1
|
Renaud LI, Renaud C, Delepoulle S, Asselin E. Toto-Cell: A new software to analyze cellular events during video-microscopy. PLoS One 2024; 19:e0302042. [PMID: 38905217 PMCID: PMC11192387 DOI: 10.1371/journal.pone.0302042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 06/23/2024] Open
Abstract
Video-microscopy is a technology widely used to follow, in a single cell manner, cell behavior. A number of new studies are searching a way to track these behaviors by artificial intelligence; unfortunately some real-time events still have to be track manually. For that reason, we developed a software that helps the experimenter to analyze collected data. Toto-cell is very simple to use and it can be adapted at different type of analyses or treatments. It allows a wide new range of parameters that were nearly impossible to calculate only by hand. We thus developed this new software using HEC-1-A endometrial cell line to track different cellular parameters such as: the number of normal/abnormal mitosis, the ratio per day of death, mitosis, cell fusions or finally the length between two mitosis cycles. We treated our cells with cisplatin, doxorubicin or AZD5363 (an Akt inhibitor) to obtain different cellular events. What emerged is a huge heterogeneity for these analyzed parameters between the cells in a single treatment which is clearly demonstrated by the results provided by Toto-Cell. In conclusion, our software is an important tool to facilitate the analysis of video-microscopy, in a quantifying and qualifying manner. It enables a higher accuracy when compared to manual calculations.
Collapse
Affiliation(s)
- Léa-Isabelle Renaud
- Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec Trois-Rivières, Trois Rivières, Québec, Canada
| | - Christophe Renaud
- Laboratoire d’Informatique, Signal et Image (LISIC), Unfigiversité du Littoral Côte d’Opale, Calais, France
| | - Samuel Delepoulle
- Laboratoire d’Informatique, Signal et Image (LISIC), Unfigiversité du Littoral Côte d’Opale, Calais, France
| | - Eric Asselin
- Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec Trois-Rivières, Trois Rivières, Québec, Canada
| |
Collapse
|
2
|
Sieler M, Dörnen J, Dittmar T. How Much Do You Fuse? A Comparison of Cell Fusion Assays in a Breast Cancer Model. Int J Mol Sci 2024; 25:5668. [PMID: 38891857 PMCID: PMC11172233 DOI: 10.3390/ijms25115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| | - Jessica Dörnen
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
- Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| |
Collapse
|
3
|
Ali AM, Raza A. scRNAseq and High-Throughput Spatial Analysis of Tumor and Normal Microenvironment in Solid Tumors Reveal a Possible Origin of Circulating Tumor Hybrid Cells. Cancers (Basel) 2024; 16:1444. [PMID: 38611120 PMCID: PMC11010995 DOI: 10.3390/cancers16071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Metastatic cancer is a leading cause of death in cancer patients worldwide. While circulating hybrid cells (CHCs) are implicated in metastatic spread, studies documenting their tissue origin remain sparse, with limited candidate approaches using one-two markers. Utilizing high-throughput single-cell and spatial transcriptomics, we identified tumor hybrid cells (THCs) co-expressing epithelial and macrophage markers and expressing a distinct transcriptome. Rarely, normal tissue showed these cells (NHCs), but their transcriptome was easily distinguishable from THCs. THCs with unique transcriptomes were observed in breast and colon cancers, suggesting this to be a generalizable phenomenon across cancer types. This study establishes a framework for HC identification in large datasets, providing compelling evidence for their tissue residence and offering comprehensive transcriptomic characterization. Furthermore, it sheds light on their differential function and identifies pathways that could explain their newly acquired invasive capabilities. THCs should be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Mahmood Ali
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Azra Raza
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Wang R, Hu P, Wang F, Lyu J, Ou Y, Edderkaoui M, Zhang Y, Lewis MS, Pandol SJ, Zhau HE, Chung LWK. Spontaneous Fusion with Transformed Mesenchymal Stromal Cells Results in Complete Heterogeneity in Prostate Cancer Cells. Cancers (Basel) 2024; 16:951. [PMID: 38473313 PMCID: PMC10931070 DOI: 10.3390/cancers16050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor cells gain advantages in growth and survival by acquiring genotypic and phenotypic heterogeneity. Interactions with bystander cells in the tumor microenvironment contribute to the progression of heterogeneity. We have shown that fusion between tumor and bystander cells is one form of interaction, and that tumor-bystander cell fusion has contrasting effects. By trapping fusion hybrids in the heterokaryon or synkaryon state, tumor-bystander cell fusion prevents the progression of heterogeneity. However, if trapping fails, fusion hybrids will resume replication to form derivative clones with diverse genomic makeups and behavioral phenotypes. To determine the characteristics of bystander cells that influence the fate of fusion hybrids, we co-cultured prostate mesenchymal stromal cell lines and their spontaneously transformed sublines with LNCaP as well as HPE-15 prostate cancer cells. Subclones derived from cancer-stromal fusion hybrids were examined for genotypic and phenotypic diversifications. Both stromal cell lines were capable of fusing with cancer cells, but only fusion hybrids with the transformed stromal subline generated large numbers of derivative subclones. Each subclone had distinct cell morphologies and growth behaviors and was detected with complete genomic hybridization. The health conditions of the bystander cell compartment play a crucial role in the progression of tumor cell heterogeneity.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| | - Peizhen Hu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| | - Fubo Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| | - Ji Lyu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| | - Yan Ou
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.O.); (Y.Z.)
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| | - Yi Zhang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.O.); (Y.Z.)
| | - Michael S. Lewis
- Department of Medicine and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| | - Haiyen E. Zhau
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| | - Leland W. K. Chung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (P.H.); (F.W.); (J.L.); (M.E.); (S.J.P.); (H.E.Z.); (L.W.K.C.)
| |
Collapse
|
5
|
Xia C, Zhang Q, Pu Y, Hu Q, Wang Y. Cell fusion between tumor cells and macrophages promotes the metastasis of OSCC patient through the activation of the chemokine signaling pathway. Cancer Med 2024; 13:e6940. [PMID: 38457216 PMCID: PMC10923029 DOI: 10.1002/cam4.6940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Tumor metastasis is responsible for the high mortality rate of patients with oral squamous cell carcinoma (OSCC). Although many hypotheses have been proposed to elucidate the mechanism of tumor metastasis, the origin of the metastatic tumor cells remains unclear. In this study, we explored the role of cell fusion in the formation of OSCC metastatic tumor cells. METHODS Murine OSCC tumor cells and macrophages were fused in vitro, and the cell proliferation, migration, and phagocytosis abilities of hybrid cells and parental cells were compared. Subsequently, we compared the transcriptome differences between hybrid and parental cells. RESULTS Murine OSCC tumor cells and macrophages were successfully fused in vitro. The cytological and molecular experimental results revealed that OSCC tumor cells obtained a migration-related phenotype after fusion with macrophages, and the migration ability of hybrid cells was related to the activation of the "chemokine signal pathway". CONCLUSION After fusion with macrophages, the chemokine signaling pathway in OSCC tumor cells was activated, leading to metastasis.
