1
|
Sturd NA, Knight LA, Wood MG, Durham L, Ouellette SP, Rucks EA. Chlamydia trachomatis Inc Ct226 is vital for FLI1 and LRRF1 recruitment to the chlamydial inclusion. mSphere 2024; 9:e0047324. [PMID: 39404459 PMCID: PMC11580450 DOI: 10.1128/msphere.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/08/2024] [Indexed: 11/22/2024] Open
Abstract
The obligate intracellular pathogen, Chlamydia trachomatis, establishes an intracellular niche within a host membrane-derived vacuole called the chlamydial inclusion. From within this inclusion, C. trachomatis orchestrates numerous host-pathogen interactions, in part, by utilizing a family of type III secreted effectors, termed inclusion membrane proteins (Incs). Incs are embedded within the inclusion membrane, and some function to recruit host proteins to the inclusion. Two such recruited host proteins are leucine rich repeat Flightless-1 interacting protein 1 (LRRF1/LRRFIP1) and its binding partner Flightless 1 (FLI1/FLII). Previously, LRRF1 has been shown to interact with Inc protein Ct226/CTL0478. This is the first study to examine interactions of FLI1 with candidate Incs or with LRRF1 during infection. We hypothesized that FLI1 recruitment to the inclusion would be dependent on LRRF1 localization. We demonstrated that FLI1 co-immunoprecipitated with Ct226 but only in the presence of LRRF1. Furthermore, FLI1 localized to the inclusion when LRRF1 was depleted via small interfering RNA, suggesting that FLI1 may have an alternative recruitment mechanism. We further developed a series of CRISPRi knockdown and complementation strains in C. trachomatis serovar L2 targeting ct226 and co-transcribed candidate Incs, ct225 and ct224. Simultaneous knockdown of ct226, ct225, and ct224 prevented localization of both FLI1 and LRRF1 to the inclusion, and only complementation of ct226 restored their localization. Thus, we demonstrated Ct226 is critical for FLI1 and LRRF1 localization to the inclusion. Our results also indicate an LRRF1-independent localization mechanism for FLI1, which likely influence their mechanism(s) of action during chlamydial infection.IMPORTANCEChlamydia trachomatis is a leading cause of both bacterial sexually transmitted infections and preventable infectious blindness worldwide. As an obligate intracellular pathogen, C. trachomatis has evolved multiple ways of manipulating the host to establish a successful infection. As such, it is important to understand host-chlamydial protein-protein interactions as these reveal strategies that C. trachomatis uses to shape its intracellular environment. This study looks in detail at interactions of two host proteins, FLI1 and LRRF1, during chlamydial infection. Importantly, the series of CRISPR inference knockdown and complement strains developed in this study suggest these proteins have both independent and overlapping mechanisms for localization, which ultimately will dictate how these proteins function during chlamydial infection.
Collapse
Affiliation(s)
- Natalie A. Sturd
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lindsey A. Knight
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Macy G. Wood
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Legacy Durham
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth A. Rucks
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Li J, Tuo D, Guo G, Gao Y, Gan J. The clinical significance and oncogenic function of LRRFIP1 in pancreatic cancer. Discov Oncol 2024; 15:123. [PMID: 38634978 PMCID: PMC11026317 DOI: 10.1007/s12672-024-00977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
PURPOSE Pancreatic cancer is a lethal malignancy with a grim prognosis. Previous studies have proven that Leucine Rich Repeat of Flightless-1 Interacting Protein 1 (LRRFIP1) plays a pivotal role in cell biological processes, while its clinical significance and function in pancreatic cancer remain to be elucidated. Hence, we aimed to explore the roles and mechanisms of LRRFIP1 in pancreatic cancer. METHODS The expression of LRRFIP1 in pancreatic cancer tissues and its clinical significance for pancreatic cancer were analyzed by immunohistochemistry assay and bioinformatic analysis. The influences of LRRFIP1 on the proliferation and migration of pancreatic cancer cells were assessed in vitro. The underlying mechanisms of LRRFIP1 in pancreatic cancer progression were explored using gene set enrichment analysis (GSEA) and molecular experiments. RESULTS The results showed that LRRFIP1 expression was significantly upregulated in pancreatic cancer tissues compared to the normal tissues, and such upregulation was associated with poor prognosis of patients with pancreatic cancer. GSEA revealed that LRRFIP1 upregulation was significantly associated with various cancer-associated signaling pathways, including PI3K/AKT signaling pathway and Wnt pathway. Furthermore, LRRFIP1 was found to be associated with the infiltration of various immune cells. Functionally, LRRFIP1 silencing suppressed cell proliferation somewhat and inhibited migration substantially. Further molecular experiments indicated that LRRFIP1 silencing inactivated the AKT/GSK-3β/β-catenin signaling axis. CONCLUSION Taken together, LRRFIP1 is associated with tumorigenesis, immune cell infiltration, and prognosis in pancreatic cancer, which suggests that LRRFIP1 may be a potential biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jinping Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China.
| | - Dayun Tuo
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, People's Republic of China
| | - Gunan Guo
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China
- School of Stomatology, Zhaoqing Medical College, Zhaoqing, 526020, Guangdong, People's Republic of China
| | - Yan Gao
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China.
