of the MD-ASC secretome to affect healthy ASC. The results reported a difference in the growth kinetic and surface markers of MD-ASC compared to healthy ASC but not in adipogenic differentiation. The most commonly described mitochondrial mutations were not observed. Still, MD-ASC secretome was able to shift the healthy ASC phenotype to an MD phenotype. This work provides evidence of the possibility of exploiting a patient-based in vitro model for better understanding MD pathophysiology, possibly favoring the development of novel target therapies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Correspondence: ; Tel.: +39-04-3255-9412
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Michela Bulfoni
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
| | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| | - Giovanni Miotti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Pier Camillo Parodi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| |
Collapse
|
10
|
|
11
|
Comparison of Properties of Stem Cells Isolated from Adipose Tissue and Lipomas in Dogs. Stem Cells Int 2019; 2019:1609876. [PMID: 31827523 PMCID: PMC6886319 DOI: 10.1155/2019/1609876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) have been suggested their benefits in regenerative medicine for various diseases. Lipomas, benign neoplasms in adipose tissue, have been reported as a potential source of stem cells. These lipoma-derived mesenchymal stem cells (LDSCs) may be useful for regenerative medicine. However, the detailed characteristics of LDSCs have not been fully elucidated. This study investigated the cellular proteomics and secretomes of canine LDSCs in addition to morphology and proliferation and differentiation capacities. Some LDSCs isolated from canine subcutaneous lipomas were morphologically different from ADSCs and showed a rounded shape instead of fibroblast-like morphology. The phenotype of cell surface markers in LDSCs was similar to those in ADSCs, but CD29 and CD90 stem cell markers were more highly expressed compared with those of ADSCs. LDSCs had noticeably high proliferation ability, but no significant differences were observed compared with ADSCs. In regard to differentiation capacity compared to ADSCs, LDSCs showed higher adipogenesis, but no differences were observed with osteogenesis. Cellular proteomic analysis using two-dimensional gel electrophoresis revealed that over 95% of protein spots showed similar expression levels between LDSCs and ADSCs. Secretome analysis was performed using iTRAQ and quantitative cytokine arrays. Over 1900 proteins were detected in conditioned medium (CM) of LDSCs and ADSCs, and 94.0% of detected proteins showed similar expression levels between CM of both cell types. Results from cytokine arrays including 20 cytokines showed no significant differences between CM of LDSCs and that of ADSCs. Our results indicate that canine LDSCs had variability in characteristics among individuals in contrast with those of ADSCs. Cellular proteomics and secretomes were similar in both LDSCs and ADSCs. These findings suggest that LDSCs may be suitable for application in regenerative medicine.
Collapse
|
12
|
Cheng RJ, Xiong AJ, Li YH, Pan SY, Zhang QP, Zhao Y, Liu Y, Marion TN. Mesenchymal Stem Cells: Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients. Front Cell Dev Biol 2019; 7:285. [PMID: 31799252 PMCID: PMC6874144 DOI: 10.3389/fcell.2019.00285] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have a potently immunosuppressive capacity in both innate and adaptive immune responses. Consequently, MSCs transplantation has emerged as a potential beneficial therapy for autoimmune diseases even though the mechanisms underlying the immunomodulatory activity of MSCs is incompletely understood. Transplanted MSCs from healthy individuals with no known history of autoimmune disease are immunosuppressive in systemic lupus erythematosus (SLE) patients and can ameliorate SLE disease symptoms in those same patients. In contrast, autologous MSCs from SLE patients are not immunosuppressive and do not ameliorate disease symptoms. Recent studies have shown that MSCs from SLE patients are dysfunctional in both proliferation and immunoregulation and phenotypically senescent. The senescent phenotype has been attributed to multiple genes and signaling pathways. In this review, we focus on the possible mechanisms for the defective phenotype and function of MSCs from SLE patients and summarize recent research on MSCs in autoimmune diseases.
Collapse
Affiliation(s)
- Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - An-Ji Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yan-Hong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shu-Yue Pan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Ping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Tony N Marion
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
13
|
Fu XM, Wang Y, Fu WL, Liu DH, Zhang CY, Wang QL, Tong XJ. The Combination of Adipose-derived Schwann-like Cells and Acellular Nerve Allografts Promotes Sciatic Nerve Regeneration and Repair through the JAK2/STAT3 Signaling Pathway in Rats. Neuroscience 2019; 422:134-145. [PMID: 31682951 DOI: 10.1016/j.neuroscience.2019.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Schwann cells (SCs) combined with acellular nerve allografts (ANAs) effectively promote the regeneration and repair of peripheral nerves, but the exact mechanism has not been fully elucidated. However, the disadvantages of SCs include their limited source and slow rate of expansion in vitro. Previous studies have found that adipose-derived stem cells have the ability to differentiate into Schwann-like cells. Therefore, we speculated that Schwann-like cells combined with ANAs could profoundly facilitate nerve regeneration and repair. The aim of the present study was to investigate the cellular and molecular mechanisms of regeneration and repair. In this study, tissue-engineered nerves were first constructed by adipose-derived Schwann-like cells and ANAs to bridge missing sciatic nerves. Then, the rats were randomly divided into five groups (n = 12 per group): a Control group; a Model group; an ADSC group; an SC-L group; and a DMEM group. Twelve weeks postsurgery, behavioral function tests and molecular biological techniques were used to evaluate the function of regenerated nerves and the relevant molecular mechanisms after sciatic nerve injury (SNI). The results showed that adipose-derived Schwann-like cells combined with ANAs markedly promoted sciatic nerve regeneration and repair. These findings also demonstrated that the expression of neurotrophic factors (NFs) was increased, and the expression of Janus activated kinase2 (JAK2)/P-JAK2, signal transducer and activator of transcription-3 (STAT3)/P-STAT3 was decreased in the spinal cord after SNI. Therefore, these results suggested that highly expressed NFs in the spinal cord could promote nerve regeneration and repair by inhibiting activation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiu-Mei Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China.
