1
|
Chaya T, Maeda Y, Tsutsumi R, Ando M, Ma Y, Kajimura N, Tanaka T, Furukawa T. Ccrk-Mak/Ick signaling is a ciliary transport regulator essential for retinal photoreceptor survival. Life Sci Alliance 2024; 7:e202402880. [PMID: 39293864 PMCID: PMC11412320 DOI: 10.26508/lsa.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Primary cilia are microtubule-based sensory organelles whose dysfunction causes ciliopathies in humans. The formation, function, and maintenance of primary cilia depend crucially on intraflagellar transport (IFT); however, the regulatory mechanisms of IFT at ciliary tips are poorly understood. Here, we identified that the ciliopathy kinase Mak is a ciliary tip-localized IFT regulator that cooperatively acts with the ciliopathy kinase Ick, an IFT regulator. Simultaneous disruption of Mak and Ick resulted in loss of photoreceptor ciliary axonemes and severe retinal degeneration. Gene delivery of Ick and pharmacological inhibition of FGF receptors, Ick negative regulators, ameliorated retinal degeneration in Mak -/- mice. We also identified that Ccrk kinase is an upstream activator of Mak and Ick in retinal photoreceptor cells. Furthermore, the overexpression of Mak, Ick, and Ccrk and pharmacological inhibition of FGF receptors suppressed ciliopathy-related phenotypes caused by cytoplasmic dynein inhibition in cultured cells. Collectively, our results show that the Ccrk-Mak/Ick axis is an IFT regulator essential for retinal photoreceptor maintenance and present activation of Ick as a potential therapeutic approach for retinitis pigmentosa caused by MAK mutations.
Collapse
Affiliation(s)
- Taro Chaya
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Makoto Ando
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yujie Ma
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoko Kajimura
- https://ror.org/035t8zc32 Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahisa Furukawa
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Limerick A, McCabe EA, Turner JS, Kuang KW, Brautigan DL, Hao Y, Chu CY, Fu SH, Ahmadi S, Xu W, Fu Z. An Epilepsy-Associated CILK1 Variant Compromises KATNIP Regulation and Impairs Primary Cilia and Hedgehog Signaling. Cells 2024; 13:1258. [PMID: 39120290 PMCID: PMC11311665 DOI: 10.3390/cells13151258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Mutations in human CILK1 (ciliogenesis associated kinase 1) are linked to ciliopathies and epilepsy. Homozygous point and nonsense mutations that extinguish kinase activity impair primary cilia function, whereas mutations outside the kinase domain are not well understood. Here, we produced a knock-in mouse equivalent to the human CILK1 A615T variant identified in juvenile myoclonic epilepsy (JME). This residue is in the intrinsically disordered C-terminal region of CILK1 separate from the kinase domain. Mouse embryo fibroblasts (MEFs) with either heterozygous or homozygous A612T mutant alleles exhibited a higher ciliation rate, shorter individual cilia, and upregulation of ciliary Hedgehog signaling. Thus, a single A612T mutant allele was sufficient to impair primary cilia and ciliary signaling in MEFs. Gene expression profiles of wild-type versus mutant MEFs revealed profound changes in cilia-related molecular functions and biological processes. The CILK1 A615T mutant protein was not increased to the same level as the wild-type protein when co-expressed with scaffold protein KATNIP (katanin-interacting protein). Our data show that KATNIP regulation of a JME-associated single-residue variant of CILK1 is compromised, and this impairs the maintenance of primary cilia and Hedgehog signaling.
Collapse
Affiliation(s)
- Ana Limerick
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Ellie A. McCabe
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Jacob S. Turner
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Kevin W. Kuang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - David L. Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (D.L.B.); (W.X.)
| | - Yi Hao
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA;
| | - Cheuk Ying Chu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Sean H. Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Sean Ahmadi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| | - Wenhao Xu
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (D.L.B.); (W.X.)