Collapse
Affiliation(s)
- Chengwan Xia
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Qian Zhang
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yumei Pu
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Qingang Hu
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yuxin Wang
- Department of Oral and Maxillofacial Trauma Orthognathic Plastic SurgeryNanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
6
|
Tajima Y, Shibasaki F, Masai H. Cell fusion upregulates PD-L1 expression for evasion from immunosurveillance. Cancer Gene Ther 2024; 31:158-173. [PMID: 37990063 DOI: 10.1038/s41417-023-00693-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
MSCs (mesenchymal stem cells), responsible for tissue repair, rarely undergo cell fusion with somatic cells. Here, we show that ~5% of bladder cancer cells (UMUC-3) fuses with bone marrow-derived MSC (BM-MSC) in co-culture and maintains high tumorigenicity. In eleven fusion cell clones that have been established, Mb-scale deletions carried by the bladder cancer cells are mostly absent in the fusion cells, but copy number gains contributed by the cancer cells have stayed. Fusion cells exhibit increased populations of mitotic cells with 3-polar spindles, indicative of genomic instability. They grow faster in vitro and exhibit higher colony formation in anchorage-independent growth assay in soft agar than the parent UMUC-3 does. Fusion cells develop tumors, after 4 weeks of time lag, as efficiently as the parent UMUC-3 does in xenograft experiments. 264 genes are identified whose expression is specifically altered in the fusion cells. Many of them are interferon-stimulated genes (ISG), but are activated in a manner independent of interferon. Among them, we show that PD-L1 is induced in fusion cells, and its knockout decreases tumorigenesis in a xenograft model. PD-L1 is induced in a manner independent of STAT1 known to regulate PD-L1 expression, but is regulated by histone modification, and is likely to inhibit phagocytosis by PD1-expressing macrophages, thus protecting cancer cells from immunological attacks. The fusion cells overexpress multiple cytokines including CCL2 that cause tumor progression by converting infiltrating macrophages to tumor-associated-macrophage (TAM). The results present mechanisms of how cell fusion promotes tumorigenesis, revealing a novel link between cell fusion and PD-L1, and underscore the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Youichi Tajima
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Futoshi Shibasaki
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
7
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
8
|
Jin J, Yoshimura K, Sewastjanow-Silva M, Song S, Ajani JA. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers (Basel) 2023; 15:4352. [PMID: 37686627 PMCID: PMC10486659 DOI: 10.3390/cancers15174352] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
We discuss the importance of the in vivo models in elucidating cancer biology, focusing on the patient-derived xenograft (PDX) models, which are classic and standard functional in vivo platforms for preclinical evaluation. We provide an overview of the most representative models, including cell-derived xenografts (CDX), tumor and metastatic cell-derived xenografts, and PDX models utilizing humanized mice (HM). The orthotopic models, which could reproduce the cancer environment and its progression, similar to human tumors, are particularly common. The standard procedures and rationales of gastric adenocarcinoma (GAC) orthotopic models are addressed. Despite the significant advantages of the PDX models, such as recapitulating key features of human tumors and enabling drug testing in the in vivo context, some challenges must be acknowledged, including loss of heterogeneity, selection bias, clonal evolution, stroma replacement, tumor micro-environment (TME) changes, host cell carryover and contaminations, human-to-host cell oncogenic transformation, human and host viral infections, as well as limitations for immunologic research. To compensate for these limitations, other mouse models, such as syngeneic and humanized mouse models, are currently utilized. Overall, the PDX models represent a powerful tool in cancer research, providing critical insights into tumor biology and potential therapeutic targets, but their limitations and challenges must be carefully considered for their effective use. Lastly, we present an intronic quantitative PCR (qPCR) method to authenticate, detect, and quantify human/murine cells in cell lines and PDX samples.
Collapse
Affiliation(s)
| | | | | | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (K.Y.); (M.S.-S.)
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (K.Y.); (M.S.-S.)
| |
Collapse
|
9
|
Cozzo AJ, Coleman MF, Hursting SD. You complete me: tumor cell-myeloid cell nuclear fusion as a facilitator of organ-specific metastasis. Front Oncol 2023; 13:1191332. [PMID: 37427108 PMCID: PMC10324515 DOI: 10.3389/fonc.2023.1191332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Every cancer genome is unique, resulting in potentially near infinite cancer cell phenotypes and an inability to predict clinical outcomes in most cases. Despite this profound genomic heterogeneity, many cancer types and subtypes display a non-random distribution of metastasis to distant organs, a phenomenon known as organotropism. Proposed factors in metastatic organotropism include hematogenous versus lymphatic dissemination, the circulation pattern of the tissue of origin, tumor-intrinsic factors, compatibility with established organ-specific niches, long-range induction of premetastatic niche formation, and so-called "prometastatic niches" that facilitate successful colonization of the secondary site following extravasation. To successfully complete the steps required for distant metastasis, cancer cells must evade immunosurveillance and survive in multiple new and hostile environments. Despite substantial advances in our understanding of the biology underlying malignancy, many of the mechanisms used by cancer cells to survive the metastatic journey remain a mystery. This review synthesizes the rapidly growing body of literature demonstrating the relevance of an unusual cell type known as "fusion hybrid" cells to many of the hallmarks of cancer, including tumor heterogeneity, metastatic conversion, survival in circulation, and metastatic organotropism. Whereas the concept of fusion between tumor cells and blood cells was initially proposed over a century ago, only recently have technological advancements allowed for detection of cells containing components of both immune and neoplastic cells within primary and metastatic lesions as well as among circulating malignant cells. Specifically, heterotypic fusion of cancer cells with monocytes and macrophages results in a highly heterogeneous population of hybrid daughter cells with enhanced malignant potential. Proposed mechanisms behind these findings include rapid, massive genome rearrangement during nuclear fusion and/or acquisition of monocyte/macrophage features such as migratory and invasive capability, immune privilege, immune cell trafficking and homing, and others. Rapid acquisition of these cellular traits may increase the likelihood of both escape from the primary tumor site and extravasation of hybrid cells at a secondary location that is amenable to colonization by that particular hybrid phenotype, providing a partial explanation for the patterns observed in some cancers with regard to sites of distant metastases.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Duke University School of Medicine, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
10
|
Arena GO, Forte S, Abdouh M, Vanier C, Corbeil D, Lorico A. Horizontal Transfer of Malignant Traits and the Involvement of Extracellular Vesicles in Metastasis. Cells 2023; 12:1566. [PMID: 37371036 PMCID: PMC10297028 DOI: 10.3390/cells12121566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Metastases are responsible for the vast majority of cancer deaths, yet most therapeutic efforts have focused on targeting and interrupting tumor growth rather than impairing the metastatic process. Traditionally, cancer metastasis is attributed to the dissemination of neoplastic cells from the primary tumor to distant organs through blood and lymphatic circulation. A thorough understanding of the metastatic process is essential to develop new therapeutic strategies that improve cancer survival. Since Paget's original description of the "Seed and Soil" hypothesis over a hundred years ago, alternative theories and new players have been proposed. In particular, the role of extracellular vesicles (EVs) released by cancer cells and their uptake by neighboring cells or at distinct anatomical sites has been explored. Here, we will outline and discuss these alternative theories and emphasize the horizontal transfer of EV-associated biomolecules as a possibly major event leading to cell transformation and the induction of metastases. We will also highlight the recently discovered intracellular pathway used by EVs to deliver their cargoes into the nucleus of recipient cells, which is a potential target for novel anti-metastatic strategies.