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Li J, Tuo D, Cheng T, Deng Z, Gan J. GCF2 mediates nicotine-induced cancer stemness and progression in hepatocellular carcinoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115952. [PMID: 38218109 DOI: 10.1016/j.ecoenv.2024.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Cigarette smoking is one of the most impactful behavior-related risk factors for multiple cancers including hepatocellular carcinoma (HCC). Nicotine, as the principal component of tobacco, is not only responsible for smoking addiction but also a carcinogen; nevertheless, the underlying mechanisms remain unclear. Here we report that nicotine enhances HCC cancer stemness and malignant progression by upregulating the expression of GC-rich binding factor 2 (GCF2), a gene that was revealed to be upregulated in HCC and whose upregulation predicts poor prognosis, and subsequently activating the Wnt/ꞵ-catenin/SOX2 signaling pathway. We found that nicotine significantly increased GCF2 expression and that silencing of GCF2 reduced nicotine-induced cancer stemness and progression. Mechanistically, nicotine could stabilize the protein level of GCF2, and then GCF2 could robustly activate its downstream Wnt/β-catenin signaling pathway. Taken together, our results thus suggest that GCF2 is a potential target for a therapeutic strategy against nicotine-promoted HCC.
Collapse
Affiliation(s)
- Jinping Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| | - Dayun Tuo
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China; Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, PR China
| | - Tan Cheng
- Department of Human Anatomy, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Zhenyan Deng
- Department of Clinical Laboratory, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin, Guangxi, PR China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, PR China; Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, PR China.
| |
Collapse
|
4
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
5
|
Wu Y, Zhao J, Zhao X, He H, Cui C, Zhang Y, Zhu Q, Yin H, Han S. CircLRRFIP1 promotes the proliferation and differentiation of chicken skeletal muscle satellite cells by sponging the miR-15 family via activating AKT3-mTOR/p70S6K signaling pathway. Poult Sci 2023; 102:103050. [PMID: 37683450 PMCID: PMC10498000 DOI: 10.1016/j.psj.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Skeletal muscle is important for animal meat production, regulating movements, and maintaining homeostasis. Circular RNAs (circRNAs) have been founded to play vital role in myogenesis. However, the effects of the numerous circRNAs on growth and development of the skeletal muscle are yet to be uncovered. Herein, we identified circLRRFIP1, which is a novel circular RNA that is preferentially expressed in the skeletal muscle. To study the role of circLRRFIP1 in the skeletal muscle, the skeletal muscle satellite cells (SMSCs) was used to silenced or overexpressed circLRRFIP1. The results obtained in this study showed that circLRRFIP1 play a positive role in the proliferation and differentiation of SMSCs. The SMSCs were generated with stable knockdown and overexpression of circLRRFIP1, and the results showed that circLRRFIP1 exerts a stimulatory effect on the proliferation and differentiation of SMSCs. We further generated SMSCs with stable knockdown and overexpression of circLRRFIP1, and the results revealed that circLRRFIP1 exerts a stimulatory effect on the proliferation and differentiation of SMSCs. Mechanistically, circLRRFIP1 targets the myogenic inhibitory factor-miR-15 family to release the suppression of the miR-15 family to AKT3. The knockdown of AKT inhibits SMSC differentiation through the mTOR/p70S6K pathway. Taken together, the results obtained in this present study revealed the important role and the regulatory mechanisms of circLRRFIP1 in the development of chicken skeletal muscle. Therefore, this study provides an attractive target for molecular breeding to enhance meat production in the chicken industry.