| | - Ying Wang
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Liang Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China
| | - Dong-Hui Liu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China
| | - Cheng-Yun Zhang
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei 067000, China
| | - Qiao-Ling Wang
- Department of Anatomy, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Xiao-Jie Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
14
|
Arnhold S, Elashry MI, Klymiuk MC, Geburek F. Investigation of stemness and multipotency of equine adipose-derived mesenchymal stem cells (ASCs) from different fat sources in comparison with lipoma. Stem Cell Res Ther 2019; 10:309. [PMID: 31640774 PMCID: PMC6805636 DOI: 10.1186/s13287-019-1429-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/25/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Adipose tissue-derived mesenchymal stem cells (ASCs) offer a promising cell source for therapeutic applications in musculoskeletal disorders. The appropriate selection of ASCs from various fat depots for cell-based therapy is challenging. The present study aims to compare stemness and multipotency of ASCs derived from retroperitoneal (RP), subcutaneous (SC), and lipoma (LP) fat to assess their usefulness for clinical application. METHODS Equine ASCs from the three fat tissue sources were isolated and characterized. The cell viability, proliferation, and self-renewal were evaluated using MTT, sulforhodamine B, and colony forming unit (CFU) assays. Stem cell relative marker CD44, CD90, and CD105 and tumor marker CA9 and osteopontin (OPN) expression were quantified using RT-qPCR. Multipotency of ASCs for adipogenic, osteogenic, and chondrogenic differentiation was examined by quantifying Oil Red O and Alizarin Red S staining, alkaline phosphatase activity (ALP), and expression of differentiation relative markers. All data were statistically analyzed using ANOVA. RESULTS RP fat-derived ASCs showed a higher cell proliferation rate compared to SC and LP derived cells. In contrast, ASCs from lipoma displayed a lower proliferation rate and impaired CFU capacities. The expression of CD44, CD90, and CD105 was upregulated in RP and SC derived cells but not in LP cells. RP fat-derived cells displayed a higher adipogenic potential compared to SC and LP cells. Although ASCs from all fat sources showed enhanced ALP activity following osteogenic differentiation, SC fat-derived cells revealed upregulated ALP and bone morphogenetic protein-2 expression together with a higher calcium deposition. We found an enhanced chondrogenic potency of RP and SC fat-derived cells as shown by Alcian blue staining and upregulation of aggrecan (Aggre), cartilage oligomeric matrix protein precursor (COMP), and collagen 2a1 (Col2a1) expression compared to LP. The expression of OPN and CA9 was exclusively upregulated in the ASCs of LP. CONCLUSIONS The results provide evidence of variation in ASC performance not only between normal fat depots but also compared to LP cells which suggest a different molecular regulation controlling the cell fate. These data provided are useful when considering a source for cell replacement therapy in equine veterinary medicine.
Collapse
Affiliation(s)
- Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
| | - Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516 Egypt
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
| | - Florian Geburek
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
15
|
The Effect of Conditioned Media of Stem Cells Derived from Lipoma and Adipose Tissue on Macrophages' Response and Wound Healing in Indirect Co-culture System In Vitro. Int J Mol Sci 2019; 20:ijms20071671. [PMID: 30987193 PMCID: PMC6479913 DOI: 10.3390/ijms20071671] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 02/08/2023] Open
Abstract
Immunomodulatory and wound healing activities of adipose-derived stem cells (ADSCs) have been reported in various in vitro and in vivo experimental models suggesting their beneficial role in regenerative medicine and treatments of inflammatory-related disorders. Lipoma-derived stem cells (LDSCs) were reported as a potential tool in regenerative medicine due to the similarity with ADSCs but we have previously shown that LDSCs have different differentiation capacity than ADSCs despite a similar mesenchymal phenotype. To further analyze the potential differences and/or similarities between those two stem cell types, in the present study we examined the macrophages (MΦs)’ response, immunomodulatory and wound healing effect of conditioned media (CM) of LDSCs and ADSCs in indirect co-culture system in vitro. We confirmed similar mesenchymal phenotype and stemness state of LDSCs and ADSCs but indicated differences in expression of some inflammatory-related genes. Anti-inflammatory potential of CM of LDSCs and ADSCs, with pronounced effect of LDSCs, in unstimulated RAW 264.7 MΦs was evaluated by decrease in Tnf and increase in Il10 gene expression, which was confirmed by corresponding cytokines’ secretion analysis. Conditioned media of both LDSCs and ADSCs led to the functional activation of MΦs, with slightly more pronounced effect of CM of LDSCs, while both stimulated wound healing in vitro in a similar manner. Results of this study suggest that LDSCs secrete soluble factors like ADSCs and therefore may have a potential for application in regenerative medicine, due to immunomodulatory and wound healing activity, and indicate that LDSCs through secretome may interact with other cells in lipoma tissue.
Collapse
|