Collapse
Affiliation(s)
- Goffredo O. Arena
- Department of Surgery, McGill University, Montréal, QC H3A 0G4, Canada;
- Fondazione Istituto G. Giglio, 90015 Cefalù, Italy
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute, McGill University Health Centre, Montréal, QC H3A 0G4, Canada;
| | - Cheryl Vanier
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Aurelio Lorico
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| |
Collapse
|
11
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Ramirez-Martinez A, Zhang Y, van den Boogaard MJ, McAnally JR, Rodriguez-Caycedo C, Chai AC, Chemello F, Massink MP, Cuppen I, Elferink MG, van Es RJ, Janssen NG, Walraven-van Oijen LP, Liu N, Bassel-Duby R, van Jaarsveld RH, Olson EN. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J Clin Invest 2022; 132:e159002. [PMID: 35642635 PMCID: PMC9151691 DOI: 10.1172/jci159002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle fibers contain hundreds of nuclei, which increase the overall transcriptional activity of the tissue and perform specialized functions. Multinucleation occurs through myoblast fusion, mediated by the muscle fusogens Myomaker (MYMK) and Myomixer (MYMX). We describe a human pedigree harboring a recessive truncating variant of the MYMX gene that eliminates an evolutionarily conserved extracellular hydrophobic domain of MYMX, thereby impairing fusogenic activity. Homozygosity of this human variant resulted in a spectrum of abnormalities that mimicked the clinical presentation of Carey-Fineman-Ziter syndrome (CFZS), caused by hypomorphic MYMK variants. Myoblasts generated from patient-derived induced pluripotent stem cells displayed defective fusion, and mice bearing the human MYMX variant died perinatally due to muscle abnormalities. In vitro assays showed that the human MYMX variant conferred minimal cell-cell fusogenicity, which could be restored with CRISPR/Cas9-mediated base editing, thus providing therapeutic potential for this disorder. Our findings identify MYMX as a recessive, monogenic human disease gene involved in CFZS, and provide new insights into the contribution of myoblast fusion to neuromuscular diseases.
Collapse
Affiliation(s)
- Andres Ramirez-Martinez
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yichi Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - John R. McAnally
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cristina Rodriguez-Caycedo
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas C. Chai
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Francesco Chemello
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Robert J.J. van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nard G. Janssen
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Ning Liu
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Eric N. Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
14
|
Ertekin Ö, Monavari M, Krüger R, Fuentes-Chandía M, Parma B, Letort G, Tripal P, Boccaccini AR, Bosserhoff AK, Ceppi P, Kappelmann-Fenzl M, Leal-Egaña A. 3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance. Acta Biomater 2022; 142:208-220. [PMID: 35167953 DOI: 10.1016/j.actbio.2022.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
Abstract
In this work, we analyzed the reliability of alginate-gelatin microcapsules as artificial tumor model. These tumor-like scaffolds are characterized by their composition and stiffness (∼25 kPa), and their capability to restrict -but not hinder- cell migration, proliferation and release from confinement. Hydrogel-based microcapsules were initially utilized to detect differences in mechano-sensitivity between MCF7 and MDA-MB-231 breast cancer cells, and the endothelial cell line EA.hy926. Additionally, we used RNA-seq and transcriptomic methods to determine how the culture strategy (i.e. 2D v/s 3D) may pre-set the expression of genes involved in multidrug resistance, being then validated by performing cytotoxicological tests and assays of cell morphology. Our results show that both breast cancer cells can generate elongated multicellular spheroids inside the microcapsules, prior being released (mimicking intravasation stages), a behavior which was not observed in endothelial cells. Further, we demonstrate that cells isolated from 3D scaffolds show resistance to cisplatin, a process which seems to be strongly influenced by mechanical stress, instead of hypoxia. We finally discuss the role played by aneuploidy in malignancy and resistance to anticancer drugs, based on the increased number of polynucleated cells found within these microcapsules. Overall, our outcomes demonstrate that alginate-gelatin microcapsules represent a simple, yet very accurate tumor-like model, enabling us to mimic the most relevant malignant hints described in vivo, suggesting that confinement and mechanical stress need to be considered when studying pathogenicity and drug resistance of cancer cells in vitro. STATEMENT OF SIGNIFICANCE: In this work, we analyzed the reliability of alginate-gelatin microcapsules as an artificial tumor model. These scaffolds are characterized by their composition, elastic properties, and their ability to restrict cell migration, proliferation, and release from confinement. Our results demonstrate four novel outcomes: (i) studying cell migration and proliferation in 3D enabled discrimination between malignant and non-pathogenic cells, (ii) studying the cell morphology of cancer aggregates entrapped in alginate-gelatin microcapsules enabled determination of malignancy degree in vitro, (iii) determination that confinement and mechanical stress, instead of hypoxia, are required to generate clones resistant to anticancer drugs (i.e. cisplatin), and (iv) evidence that resistance to anticancer drugs could be due to the presence of polynucleated cells localized inside polymer-based artificial tumors.
Collapse
Affiliation(s)
- Özlem Ertekin
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Diagno Biotechnology, Marmara Technopark, Gebze, Kocaeli, Turkey
| | - Mahshid Monavari
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - René Krüger
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, and University Clinics Erlangen, Erlangen 91054, Germany
| | - Miguel Fuentes-Chandía
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander Universität Erlangen-Nürnberg Glueckstrasse 6, Erlangen 91054, Germany
| | - Gaelle Letort
- Center for Interdisciplinary Research in Biology, Collège de France UMR7241/U1050, 11, Place Marcelin Berthelot, Paris 75231 CEDEX 05, France
| | - Philipp Tripal
- Optical Imaging Centre Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 3, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, Erlangen 91054, Germany
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander Universität Erlangen-Nürnberg Glueckstrasse 6, Erlangen 91054, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, Erlangen 91054, Germany; Faculty of Applied Informatics, University of Applied Science Deggendorf, Deggendorf 94469, Germany
| | - Aldo Leal-Egaña
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Institute for Molecular Systems Engineering, University of Heidelberg. INF 253, Heidelberg 69120, Germany.
| |
Collapse
|
15
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
16
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
17
|
Hass R, von der Ohe J, Dittmar T. Cancer Cell Fusion and Post-Hybrid Selection Process (PHSP). Cancers (Basel) 2021; 13:cancers13184636. [PMID: 34572863 PMCID: PMC8470238 DOI: 10.3390/cancers13184636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Fusion of cancer cells either with other cancer cells (homotypic fusion) in local vicinity of the tumor tissue or with other cell types (e.g., macrophages, cancer-associated fibroblasts (CAFs), mesenchymal stromal-/stem-like cells (MSC)) (heterotypic fusion) represents a rare event. Accordingly, the clinical relevance of cancer-cell fusion events appears questionable. However, enhanced tumor growth and/or development of certain metastases can originate from cancer-cell fusion. Formation of hybrid cells after cancer-cell fusion requires a post-hybrid selection process (PHSP) to cope with genomic instability of the parental nuclei and reorganize survival and metabolic functionality. The present review dissects mechanisms that contribute to a PHSP and resulting functional alterations of the cancer hybrids. Based upon new properties of cancer hybrid cells, the arising clinical consequences of the subsequent tumor heterogeneity after cancer-cell fusion represent a major therapeutic challenge. However, cellular partners during cancer-cell fusion such as MSC within the tumor microenvironment or MSC-derived exosomes may provide a suitable vehicle to specifically address and deliver anti-tumor cargo to cancer cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence: (R.H.); (T.D.); Tel.: +49-511-5326070 (R.H.); +49-2302-926165 (T.D.)
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Dittmar
- Institute of Immunology, Center of Biomedical Education and Research (ZABF), Witten/Herdecke University, 58448 Witten, Germany
- Correspondence: (R.H.); (T.D.); Tel.: +49-511-5326070 (R.H.); +49-2302-926165 (T.D.)
| |
Collapse
|
18
|
Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13174496. [PMID: 34503305 PMCID: PMC8431460 DOI: 10.3390/cancers13174496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell fusion as a fundamental biological process is required for various physiological processes, including fertilization, placentation, myogenesis, osteoclastogenesis, and wound healing/tissue regeneration. However, cell fusion is also observed during pathophysiological processes like tumor development. Mesenchymal stroma/stem-like cells (MSC) which play an important role within the tumor microenvironment like other cell types such as macrophages can closely interact and hybridize with cancer cells. The formation of cancer hybrid cells can involve various different mechanisms whereby the genomic parts of the hybrid cells require rearrangement to form a new functional hybrid cell. The fusion of cancer cells with neighboring cell types may represent an important mechanism during tumor development since cancer hybrid cells are detectable in various tumor tissues. During this rare event with resulting genomic instability the cancer hybrid cells undergo a post-hybrid selection process (PHSP) to reorganize chromosomes of the two parental nuclei whereby the majority of the hybrid population undergoes cell death. The remaining cancer hybrid cells survive by displaying altered properties within the tumor tissue. Abstract The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.