Collapse
Affiliation(s)
- Yamei Wu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jing Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haorong He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Can Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shunshun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
6
|
Rodríguez‐Ruiz L, Lozano‐Gil JM, Naranjo‐Sánchez E, Martínez‐Balsalobre E, Martínez‐López A, Lachaud C, Blanquer M, Phung TK, García‐Moreno D, Cayuela ML, Tyrkalska SD, Pérez‐Oliva AB, Mulero V. ZAKα/P38 kinase signaling pathway regulates hematopoiesis by activating the NLRP1 inflammasome. EMBO Mol Med 2023; 15:e18142. [PMID: 37675820 PMCID: PMC10565642 DOI: 10.15252/emmm.202318142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Chronic inflammatory diseases are associated with hematopoietic lineage bias, including neutrophilia and anemia. We have recently identified that the canonical inflammasome mediates the cleavage of the master erythroid transcription factor GATA1 in hematopoietic stem and progenitor cells (HSPCs). We report here that genetic inhibition of Nlrp1 resulted in reduced number of neutrophils and increased erythrocyte counts in zebrafish larvae. We also found that the NLRP1 inflammasome in human cells was inhibited by LRRFIP1 and FLII, independently of DPP9, and both inhibitors regulated hematopoiesis. Mechanistically, erythroid differentiation resulted in ribosomal stress-induced activation of the ZAKα/P38 kinase axis which, in turn, phosphorylated and promoted the assembly of NLRP1 in both zebrafish and human. Finally, inhibition of Zaka with the FDA/EMA-approved drug Nilotinib alleviated neutrophilia in a zebrafish model of neutrophilic inflammation and promoted erythroid differentiation and GATA1 accumulation in K562 cells. In conclusion, our results reveal that the NLRP1 inflammasome regulates hematopoiesis and pave the way to develop novel therapeutic strategies for the treatment of hematopoietic alterations associated with chronic inflammatory and rare diseases.
Collapse
Affiliation(s)
- Lola Rodríguez‐Ruiz
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Juan M Lozano‐Gil
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Elena Naranjo‐Sánchez
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Elena Martínez‐Balsalobre
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Alicia Martínez‐López
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Christophe Lachaud
- Aix‐Marseille University, Inserm, CNRS, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Miguel Blanquer
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
- Departamento de Medicina y Unidad de Terapia Celular y Trasplante Hematopoyético, Facultad de MedicinaUniversidad de MurciaMurciaSpain
| | - Toan K Phung
- MRC PPU, Sir James Black Centre, School of Life SciencesUniversity of DundeeDundeeUK
| | - Diana García‐Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Hospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| | - Ana B Pérez‐Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria (IMIB)‐Pascual ParrillaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
7
|
Mikhailova SV, Ivanoshchuk DE, Orlov PS, Latyntseva LD, Kashtanova EV, Polonskaya YV, Ragino YI, Shakhtshneider EV. Analysis of polymorphism of innate immunity receptor genes in patients with coronary atherosclerosis and in a population sample from Novosibirsk. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2023; 43:97-109. [DOI: 10.18699/ssmj20230410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Understanding the molecular mechanisms of atherosclerotic vascular lesions formation is necessary both for assessing the risks of cardiovascular diseases and for finding approaches to their therapy. The task remains relevant, despite the large number of studies carried out, because there are differences in the factors of genetic predisposition to atherosclerosis and its complications between different ethno-territorial groups. The aim of this study was to search for genetic variants of pattern recognition receptors associated with lipid metabolism disorders that can lead to the development of coronary atherosclerosis (CA).Material and methods. Analysis of exons and adjacent splicing sites of pattern recognition receptors genes in patients with CA (30 men), and then genotyping of a population sample from Novosibirsk (n = 1441) by real-time PCR for selected rs113706342 of the TLR1 gene and analysis of associations of its carriage with lipid metabolism were performed.Results and discussion. The frequency of the minor allele rs113706342 C of the TLR1 gene in the sample of residents of Novosibirsk was 0.0114 ± 0.0062, the carriage of this variant was associated with an increased level of low-density lipoprotein cholesterol in both women and men (p = 0.009 and p = 0.019, respectively). Women carriers of the minor allele C for rs113706342 also had a statistically significant increase in total serum cholesterol (p = 0.013) compared with TT homozygotes. To test the role of this variant in the development of CA, genotyping of an extended sample of patients is required. In one of the patients with CA, a previously undescribed single nucleotide variant chr16:3614637 G/C was found, leading to the Leu101Val substitution in the NLRC3 gene; segregation analysis is required to assess its functional significance.Conclusions. The association of rs113706342 C of the TLR1 gene with lipid metabolism disorders in the Russian population is shown.
Collapse
Affiliation(s)
- S. V. Mikhailova
- Federal Research Center Institute of Cytology and Genetics SB RAS
| | | | - P. S. Orlov
- Federal Research Center Institute of Cytology and Genetics SB RAS
| | - L. D. Latyntseva
- Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
| | - E. V. Kashtanova
- Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
| | - Ya. V. Polonskaya
- Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
| | - Yu. I. Ragino
- Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
| | - E. V. Shakhtshneider
- Federal Research Center Institute of Cytology and Genetics SB RAS; Research Institute of Internal and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS
| |
Collapse
|
8
|
Freedman AN, Clark J, Eaves LA, Roell K, Oran A, Koval L, Rager J, Santos HP, Kuban K, Joseph RM, Frazier J, Marsit CJ, Burt AA, O’Shea TM, Fry RC. A multi-omic approach identifies an autism spectrum disorder (ASD) regulatory complex of functional epimutations in placentas from children born preterm. Autism Res 2023; 16:918-934. [PMID: 36938998 PMCID: PMC10192070 DOI: 10.1002/aur.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Children born preterm are at heightened risk of neurodevelopmental impairments, including Autism Spectrum Disorder (ASD). The placenta is a key regulator of neurodevelopmental processes, though the precise underlying molecular mechanisms remain unclear. Here, we employed a multi-omic approach to identify placental transcriptomic and epigenetic modifications related to ASD diagnosis at age 10, among children born preterm. Working with the extremely low gestational age (ELGAN) cohort, we hypothesized that a pro-inflammatory placental environment would be predictive of ASD diagnosis at age 10. Placental messenger RNA (mRNA) expression, CpG methylation, and microRNA (miRNA) expression were compared among 368 ELGANs (28 children diagnosed with ASD and 340 children without ASD). A total of 111 genes displayed expression levels in the placenta that were associated with ASD. Within these ASD-associated genes is an ASD regulatory complex comprising key genes that predicted ASD case status. Genes with expression that predicted ASD case status included Ewing Sarcoma Breakpoint Region 1 (EWSR1) (OR: 6.57 (95% CI: 2.34, 23.58)) and Bromodomain Adjacent To Zinc Finger Domain 2A (BAZ2A) (OR: 0.12 (95% CI: 0.03, 0.35)). Moreover, of the 111 ASD-associated genes, nine (8.1%) displayed associations with CpG methylation levels, while 14 (12.6%) displayed associations with miRNA expression levels. Among these, LRR Binding FLII Interacting Protein 1 (LRRFIP1) was identified as being under the control of both CpG methylation and miRNAs, displaying an OR of 0.42 (95% CI: 0.17, 0.95). This gene, as well as others identified as having functional epimutations, plays a critical role in immune system regulation and inflammatory response. In summary, a multi-omic approach was used to identify functional epimutations in the placenta that are associated with the development of ASD in children born preterm, highlighting future avenues for intervention.
Collapse
Affiliation(s)
- Anastasia N. Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | - Karl Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, Massachusetts, USA
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jean Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School/University of Massachusetts Memorial Health Care, Worcester, MA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Hall HN, Bengani H, Hufnagel RB, Damante G, Ansari M, Marsh JA, Grimes GR, von Kriegsheim A, Moore D, McKie L, Rahmat J, Mio C, Blyth M, Keng WT, Islam L, McEntargart M, Mannens MM, Heyningen VV, Rainger J, Brooks BP, FitzPatrick DR. Monoallelic variants resulting in substitutions of MAB21L1 Arg51 Cause Aniridia and microphthalmia. PLoS One 2022; 17:e0268149. [PMID: 36413568 PMCID: PMC9681113 DOI: 10.1371/journal.pone.0268149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism.
Collapse
Affiliation(s)
- Hildegard Nikki Hall
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Hemant Bengani
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert B. Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme R. Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David Moore
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, United Kingdom
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamalia Rahmat
- Ophthalmology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Catia Mio
- Department of Medicine, University of Udine, Udine, Italy
| | - Moira Blyth
- University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Wee Teik Keng
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Lily Islam
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, England
| | - Meriel McEntargart
- Medical Genetics, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Marcel M. Mannens
- Genome Diagnostics laboratory, Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Veronica Van Heyningen
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joe Rainger