Collapse
|
19
|
Haas OA. Somatic Sex: On the Origin of Neoplasms With Chromosome Counts in Uneven Ploidy Ranges. Front Cell Dev Biol 2021; 9:631946. [PMID: 34422788 PMCID: PMC8373647 DOI: 10.3389/fcell.2021.631946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/22/2021] [Indexed: 01/09/2023] Open
Abstract
Stable aneuploid genomes with nonrandom numerical changes in uneven ploidy ranges define distinct subsets of hematologic malignancies and solid tumors. The idea put forward herein suggests that they emerge from interactions between diploid mitotic and G0/G1 cells, which can in a single step produce all combinations of mono-, di-, tri-, tetra- and pentasomic paternal/maternal homologue configurations that define such genomes. A nanotube-mediated influx of interphase cell cytoplasm into mitotic cells would thus be responsible for the critical nondisjunction and segregation errors by physically impeding the proper formation of the cell division machinery, whereas only a complete cell fusion can simultaneously generate pentasomies, uniparental trisomies as well as biclonal hypo- and hyperdiploid cell populations. The term "somatic sex" was devised to accentuate the similarities between germ cell and somatic cell fusions. A somatic cell fusion, in particular, recapitulates many processes that are also instrumental in the formation of an abnormal zygote that involves a diploid oocyte and a haploid sperm, which then may further develop into a digynic triploid embryo. Despite their somehow deceptive differences and consequences, the resemblance of these two routes may go far beyond of what has hitherto been appreciated. Based on the arguments put forward herein, I propose that embryonic malignancies of mesenchymal origin with these particular types of aneuploidies can thus be viewed as the kind of flawed somatic equivalent of a digynic triploid embryo.
Collapse
Affiliation(s)
- Oskar A Haas
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
20
|
Walker BS, Sutton TL, Zarour L, Hunter JG, Wood SG, Tsikitis VL, Herzig DO, Lopez CD, Chen EY, Mayo SC, Wong MH. Circulating Hybrid Cells: A Novel Liquid Biomarker of Treatment Response in Gastrointestinal Cancers. Ann Surg Oncol 2021; 28:8567-8578. [PMID: 34365557 DOI: 10.1245/s10434-021-10379-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Real-time monitoring of treatment response with a liquid biomarker has potential to inform treatment decisions for patients with rectal adenocarcinoma (RAC), esophageal adenocarcinoma (EAC), and colorectal liver metastasis (CRLM). Circulating hybrid cells (CHCs), which have both immune and tumor cell phenotypes, are detectable in the peripheral blood of patients with gastrointestinal cancers, but their potential as an indicator of treatment response is unexplored. METHODS Peripheral blood specimens were collected from RAC and EAC patients after neoadjuvant therapy (NAT) or longitudinally during therapy and evaluated for CHC levels by immunostaining. Receiver operating characteristics (ROCs) and the Kaplan-Meier method were used to analyze the CHC level as a predictor of pathologic response to NAT and disease-specific survival (DSS), respectively. RESULTS Patients with RAC (n = 23) and EAC (n = 34) were sampled on the day of resection, and 11 patients (32%) demonstrated a pathologic complete response (pCR) to NAT. On ROC analysis, CHC levels successfully discriminated pCR from non-pCR with an area under the curve of 0.82 (95% confidence interval [CI], 0.71-0.92; P < 0.001). Additionally, CHC levels in the EAC patients correlated with residual nodal involvement (P = 0.026) and 1-year DSS (P = 0.029). The patients with RAC who were followed longitudinally during NAT (n = 2) and hepatic arterial infusion therapy for CRLM (n = 2) had CHC levels that decreased with therapy response and increased before clinical evidence of disease progression. CONCLUSION Circulating hybrid cells are a novel blood-based biomarker with potential for monitoring treatment response and disease progression to help guide decisions for further systemic therapy, definitive resection, and post-therapy surveillance. Additional validation studies of CHCs are warranted.
Collapse
Affiliation(s)
- Brett S Walker
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Thomas L Sutton
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Luai Zarour
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - John G Hunter
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA.,Knight Cancer Institute, Portland, OR, USA
| | - Stephanie G Wood
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - V Liana Tsikitis
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA.,Knight Cancer Institute, Portland, OR, USA
| | - Daniel O Herzig
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Charles D Lopez
- Knight Cancer Institute, Portland, OR, USA.,Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University (OHSU), Portland, OR, 97239, USA
| | - Emerson Y Chen
- Knight Cancer Institute, Portland, OR, USA.,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, 2720 South Moody Aveune, Mailcode KC-CDCB, Portland, OR, 97201, USA
| | - Skye C Mayo
- Department of Surgery, Oregon Health and Science University (OHSU), Portland, OR, USA.,Knight Cancer Institute, Portland, OR, USA
| | - Melissa H Wong
- Knight Cancer Institute, Portland, OR, USA. .,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, 2720 South Moody Aveune, Mailcode KC-CDCB, Portland, OR, 97201, USA.
| |
Collapse
|
21
|
Brito A, Merle C, Lagarde P, Faustin B, Devin A, Lartigue L, Chibon F. Cell fusion enhances energy metabolism of mesenchymal tumor hybrid cells to sustain their proliferation and invasion. BMC Cancer 2021; 21:863. [PMID: 34320948 PMCID: PMC8317390 DOI: 10.1186/s12885-021-08561-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cell-to-cell fusion is emerging as a key element of the metastatic process in various cancer types. We recently showed that hybrids made from the spontaneous merging of pre-malignant (IMR90 E6E7, i.e. E6E7) and malignant (IMR90 E6E7 RST, i.e. RST) mesenchymal cells recapitulate the main features of human undifferentiated pleomorphic sarcoma (UPS), with a highly rearranged genome and increased spreading capacities. To better characterize the intrinsic properties of these hybrids, we investigated here their metabolic energy profile compared to their parents. RESULTS Our results unveiled that hybrids harbored a Warburg-like metabolism, like their RST counterparts. However, hybrids displayed a much greater metabolic activity, enhancing glycolysis to proliferate. Interestingly, modifying the metabolic environmental conditions through the use of 5-aminoimidazole-4-carbox-amide-1-β-D-ribofuranoside (AICAR), an activator of the 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK), specifically reduced the growth of hybrids, and also abrogated the invasive capacity of hybrids displaying enhanced glycolysis. Furthermore, AICAR efficiently blocked the tumoral features related to the aggressiveness of human UPS cell lines. CONCLUSION Altogether, our findings strongly suggest that hybrids rely on higher energy flux to proliferate and that a drug altering this metabolic equilibrium could impair their survival and be potentially considered as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ariadna Brito
- Cancer Research Center in Toulouse (CRCT), INSERM U1037, 31037, Toulouse, France
- University of Toulouse 3, Paul Sabatier, 118 route Narbonne, 31062 Cedex 9, Toulouse, France
| | - Candice Merle
- Cancer Research Center in Toulouse (CRCT), INSERM U1037, 31037, Toulouse, France
- University of Toulouse 3, Paul Sabatier, 118 route Narbonne, 31062 Cedex 9, Toulouse, France
| | - Pauline Lagarde
- INSERM U1218, 299 cours de l'Argonne, F-33076, Bordeaux, France
- University of Bordeaux, 146 rue Léo Saignat, F-33000, Bordeaux, France
- Department of Biopathology, Bergonie Institute, 229 cours de l'Argonne, F-33076, Bordeaux, France
| | - Benjamin Faustin
- CNRS UMR 5164, 33000, Bordeaux, France
- Immunology Discovery, Janssen Research and Development, San Diego, CA, USA
| | - Anne Devin
- CNRS UMR 5095, 1 Rue Camille Saint-Saëns, F-33077, Bordeaux Cedex, France
| | - Lydia Lartigue
- INSERM U1218, 299 cours de l'Argonne, F-33076, Bordeaux, France
- University of Bordeaux, 146 rue Léo Saignat, F-33000, Bordeaux, France
| | - Frederic Chibon
- Cancer Research Center in Toulouse (CRCT), INSERM U1037, 31037, Toulouse, France.