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian P. Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - David R. FitzPatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Puttabyatappa M, Saadat N, Elangovan VR, Dou J, Bakulski K, Padmanabhan V. Developmental programming: Impact of prenatal bisphenol-A exposure on liver and muscle transcriptome of female sheep. Toxicol Appl Pharmacol 2022; 451:116161. [PMID: 35817127 PMCID: PMC9618258 DOI: 10.1016/j.taap.2022.116161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Gestational Bisphenol A (BPA) exposure leads to peripheral insulin resistance, and hepatic and skeletal muscle oxidative stress and lipotoxicity during adulthood in the female sheep offspring. To investigate transcriptional changes underlying the metabolic outcomes, coding and non-coding (nc) RNA in liver and muscle from 21-month-old control and prenatal BPA-treated (0.5 mg/kg/day from days 30 to 90 of gestation; Term: 147 days) female sheep were sequenced. Prenatal BPA-treatment dysregulated: expression of 194 genes (138 down, 56 up) in liver and 112 genes (32 down, 80 up) in muscle (FDR < 0.05 and abs log2FC > 0.5); 155 common gene pathways including mitochondrial-related genes in both tissues; 1415 gene pathways including oxidative stress and lipid biosynthetic process specifically in the liver (FDR < 0.01); 192 gene pathways including RNA biosynthetic processes in muscle (FDR < 0.01); 77 lncRNA (49 down, 28 up), 14 microRNAs (6 down, 8 up), 127 snoRNAs (63 down, 64 up) and 55 snRNAs (15 down, 40 up) in the liver while upregulating 6 lncRNA and dysregulating 65 snoRNAs (47 down, 18 up) in muscle (FDR < 0.1, abs log2FC > 0.5). Multiple ncRNA correlated with LCORL, MED17 and ZNF41 mRNA in liver but none of them in the muscle. Discriminant analysis identified (p < 0.05) PECAM, RDH11, ABCA6, MIR200B, and MIR30B in liver and CAST, NOS1, FASN, MIR26B, and MIR29A in muscle as gene signatures of gestational BPA exposure. These findings provide mechanistic clues into the development and/or maintenance of the oxidative stress and lipid accumulation and potential for development of mitochondrial and fibrotic defects contributing to the prenatal BPA-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
11
|
Han Y, Zhou Y, Li H, Gong Z, Liu Z, Wang H, Wang B, Ye X, Liu Y. Identification of diagnostic mRNA biomarkers in whole blood for ankylosing spondylitis using WGCNA and machine learning feature selection. Front Immunol 2022; 13:956027. [PMID: 36172367 PMCID: PMC9510835 DOI: 10.3389/fimmu.2022.956027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common inflammatory spondyloarthritis affecting the spine and sacroiliac joint that finally results in sclerosis of the axial skeleton. Aside from human leukocyte antigen B27, transcriptomic biomarkers in blood for AS diagnosis still remain unknown. Hence, this study aimed to investigate credible AS-specific mRNA biomarkers from the whole blood of AS patients by analyzing an mRNA expression profile (GSE73754) downloaded Gene Expression Omnibus, which includes AS and healthy control blood samples. Weighted gene co-expression network analysis was performed and revealed three mRNA modules associated with AS. By performing gene set enrichment analysis, the functional annotations of these modules revealed immune biological processes that occur in AS. Several feature mRNAs were identified by analyzing the hubs of the protein-protein interaction network, which was based on the intersection between differentially expressed mRNAs and mRNA modules. A machine learning-based feature selection method, SVM-RFE, was used to further screen out 13 key feature mRNAs. After verifying by qPCR, IL17RA, Sqstm1, Picalm, Eif4e, Srrt, Lrrfip1, Synj1 and Cxcr6 were found to be significant for AS diagnosis. Among them, Cxcr6, IL17RA and Lrrfip1 were correlated with severity of AS symptoms. In conclusion, our findings provide a framework for identifying the key mRNAs in whole blood of AS that is conducive for the development of novel diagnostic markers for AS.
Collapse
Affiliation(s)
- Yaguang Han
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yiqin Zhou
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haobo Li
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ziye Liu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| | - Xiaojian Ye
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| | - Yi Liu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| |
Collapse
|
12
|
RNA splicing: a dual-edged sword for hepatocellular carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
|
13
|
Ma W, Bao Z, Qian Z, Zhang K, Fan W, Xu J, Ren C, Zhang Y, Jiang T. LRRFIP1, an epigenetically regulated gene, is a prognostic biomarker and predicts malignant phenotypes of glioma. CNS Neurosci Ther 2022; 28:873-883. [PMID: 35338570 PMCID: PMC9062568 DOI: 10.1111/cns.13817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/27/2022] Open
Abstract
Aims Glioblastoma (GBM) is the most common malignant brain tumor with an adverse prognosis in the central nervous system. Traditional histopathological diagnosis accompanied by subjective deviations cannot accurately reflect tumor characteristics for clinical guidance. DNA methylation plays a critical role in GBM genesis. The focus of this project was to identify an effective methylation point for the classification of gliomas, the interactions between DNA methylation and potential epigenetic targeted therapies for clinical treatments. Methods Three online (TCGA, CGGA, and REMBRANDT) databases were employed in this study. T‐test, Venn analysis, univariate cox analysis, and Pearson's correlation analysis were adopted to screen significant prognostic methylation genes. Clinical samples were collected to determine the distributions of LRRFIP1 (Leucine Rich Repeat of Flightless‐1 Interacting Protein) protein by immunohistochemistry assay. Kaplan–Meier survival and Cox analysis were adopted to evaluate the prognostic value of LRRFIP1. Nomogram model was used to construct a prediction model. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway were performed to explore functions and related mechanisms of LRRFIP1 in gliomas. Results Our results showed that 16 genes were negatively connected with their methylation level and correlated with clinical prognosis of GBM patients. Among them, LRRFIP1 expression showed the highest correlation with its methylation level. LRRFIP1 was highly expressed in WHO IV, mesenchymal, and IDH wild‐type subtype. LRRFIP1 expression was an independent risk factor for OS (overall survival) in gliomas. Conclusion LRRFIP1 is an epigenetically regulated gene and a potential prognostic biomarker for glioma. Our research may be beneficial to evaluate clinical efficacy, assess the prognosis, and provide individualized treatment for gliomas.