- INSERM U1218, 299 cours de l'Argonne, F-33076, Bordeaux, France.
- Department of Biopathology, Bergonie Institute, 229 cours de l'Argonne, F-33076, Bordeaux, France.
- Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, Toulouse, France.
| |
Collapse
|
22
|
Survival analysis of patients with primary breast duct carcinoma and lung adenocarcinoma: a population-based study from SEER. Sci Rep 2021; 11:14790. [PMID: 34285322 PMCID: PMC8292419 DOI: 10.1038/s41598-021-94357-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
The appeal to enroll patients with primary breast and lung cancer in clinical trials is increasing, but survival of these two primary cancers remains to be elucidated. This study analyzed the prognosis of primary breast duct carcinoma with subsequent lung adenocarcinoma (BCLA) and primary breast duct carcinoma with prior lung adenocarcinoma (LABC). Cohorts of 3,515 patients with BCLA and 654 patients with LABC were identified from the Surveillance, Epidemiology, and End Results database. Patients were classified into simultaneous two primary cancer (sTPC), metachronous two primary cancer (mTPC1), or mTPC2 groups when the interval times between breast and lung cancer were within 6 months, between 7 and 60 months, or over 60 months, respectively. The propensity score matching program (PSM) was applied to determine the survival of BCLA/LABC relative to single breast/lung cancer. Cox proportional hazard regression model and competing risk modes were performed to identify confounders associated with all-cause and cancer-specific death, respectively. Survival of patients with LABC/BCLA relative to single breast/lung cancer was accessed via median survival time. The survival of patients with BCLA/LABC was generally poor compared with the survival of those with single breast cancer. The PSM-estimated HR in the sTPC group with BCLA and in the mTPC1 and mTPC2 groups with LABC were 0.75 (95% CI 0.62–0.90), 0.52 (95% CI 0.27–0.98), and 0.36 (95% CI 0.20–0.65), respectively, whereas the SHRs were 0.80 (95% CI 0.66–0.97), 0.68 (95% CI 0.34–1.34), and 0.46 (95% CI 0.27–0.80), respectively, compared with those in the single lung cancer group. By contrast, the survival rates of the remaining patients did not differ. The median survival times since secondary malignancy were 42, 23, and 20 months in the sTPC, mTPC1, and mTPC2 groups with BCLA, respectively, and 18, 60, and 180 months in those with LABC, respectively. For patients with BCLA, the adjusted Cox regression suggested incidences of all-cause deaths in mTPC1group were statically higher than those in sTPC group, whereas the incidences of all-cause and cancer-specific death in the mTPC1 and mTPC2 groups were statistically lower than those in the sTPC group. The prognosis of patients with breast cancer and subsequent lung cancer of over 18 months was not significantly different than that of single lung cancer, which supported the profound appeal to increase the involvement of these two primary cancers in potential beneficial clinical trials. For patients with lung cancer and prior breast cancer of within 6 months and subsequent breast cancer of over 18 months, prognosis was improved relative to single lung cancer. Therefore, additional attention is needed to eliminate the potential bias may when these patients are recruited in the clinical trials.
Collapse
|
23
|
Sieler M, Weiler J, Dittmar T. Cell-Cell Fusion and the Roads to Novel Properties of Tumor Hybrid Cells. Cells 2021; 10:cells10061465. [PMID: 34207991 PMCID: PMC8230653 DOI: 10.3390/cells10061465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The phenomenon of cancer cell–cell fusion is commonly associated with the origin of more malignant tumor cells exhibiting novel properties, such as increased drug resistance or an enhanced metastatic capacity. However, the whole process of cell–cell fusion is still not well understood and seems to be rather inefficient since only a certain number of (cancer) cells are capable of fusing and only a rather small population of fused tumor hybrids will survive at all. The low survivability of tumor hybrids is attributed to post-fusion processes, which are characterized by the random segregation of mixed parental chromosomes, the induction of aneuploidy and further random chromosomal aberrations and genetic/epigenetic alterations in daughter cells. As post-fusion processes also run in a unique manner in surviving tumor hybrids, the occurrence of novel properties could thus also be a random event, whereby it might be speculated that the tumor microenvironment and its spatial habitats could direct evolving tumor hybrids towards a specific phenotype.
Collapse
|
24
|
Melzer C, von der Ohe J, Luo T, Hass R. Spontaneous Fusion of MSC with Breast Cancer Cells Can Generate Tumor Dormancy. Int J Mol Sci 2021; 22:ijms22115930. [PMID: 34072967 PMCID: PMC8198754 DOI: 10.3390/ijms22115930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Direct cellular interactions of MDA-MB-231cherry breast cancer cells with GFP-transduced human mesenchymal stroma/stem-like cells (MSCGFP) in a co-culture model resulted in spontaneous cell fusion by the generation of MDA-MSC-hyb5cherry GFP breast cancer hybrid cells. The proliferative capacity of MDA-MSC-hyb5 cells was enhanced about 1.8-fold when compared to the parental MDA-MB-231cherry breast cancer cells. In contrast to a spontaneous MDA-MB-231cherry induced tumor development in vivo within 18.8 days, the MDA-MSC-hyb5 cells initially remained quiescent in a dormancy-like state. At distinct time points after injection, NODscid mice started to develop MDA-MSC-hyb5 cell-induced tumors up to about a half year later. Following tumor initiation, however, tumor growth and formation of metastases in various different organs occurred rapidly within about 10.5 days. Changes in gene expression levels were evaluated by RNA-microarray analysis and revealed certain increase in dormancy-associated transcripts in MDA-MSC-hyb5. Chemotherapeutic responsiveness of MDA-MSC-hyb5 cells was partially enhanced when compared to MDA-MB-231 cells. However, some resistance, e.g., for taxol was detectable in cancer hybrid cells. Moreover, drug response partially changed during the tumor development of MDA-MSC-hyb5 cells; this suggests the presence of unstable in vivo phenotypes of MDA-hyb5 cells with increased tumor heterogeneity.
Collapse
Affiliation(s)
| | | | | | - Ralf Hass
- Correspondence: ; Tel.: +49-511-532-6070
| |
Collapse
|
25
|
LaBerge G, Duvall E, Grasmick Z, Haedicke K, Galan A, Pawelek J. A melanoma patient with macrophage-cancer cell hybrids in the primary tumor, a lymph node metastasis and a brain metastasis. Cancer Genet 2021; 256-257:162-164. [PMID: 34166887 DOI: 10.1016/j.cancergen.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
In 1911 it was proposed that cancer might result from fusion and hybridization between macrophages and cancer cells. Using immunohistochemistry it was determined that essentially all solid tumors expressed macrophage-like molecules on their cell surface. More recently we have used forensic (STR) genetics that allows one to detect DNA from more than one individual in the same sample. By studying biopsies from individuals receiving allogeneic stem cell transplants and later developed solid tumor metastases, we were able to detect both donor and patient DNA sequences suggesting that hybrids were present. Previously we found hybrids in biopsies of a renal cell carcinoma, a melanoma in a brain metastasis and a melanoma in a primary tumor with lymph node metastases. Here we have traced hybrids from a primary melanoma to an axillary lymph node to a brain metastasis. This is the first time that the entire metastatic process has been documented.