Collapse
Affiliation(s)
- Wenping Ma
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zhaoshi Bao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zenghui Qian
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Wenhua Fan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Jianbao Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changyuan Ren
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
14
|
Yang GN, Strudwick XL, Bonder CS, Kopecki Z, Cowin AJ. Increased Expression of Flightless I in Cutaneous Squamous Cell Carcinoma Affects Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2021; 22:ijms222413203. [PMID: 34948000 PMCID: PMC8703548 DOI: 10.3390/ijms222413203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) accounts for 25% of cutaneous malignancies diagnosed in Caucasian populations. Surgical removal in combination with radiation and chemotherapy are effective treatments for cSCC. Nevertheless, the aggressive metastatic forms of cSCC still have a relatively poor patient outcome. Studies have linked actin cytoskeletal dynamics and the Wnt/β-catenin signaling pathway as important modulators of cSCC pathogenesis. Previous studies have also shown that the actin-remodeling protein Flightless (Flii) is a negative regulator of cSCC. The aim of this study was to investigate if the functional effects of Flii on cSCC involve the Wnt/β-catenin signaling pathway. Flii knockdown was performed using siRNA in a human late stage aggressive metastatic cSCC cell line (MET-1) alongside analysis of Flii genetic murine models of 3-methylcholanthrene induced cSCC. Flii was increased in a MET-1 cSCC cell line and reducing Flii expression led to fewer PCNA positive cells and a concomitant reduction in cellular proliferation and symmetrical division. Knockdown of Flii led to decreased β-catenin and a decrease in the expression of the downstream effector of β-catenin signaling protein SOX9. 3-Methylcholanthrene (MCA)-induced cSCC in Flii overexpressing mice showed increased markers of cancer metastasis including talin and keratin-14 and a significant increase in SOX9 alongside a reduction in Flii associated protein (Flap-1). Taken together, this study demonstrates a role for Flii in regulating proteins involved in cSCC proliferation and tumor progression and suggests a potential role for Flii in aggressive metastatic cSCC.
Collapse
Affiliation(s)
- Gink N. Yang
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5000, Australia;
| | - Xanthe L. Strudwick
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
| | - Claudine S. Bonder
- Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5000, Australia;
- Adelaide Medical School, University of Adelaide, Adelaide 5000, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Adelaide 5095, Australia; (G.N.Y.); (X.L.S.); (Z.K.)
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8-83025018
| |
Collapse
|
15
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
16
|
Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. Int J Mol Sci 2021; 22:ijms22158235. [PMID: 34361001 PMCID: PMC8348627 DOI: 10.3390/ijms22158235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023] Open
Abstract
Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.
Collapse
|
17
|
Kawasaki S, Ohtsuka H, Sato Y, Douchi D, Sato M, Ariake K, Masuda K, Fukase K, Mizuma M, Nakagawa K, Hayashi H, Morikawa T, Motoi F, Unno M. Silencing of LRRFIP1 enhances the sensitivity of gemcitabine in pancreatic cancer cells by activating JNK/c-Jun signaling. Pancreatology 2021; 21:771-778. [PMID: 33707114 DOI: 10.1016/j.pan.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) in cancer cells has been shown to closely associate with the survival and drug resistance of cancer cells. We recently provided evidence that Wnt signal activator leucine-rich repeat in flightless-1-interacting protein 1 (LRRFIP1) regulates EMT in pancreatic cancer. LRRFIP1 silencing inhibits the translocation of β-catenin to the nucleus, which led to reverse EMT in cancer cells. It was suggested that LRRFIP1 was implicated in gemcitabine sensitivity by regulating EMT signaling. METHODS Gemcitabine chemosensitivity was investigated in LRRFIP1-knockdown pancreatic cancer cells (PANC-1 and MIA Paca-2). In addition, the effects of LRRFIP1 knockdown on JNK/SAPK (stress activated-protein kinase) signaling and apoptosis were evaluated. RESULTS LRRFIP1 silencing accelerates gemcitabine-induced caspase activity and cell death in pancreatic cancer cells. It was also revealed that gemcitabine-induced phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun were increased in LRRFIP1 knockdown cells. The activation of JNK/c-Jun in LRRFIP1-knockdown cells was significantly diminished by the inhibition of Rac activity. It was confirmed that the acquisition of gemcitabine sensitivity by LRRFIP1 silencing largely depends on the stimulation of JNK/SAPK (stress activated-protein kinase) signaling. CONCLUSIONS Our findings suggest that reversing EMT and transient activation of JNK might be essential for the gemcitabine sensitivity in LRRFIP1 knockdown pancreatic cancer cells. Our discoveries highlight the potential role of LRRFIP1 in the chemosensitivity related to the regulation of EMT signaling.