Collapse
Affiliation(s)
- Greggory LaBerge
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, CO, United States; Denver Police Crime Lab-Forensics and Evidence Division, Denver, Colorado, United States
| | - Eric Duvall
- Denver Police Crime Lab-Forensics and Evidence Division, Denver, Colorado, United States
| | - Zachary Grasmick
- Department of Pathology, University of Colorado AMC, Denver, Colorado, United States
| | - Kay Haedicke
- Department of Internal Medicine Section of Medical Oncology and the Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States
| | - Anjela Galan
- Department of Dermatology and The Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States
| | - John Pawelek
- Department of Dermatology and The Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States.
| |
Collapse
|
26
|
Wang HF, Xiang W, Xue BZ, Wang YH, Yi DY, Jiang XB, Zhao HY, Fu P. Cell fusion in cancer hallmarks: Current research status and future indications. Oncol Lett 2021; 22:530. [PMID: 34055095 PMCID: PMC8138896 DOI: 10.3892/ol.2021.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is involved in several physiological processes, such as reproduction, development and immunity. Although cell fusion in tumors was reported 130 years ago, it has recently attracted great interest, with recent progress in tumorigenesis research. However, the role of cell fusion in tumor progression remains unclear. The pattern of cell fusion and its role under physiological conditions are the basis for our understanding of the pathological role of cell fusion. However, the role of cell fusion in tumors and its functions are complicated. Cell fusion can directly increase tumor heterogeneity by forming polyploids or aneuploidies. Several studies have reported that cell fusion is associated with tumorigenesis, metastasis, recurrence, drug resistance and the formation of cancer stem cells. Given the diverse roles cell fusion plays in different tumor phenotypes, methods based on targeted cell fusion have been designed to treat tumors. Research on cell fusion in tumors may provide novel ideas for further treatment.
Collapse
Affiliation(s)
- Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
27
|
Cell-cell fusions and cell-in-cell phenomena in healthy cells and cancer: Lessons from protists and invertebrates. Semin Cancer Biol 2021; 81:96-105. [PMID: 33713795 DOI: 10.1016/j.semcancer.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Herein we analyze two special routes of the multinucleated cells' formation - the fusion of mononuclear cells and the formation of cell-in-cell structures - in the healthy tissues and in tumorigenesis. There are many theories of tumorigenesis based on the phenomenon of emergence of the hybrid cancer cells. We consider the phenomena, which are rarely mentioned in those theories: namely, cellularization of syncytium or coenocytes, and the reversible or irreversible somatogamy. The latter includes the short-term and the long-term vegetative (somatic) cells' fusions in the life cycles of unicellular organisms. The somatogamy and multinuclearity have repeatedly and independently emerged in various groups of unicellular eukaryotes. These phenomena are among dominant survival and biodiversity sustaining strategies in protists and we admit that they can likely play an analogous role in cancer cells.
Collapse
|
28
|
Hass R, von der Ohe J, Ungefroren H. Impact of the Tumor Microenvironment on Tumor Heterogeneity and Consequences for Cancer Cell Plasticity and Stemness. Cancers (Basel) 2020; 12:cancers12123716. [PMID: 33322354 PMCID: PMC7764513 DOI: 10.3390/cancers12123716] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor heterogeneity is considered the major cause of treatment failure in current cancer therapies. This feature of solid tumors is not only the result of clonal outgrowth of cells with genetic mutations, but also of epigenetic alterations induced by physical and chemical signals from the tumor microenvironment (TME). Besides fibroblasts, endothelial and immune cells, mesenchymal stroma/stem-like cells (MSCs) and tumor-associated macrophages (TAMs) intimately crosstalk with cancer cells and can exhibit both anti- and pro-tumorigenic effects. MSCs can alter cancer cellular phenotypes to increase cancer cell plasticity, eventually resulting in the generation of cancer stem cells (CSCs). The shift between different phenotypic states (phenotype switching) of CSCs is controlled via both genetic programs, such as epithelial-mesenchymal transdifferentiation or retrodifferentiation, and epigenetic alterations triggered by signals from the TME, like hypoxia, spatial heterogeneity or stromal cell-derived chemokines. Finally, we highlight the role of spontaneous cancer cell fusion with various types of stromal cells. i.e., MSCs in shaping CSC plasticity. A better understanding of cell plasticity and phenotype shifting in CSCs is a prerequisite for exploiting this phenomenon to reduce tumor heterogeneity, thereby improving the chance for therapy success.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-532-6070; Fax: +49-511-532-6071
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
29
|
Altered Tumor Plasticity after Different Cancer Cell Fusions with MSC. Int J Mol Sci 2020; 21:ijms21218347. [PMID: 33172211 PMCID: PMC7664391 DOI: 10.3390/ijms21218347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
While cell fusion demonstrates an important pathway during tissue development and regeneration of distinct organs, this process can also contribute to pathophysiological phenotypes during tumor progression. Hybrid cell formation after heterofusion between cancer cells and various other cell types within the tumor microenvironment is observed in vitro and in vivo. In particular, mesenchymal stroma/stem-like cells (MSC) perform diverse levels of communication with cancer cells by exhibiting anti- and pro-tumorigenic effects. During these cellular interactions, MSC can eventually fuse with cancer cells. Thereby, the newly generated disparate hybrid populations display aneuploidy associated with chromosomal instability. Based upon a subsequent post-hybrid selection process (PHSP), fused cancer cells can undergo apoptosis/necroptosis, senescence, dormancy, or a proliferative state by acquisition of new properties. Consequently, PHSP-surviving hybrid cancer cells demonstrate altered functionalities within the tumor tissue. This is accompanied by changes in therapeutic responsiveness and a different metastatic behavior. Accordingly, enhanced tumor plasticity interferes with successful therapeutic interventions and aggravates patient prognoses. The present review article focusses on fusion of MSC with different human cancer cells, in particular breast cancer populations and resulting characteristics of various cancer hybrid cells. Moreover, some mechanisms of cancer cell fusion are discussed together with multiple PHSP pathways.
Collapse
|
30
|
Baliu-Piqué M, Pandiella A, Ocana A. Breast Cancer Heterogeneity and Response to Novel Therapeutics. Cancers (Basel) 2020; 12:E3271. [PMID: 33167363 PMCID: PMC7694303 DOI: 10.3390/cancers12113271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Targeted cancer therapies against oncogenic drivers are actively being developed and tested in clinical trials. Targeting an oncogenic driver may only prove effective if the mutation is present in most tumoral cells. Therefore, highly heterogeneous tumors may be refractory to these therapies. This makes tumor heterogeneity a major challenge in cancer therapy. Although heterogeneity has traditionally been attributed to genetic diversity within cancer cell populations, it is now widely recognized that human cancers are heterogeneous in almost all distinguishable phenotypic characteristics. Understanding the genetic variability and also the non-genetic influences of tumor heterogeneity will provide novel insights into how to reverse therapeutic resistance and improve cancer therapy.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos and CIBERONC, 28040 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, CSIC-IBSAL, 37007 Salamanca, Spain;
| | - Alberto Ocana
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos and CIBERONC, 28040 Madrid, Spain;
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomedicas, Castilla-La Mancha University (CRIB-UCLM), 02008 Albacete, Spain
| |
Collapse
|
31
|
Sutton TL, Walker BS, Wong MH. Rebuttal to: Confusion on Cell Fusion. Cell Mol Gastroenterol Hepatol 2020; 11:307-308. [PMID: 33068772 PMCID: PMC7768553 DOI: 10.1016/j.jcmgh.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/10/2022]
Affiliation(s)
| | | | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
32
|
Zhang LN, Zhang DD, Yang L, Gu YX, Zuo QP, Wang HY, Xu J, Liu DX. Roles of cell fusion between mesenchymal stromal/stem cells and malignant cells in tumor growth and metastasis. FEBS J 2020; 288:1447-1456. [PMID: 33070450 DOI: 10.1111/febs.15483] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
Abstract
Invasion and metastasis are the basic characteristics and important markers of malignant tumors, which are also the main cause of death in cancer patients. Epithelial-mesenchymal transition (EMT) is recognized as the first step of tumor invasion and metastasis. Many studies have demonstrated that cell fusion is a common phenomenon and plays a critical role in cancer development and progression. At present, cancer stem cell fusion has been considered as a new mechanism of cancer metastasis. Mesenchymal stromal/stem cell (MSC) is a kind of adult stem cells with high self-renewal ability and multidifferentiation potential, which is used as a very promising fusogenic candidate in the tumor microenvironment and has a crucial role in cancer progression. Many research results have shown that MSCs are involved in the regulation of tumor growth and metastasis through cell fusion. However, the role of cell fusion between MSCs and malignant cells in tumor growth and metastasis is still controversial. Several studies have demonstrated that MSCs can enhance malignant characteristics, promoting tumor growth and metastasis by fusing with malignant cells, while other conflicting reports believe that MSCs can reduce tumorigenicity upon fusion with malignant cells. In this review, we summarize the recent research on cell fusion events between MSCs and malignant cells in tumor growth and metastasis. The elucidation of the molecular mechanisms between MSC fusion and tumor metastasis may provide an effective strategy for tumor biotherapy.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Di-Di Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Lei Yang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yu-Xuan Gu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Qiu-Ping Zuo
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Hao-Yi Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jia Xu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Dian-Xin Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
33
|
Fahlbusch SS, Keil S, Epplen JT, Zänker KS, Dittmar T. Comparison of hybrid clones derived from human breast epithelial cells and three different cancer cell lines regarding in vitro cancer stem/ initiating cell properties. BMC Cancer 2020; 20:446. [PMID: 32430004 PMCID: PMC7236176 DOI: 10.1186/s12885-020-06952-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Several physiological (fertilization, placentation, wound healing) and pathophysiological processes (infection with enveloped viruses, cancer) depend on cell fusion. In cancer it was postulated that the fusion of cancer cells with normal cells such as macrophages or stem cells may not only give rise to hybrid cells exhibiting novel properties, such as an increased metastatic capacity and drug resistance, but possibly also cancer stem/ initiating cell properties. Hence, hybrid clone cells (M13HS, M13MDA435 and M13MDA231) that were derived from spontaneous fusion events of human M13SV1-EGFP-Neo breast epithelial cells and HS578T-Hyg, MDA-MB-435-Hyg and MDA-MB-231-Hyg cancer cells were investigated regarding potential in vitro cancer stem/ initiating cell properties. Methods CD44/CD24 expression pattern and ALDH1 activity of parental cells and hybrid clones was determined by flow cytometry. A colony formation and mammosphere formation assay was applied to determine the cells’ capability to form colonies and mammospheres. Sox9, Slug and Snail expression levels were determined by Western blot analysis. Results Flow cytometry revealed that all hybrid clone cells were CD44+/CD24−/low, but differed markedly among each other regarding ALDH1 activity. Likewise, each hybrid clone possessed a unique colony formation and mammosphere capacity as well as unique Snail, Slug and Sox9 expression patterns. Nonetheless, comparison of hybrid clones revealed that M13HS hybrids exhibited more in vitro cancer stem/ initiating cell properties than M13MDA231 and M13MDA435 hybrids, such as more ALDH1 positive cells or an increased capacity to form colonies and mammospheres. Conclusion The fate whether cancer stem/ initiating cells may originate from cell fusion events likely depends on the specific characteristics of the parental cells.
Collapse
Affiliation(s)
- Sera Selina Fahlbusch
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Silvia Keil
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Jörg T Epplen
- Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Kurt S Zänker
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| |
Collapse
|
34
|
Manjunath Y, Porciani D, Mitchem JB, Suvilesh KN, Avella DM, Kimchi ET, Staveley-O’Carroll KF, Burke DH, Li G, Kaifi JT. Tumor-Cell-Macrophage Fusion Cells as Liquid Biomarkers and Tumor Enhancers in Cancer. Int J Mol Sci 2020; 21:E1872. [PMID: 32182935 PMCID: PMC7084898 DOI: 10.3390/ijms21051872] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 02/06/2023] Open
Abstract
Although molecular mechanisms driving tumor progression have been extensively studied, the biological nature of the various populations of circulating tumor cells (CTCs) within the blood is still not well understood. Tumor cell fusion with immune cells is a longstanding hypothesis that has caught more attention in recent times. Specifically, fusion of tumor cells with macrophages might lead to the development of metastasis by acquiring features such as genetic and epigenetic heterogeneity, chemotherapeutic resistance, and immune tolerance. In addition to the traditional FDA-approved definition of a CTC (CD45-, EpCAM+, cytokeratins 8+, 18+ or 19+, with a DAPI+ nucleus), an additional circulating cell population has been identified as being potential fusions cells, characterized by distinct, large, polymorphonuclear cancer-associated cells with a dual epithelial and macrophage/myeloid phenotype. Artificial fusion of tumor cells with macrophages leads to migratory, invasive, and metastatic phenotypes. Further studies might investigate whether these have a potential impact on the immune response towards the cancer. In this review, the background, evidence, and potential relevance of tumor cell fusions with macrophages is discussed, along with the potential role of intercellular connections in their formation. Such fusion cells could be a key component in cancer metastasis, and therefore, evolve as a diagnostic and therapeutic target in cancer precision medicine.
Collapse
Affiliation(s)
- Yariswamy Manjunath
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| | - Jonathan B. Mitchem
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
| | - Diego M. Avella
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Eric T. Kimchi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA; (D.P.); (D.H.B.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA; (Y.M.); (J.B.M.); (K.N.S.); (D.M.A.); (E.T.K.); (K.F.S.-O.); (G.L.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
35
|
Zhang Y, Tseng JTC, Lien IC, Li F, Wu W, Li H. mRNAsi Index: Machine Learning in Mining Lung Adenocarcinoma Stem Cell Biomarkers. Genes (Basel) 2020; 11:E257. [PMID: 32121037 PMCID: PMC7140876 DOI: 10.3390/genes11030257] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs), characterized by self-renewal and unlimited proliferation, lead to therapeutic resistance in lung cancer. In this study, we aimed to investigate the expressions of stem cell-related genes in lung adenocarcinoma (LUAD). The stemness index based on mRNA expression (mRNAsi) was utilized to analyze LUAD cases in the Cancer Genome Atlas (TCGA). First, mRNAsi was analyzed with differential expressions, survival analysis, clinical stages, and gender in LUADs. Then, the weighted gene co-expression network analysis was performed to discover modules of stemness and key genes. The interplay among the key genes was explored at the transcription and protein levels. The enrichment analysis was performed to annotate the function and pathways of the key genes. The expression levels of key genes were validated in a pan-cancer scale. The pathological stage associated gene expression level and survival probability were also validated. The Gene Expression Omnibus (GEO) database was additionally used for validation. The mRNAsi was significantly upregulated in cancer cases. In general, the mRNAsi score increases according to clinical stages and differs in gender significantly. Lower mRNAsi groups had a better overall survival in major LUADs, within five years. The distinguished modules and key genes were selected according to the correlations to the mRNAsi. Thirteen key genes (CCNB1, BUB1, BUB1B, CDC20, PLK1, TTK, CDC45, ESPL1, CCNA2, MCM6, ORC1, MCM2, and CHEK1) were enriched from the cell cycle Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, relating to cell proliferation Gene Ontology (GO) terms, as well. Eight of the thirteen genes have been reported to be associated with the CSC characteristics. However, all of them have been previously ignored in LUADs. Their expression increased according to the pathological stages of LUAD, and these genes were clearly upregulated in pan-cancers. In the GEO database, only the tumor necrosis factor receptor associated factor-interacting protein (TRAIP) from the blue module was matched with the stemness microarray data. These key genes were found to have strong correlations as a whole, and could be used as therapeutic targets in the treatment of LUAD, by inhibiting the stemness features.