Collapse
Affiliation(s)
- Shuhei Kawasaki
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan.
| | - Yoshihiro Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Masaki Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Koji Fukase
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Hiroki Hayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
18
|
Zhu Q, Hu S, He Y, Qiu C, Chen T, He Y, Wu Z, Tian L, Shang T, Xiang Y, Zhang H, Li D. Nuclear Factor Kappa-B/Homeobox A9-Mediated Modulation of Leucine-Rich Repeat Flightless-Interacting Protein 1 Is Involved in Advanced Glycation End Product-Induced Endothelial Dysfunction. J Vasc Res 2021; 58:311-320. [PMID: 33882503 DOI: 10.1159/000515177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pathogenesis of cardiovascular diseases begins with endothelial dysfunction. Our previous study has shown that advanced glycation end products (AGE) could inhibit the expression of homeobox A9 (Hoxa9), thereby inducing endothelial dysfunction. Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1) has been found to participate in a variety of pathological processes, but reports of its role in endothelial dysfunction are rare. OBJECTIVES This study aims to investigate whether LRRFIP1 is involved in AGE-induced endothelial dysfunction through Hoxa9-mediated transcriptional activation. METHODS Chromatin immunoprecipitation was used to detect the transcriptional regulation of Hoxa9 on LRRFIP1 promoters. Human umbilical vein endothelial cells were treated with AGE or pyrrolidinedithiocarbamate (nuclear factor kappa-B [NF-κB] inhibitor). Moreover, changes in apoptosis, proliferation, migration, release of nitric oxide, and angiogenesis were detected. RESULTS Hoxa9 promotes LRRFIP1 expression by binding to the -LRRFIP1 promoter. Meanwhile, overexpression of LRRFIP1 inhibited phosphorylation of P65 and elevated expression of Hoxa9. Overexpression of LRRFIP1 or/and Hoxa9 reversed the effects of AGE on HUVEC. AGE-induced inhibition on the expression of LRRFIP1 and Hoxa9 could be reversed by the NF-κB inhibitor. CONCLUSION LRRFIP1 is involved in AGE-induced endothelial dysfunction via being regulated by the NF-κB/Hoxa9 axis.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songjie Hu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yunjun He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyang Qiu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianchi Chen
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilang Xiang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Yin X, Riva L, Pu Y, Martin-Sancho L, Kanamune J, Yamamoto Y, Sakai K, Gotoh S, Miorin L, De Jesus PD, Yang CC, Herbert KM, Yoh S, Hultquist JF, García-Sastre A, Chanda SK. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep 2021; 34:108628. [PMID: 33440148 PMCID: PMC7832566 DOI: 10.1016/j.celrep.2020.108628] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have profiled the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggest that cellular responses to viral challenge may affect disease severity. Yet the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remain to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. By screening 16 putative sensors involved in sensing of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Further analyses revealed that viral intermediates specifically activate the IFN response through MDA5-mediated sensing. Additionally, we find that IRF3, IRF5, and NF-κB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2.
Collapse
Affiliation(s)
- Xin Yin
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Laura Riva
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yuan Pu
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Laura Martin-Sancho
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Kanamune
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuki Yamamoto
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kouji Sakai
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chih-Cheng Yang
- Functional Genomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kristina M Herbert
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sunnie Yoh
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60201, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Comparative Proteomics Unveils LRRFIP1 as a New Player in the DAPK1 Interactome of Neurons Exposed to Oxygen and Glucose Deprivation. Antioxidants (Basel) 2020; 9:antiox9121202. [PMID: 33265962 PMCID: PMC7761126 DOI: 10.3390/antiox9121202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Death-associated protein kinase 1 (DAPK1) is a pleiotropic hub of a number of networked distributed intracellular processes. Among them, DAPK1 is known to interact with the excitotoxicity driver NMDA receptor (NMDAR), and in sudden pathophysiological conditions of the brain, e.g., stroke, several lines of evidence link DAPK1 with the transduction of glutamate-induced events that determine neuronal fate. In turn, DAPK1 expression and activity are known to be affected by the redox status of the cell. To delineate specific and differential neuronal DAPK1 interactors in stroke-like conditions in vitro, we exposed primary cultures of rat cortical neurons to oxygen/glucose deprivation (OGD), a condition that increases reactive oxygen species (ROS) and lipid peroxides. OGD or control samples were co-immunoprecipitated separately, trypsin-digested, and proteins in the interactome identified by high-resolution LC-MS/MS. Data were processed and curated using bioinformatics tools. OGD increased total DAPK1 protein levels, cleavage into shorter isoforms, and dephosphorylation to render the active DAPK1 form. The DAPK1 interactome comprises some 600 proteins, mostly involving binding, catalytic and structural molecular functions. OGD up-regulated 190 and down-regulated 192 candidate DAPK1-interacting proteins. Some differentially up-regulated interactors related to NMDAR were validated by WB. In addition, a novel differential DAPK1 partner, LRRFIP1, was further confirmed by reverse Co-IP. Furthermore, LRRFIP1 levels were increased by pro-oxidant conditions such as ODG or the ferroptosis inducer erastin. The present study identifies novel partners of DAPK1, such as LRRFIP1, which are suitable as targets for neuroprotection.