Collapse
Affiliation(s)
- Yitong Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (F.L.)
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing 100069, China
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; (J.T.-C.T.); (I.-C.L.)
| | - Joseph Ta-Chien Tseng
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; (J.T.-C.T.); (I.-C.L.)
- Insight Genomics Inc., National Cheng Kung University, Tainan 701, Taiwan
| | - I-Chia Lien
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; (J.T.-C.T.); (I.-C.L.)
- Insight Genomics Inc., National Cheng Kung University, Tainan 701, Taiwan
| | - Fenglan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (F.L.)
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; (Y.Z.); (F.L.)
| |
Collapse
|
36
|
Wang R, Lewis MS, Lyu J, Zhau HE, Pandol SJ, Chung LWK. Cancer-stromal cell fusion as revealed by fluorescence protein tracking. Prostate 2020; 80:274-283. [PMID: 31846114 PMCID: PMC6949378 DOI: 10.1002/pros.23941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE We previously determined that cancer-stromal interaction was a direct route to tumor cell heterogeneity progression, since cancer-stromal cell fusion in coculture resulted in the creation of heterogeneous clones of fusion hybrid progeny. In this report, we modified the cancer-stromal coculture system to establish optimal experimental conditions for investigating cell fusion machinery and the mechanism of heterogeneity progression. EXPERIMENTAL DESIGN Red fluorescence protein-tagged LNCaP cells were cocultured with green fluorescence protein-labeled prostate stromal cells for cancer-stromal cell fusion, which was tracked as dual fluorescent cells by fluorescence microscopy. RESULTS We identified the most efficient strategy to isolate clones of fusion hybrid progenies. From the coculture, mixed cells including fusion hybrids were subjected to low-density replating for colony formation by fusion hybrid progeny. These colonies could propagate into derivative cell populations. Compared to the parental LNCaP cells, clones of the fusion hybrid progeny displayed divergent behaviors and exhibited permanent genomic hybridization. CONCLUSIONS Cancer-stromal cell fusion leads to cancer cell heterogeneity. The cancer-stromal coculture system characterized in this study can be used as a model for molecular characterization of cancer cell fusion as the mechanism behind the progression of heterogeneity observed in clinical prostate cancers.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Uro-Oncology Research, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Michael S. Lewis
- Uro-Oncology Research, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Ji Lyu
- Uro-Oncology Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Haiyen E. Zhau
- Uro-Oncology Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | | |
Collapse
|
37
|
Yin L, Hu P, Shi X, Qian W, Zhau HE, Pandol SJ, Lewis MS, Chung LWK, Wang R. Cancer cell's neuroendocrine feature can be acquired through cell-cell fusion during cancer-neural stem cell interaction. Sci Rep 2020; 10:1216. [PMID: 31988304 PMCID: PMC6985266 DOI: 10.1038/s41598-020-58118-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/10/2020] [Indexed: 02/04/2023] Open
Abstract
Advanced and therapy-resistant prostate tumors often display neural or neuroendocrine behavior. We assessed the consequences of prostate cancer cell interaction with neural cells, which are rich in the human prostate and resident of the prostate tumor. In 3-dimensional co-culture with neurospheres, red fluorescent human LNCaP cells formed agglomerates on the neurosphere surface. Upon induced neural differentiation, some red fluorescent cells showed morphology of fully differentiated neural cells, indicating fusion between the cancer and neural stem cells. These fusion hybrids survived for extended times in a quiescent state. A few eventually restarted cell division and propagated to form derivative hybrid progenies. Clones of the hybrid progenies were highly heterogeneous; most had lost prostatic and epithelial markers while some had acquired neural marker expression. These results indicate that cancer cells can fuse with bystander neural cells in the tumor microenvironment; and cancer cell fusion is a direct route to tumor cell heterogeneity.
Collapse
Affiliation(s)
- Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peizhen Hu
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xianping Shi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Weiping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael S Lewis
- Department of Pathology, Greater Los Angeles Veterans Affairs Health System, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology, Greater Los Angeles Veterans Affairs Health System, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Hass R, von der Ohe J, Ungefroren H. Potential Role of MSC/Cancer Cell Fusion and EMT for Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:cancers11101432. [PMID: 31557960 PMCID: PMC6826868 DOI: 10.3390/cancers11101432] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Solid tumors comprise of maturated cancer cells and self-renewing cancer stem-like cells (CSCs), which are associated with various other nontumorigenic cell populations in the tumor microenvironment. In addition to immune cells, endothelial cells, fibroblasts, and further cell types, mesenchymal stroma/stem-like cells (MSC) represent an important cell population recruited to tumor sites and predominantly interacting with the different cancer cells. Breast cancer models were among the first to reveal distinct properties of CSCs, however, the cellular process(es) through which these cells are generated, maintained, and expanded within neoplastic tissues remains incompletely understood. Here, we discuss several possible scenarios that are not mutually exclusive but may even act synergistically: fusion of cancer cells with MSC to yield hybrid cells and/or the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells by MSC, which can relay signals for retrodifferentiation and eventually, the generation of breast CSCs (BCSCs). In either case, the consequences may be promotion of self-renewal capacity, tumor cell plasticity and heterogeneity, an increase in the cancer cells’ invasive and metastatic potential, and the acquisition of resistance mechanisms towards chemo- or radiotherapy. While specific signaling mechanisms involved in each of these properties remain to be elucidated, the present review article focusses on a potential involvement of cancer cell fusion and EMT in the development of breast cancer stem cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
39
|
The Detection and Morphological Analysis of Circulating Tumor and Host Cells in Breast Cancer Xenograft Models. Cells 2019; 8:cells8070683. [PMID: 31284534 PMCID: PMC6679018 DOI: 10.3390/cells8070683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hematogenous dissemination may occur early in breast cancer (BC). Experimental models could clarify mechanisms, but in their development, the heterogeneity of this neoplasia must be considered. Here, we describe circulating tumor cells (CTCs) and the metastatic behavior of several BC cell lines in xenografts. MDA-MB-231, BT-474, MDA-MB-453 and MDA-MB-468 cells were injected at the orthotopic level in immunocompromised mice. CTCs were isolated using a size-based method and identified by cytomorphological criteria. Metastases were detected by COX IV immunohistochemistry. CTCs were detected in 90% of animals in each model. In MDA-MB-231, CTCs were observed after 5 weeks from the injection and step wisely increased at later time points. In animals injected with less aggressive cell lines, the load of single CTCs (mean ± SD CTCs/mL: 1.8 ± 1.3 in BT-474, 122.2 ± 278.5 in MDA-MB-453, 3.4 ± 2.5 in MDA-MB468) and the frequency of CTC clusters (overall 38%) were lower compared to MDA-MB231 (946.9 ± 2882.1; 73%). All models had lung metastases, MDA-MB-453 and MDA-MB468 had ovarian foci too, whereas lymph nodal involvement was observed in MDA-MB231 and MDA-MB-468 only. Interestingly, CTCs showed morphological heterogeneity and were rarely associated to host cells. Orthotopic xenograft of BC cell lines offers valid models of hematogenous dissemination and a possible experimental setting to study CTC-blood microenvironment interactions.
Collapse
|