Collapse
|
21
|
Liu W, Duan Q, Gong L, Yang Y, Huang Z, Guo H, Niu X. A novel LRRFIP1-ALK fusion in inflammatory myofibroblastic tumor of hip and response to crizotinib. Invest New Drugs 2020; 39:278-282. [PMID: 32915420 DOI: 10.1007/s10637-020-00984-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023]
Abstract
An inflammatory myofibroblastic tumor (IMT) is a rare invasive soft tissue mass with intramuscular penetration that is primarily treated via a surgical procedure. However, with unclear boundaries and a high rate of relapse, there is no standard treatment for recurrence or unresectable tumors. It is noteworthy that approximately half of IMTs harbor genetic rearrangements of the anaplastic lymphoma kinase (ALK). ALK inhibitors have been used successfully in the treatment of IMTs with a variety of ALK fusions. Here, we present a case of a 15-year-old patient with IMT around the hip. Next-generation sequencing (NGS) revealed an LRRFIP1-ALK fusion, which has not yet been reported in the literature. Crizotinib, an ALK inhibitor, was effective in the treatment of this patient, indicating that ALK inhibitors may be effective for IMT with LRRFIP1-ALK fusions. This report expands the list of gene fusions in IMTs and highlights a new target for treatment.
Collapse
Affiliation(s)
- Weifeng Liu
- Deptartment of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing, 100035, People's Republic of China.,Fourth Clinical College of Peking University, Beijing, People's Republic of China
| | - Qianqian Duan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, People's Republic of China
| | - Lihua Gong
- Deptartment of pathology, Beijing Ji Shui Tan Hospital, Peking University, Beijing, People's Republic of China
| | - Yongkun Yang
- Deptartment of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing, 100035, People's Republic of China
| | - Zhen Huang
- Deptartment of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing, 100035, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, People's Republic of China
| | - Xiaohui Niu
- Deptartment of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing, 100035, People's Republic of China.
| |
Collapse
|
22
|
Stefanovska B, Vicier CE, Dayris T, Ogryzko V, Scott V, Bouakka I, Delaloge S, Rocca A, Le Saux O, Trédan O, Bachelot T, André F, Fromigué O. Rapalog-Mediated Repression of Tribbles Pseudokinase 3 Regulates Pre-mRNA Splicing. Cancer Res 2020; 80:2190-2203. [PMID: 32245792 DOI: 10.1158/0008-5472.can-19-2366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Rapalogs have become standard-of-care in patients with metastatic breast, kidney, and neuroendocrine cancers. Nevertheless, tumor escape occurs after several months in most patients, highlighting the need to understand mechanisms of resistance. Using a panel of cancer cell lines, we show that rapalogs downregulate the putative protein kinase TRIB3 (tribbles pseudokinase 3). Blood samples of a small cohort of patients with cancer treated with rapalogs confirmed downregulation of TRIB3. Downregulation of TRIB3 was mediated by LRRFIP1 independently of mTOR and disrupted its interaction with the spliceosome, where it participated in rapalog-induced deregulation of RNA splicing. Conversely, overexpression of TRIB3 in a panel of cancer cell lines abolished the cytotoxic effects of rapalogs. These findings identify TRIB3 as a key component of the spliceosome, whose repression contributes significantly to the mechanism of resistance to rapalog therapy. SIGNIFICANCE: Independent of mTOR signaling, rapalogs induce cytoxicity by dysregulating spliceosome function via repression of TRIB3, the loss of which may, in the long term, contribute to therapeutic resistance.
Collapse
Affiliation(s)
- Bojana Stefanovska
- Inserm, UMR981, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Sud, Orsay, France
| | - Cecile Edith Vicier
- Inserm, UMR981, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Sud, Orsay, France
| | - Thibault Dayris
- Gustave Roussy, Villejuif, France
- Inserm, US23, CNRS, UMS3655, Villejuif, France
| | | | - Veronique Scott
- Inserm, UMR981, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Sud, Orsay, France
| | - Ibrahim Bouakka
- Inserm, UMR981, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Sud, Orsay, France
| | - Suzette Delaloge
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Anna Rocca
- Inserm, UMR981, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Sud, Orsay, France
| | - Olivia Le Saux
- Department of Medical Oncology, Centre Léon Bérard, Lyon France
| | - Olivier Trédan
- Department of Medical Oncology, Centre Léon Bérard, Lyon France
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon France
| | - Fabrice André
- Inserm, UMR981, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Olivia Fromigué
- Inserm, UMR981, Villejuif, France.
- Gustave Roussy, Villejuif, France
- Université Paris Sud, Orsay, France
| |
Collapse
|