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (A.L.); (E.A.M.); (J.S.T.); (K.W.K.); (C.Y.C.); (S.H.F.); (S.A.)
| |
Collapse
|
3
|
He Y, Zhang X, Pan W, Zhang J, Zhu W, Zhang J, Shi J. Ciliogenesis-associated Kinase 1 Promotes Breast Cancer Cell Proliferation and Chemoresistance via Phosphorylating ERK1. Int J Biol Sci 2024; 20:2403-2421. [PMID: 38725848 PMCID: PMC11077371 DOI: 10.7150/ijbs.87442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/03/2024] [Indexed: 05/12/2024] Open
Abstract
Ciliogenesis-associated kinase 1 (CILK1) plays a key role in the ciliogenesis and ciliopathies. It remains totally unclear whether CILK1 is involved in tumor progression and therapy resistance. Here, we report that the aberrant high-expression of CILK1 in breast cancer is required for tumor cell proliferation and chemoresistance. Two compounds, CILK1-C30 and CILK1-C28, were identified with selective inhibitory effects towards the Tyr-159/Thr-157 dual-phosphorylation of CILK1, pharmacological inhibition of CILK1 significantly suppressed tumor cell proliferation and overcame chemoresistance in multiple experimental models. Large-scale screen of CILK1 substrates confirmed that the kinase directly phosphorylates ERK1, which is responsible for CILK1-mediated oncogenic function. CILK1 is also indicated to be responsible for the chemoresistance of small-cell lung cancer cells. Our data highlight the importance of CILK1 in cancer, implicating that targeting CILK1/ERK1 might offer therapeutic benefit to cancer patients.
Collapse
Affiliation(s)
- Yanling He
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xinyuan Zhang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Weijun Pan
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiebiao Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
4
|
Fasawe AS, Adams JM, Engelke MF. KIF3A tail domain phosphorylation is not required for ciliogenesis in mouse embryonic fibroblasts. iScience 2024; 27:109149. [PMID: 38405607 PMCID: PMC10884758 DOI: 10.1016/j.isci.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Primary cilia are essential signaling organelles that protrude from most cells in the body. Heterodimeric kinesin-2 (KIF3A/KIF3B/KAP3) powers several intracellular transport processes, including intraflagellar transport (IFT), essential for ciliogenesis. A long-standing question is how a motor protein is differentially regulated for specific cargos. Since phosphorylation of the KIF3A tail domain was suggested to regulate the activity of kinesin-2 for ciliogenesis, similarly as for the cytosolic cargo N-Cadherin, we set out to map the phosphosites involved in this regulation. Using well-characterized Kif3a-/-; Kif3b-/- mouse embryonic fibroblasts, we performed ciliogenesis rescue assays with a library of phosphomimetic mutants comprising all predicted phosphosites in the KIF3A tail domain. In contrast to previous reports, we found that KIF3A tail domain phosphorylation is dispensable for ciliogenesis in mammals. Thus, mammalian kinesin-2 is differently regulated for IFT than currently thought, consistent with the idea of differential regulation for ciliary and cytosolic cargo.
Collapse
Affiliation(s)
- Ayoola S. Fasawe
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61790, USA
| | - Jessica M. Adams
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61790, USA
| | - Martin F. Engelke
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
5
|
Turner JS, McCabe EA, Kuang KW, Gailey CD, Brautigan DL, Limerick A, Wang EX, Fu Z. The Scaffold Protein KATNIP Enhances CILK1 Control of Primary Cilia. Mol Cell Biol 2023; 43:472-480. [PMID: 37665596 PMCID: PMC10512882 DOI: 10.1080/10985549.2023.2246870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
The primary cilium functions as a cellular sensory organelle and signaling antenna that detects and transduces extracellular signals. Mutations in the human gene CILK1 (ciliogenesis associated kinase 1) cause abnormal cilia elongation and faulty Hedgehog signaling, associated with developmental disorders and epilepsy. CILK1 is a protein kinase that requires dual phosphorylation of its TDY motif for activation and its extended C-terminal intrinsically disordered region (IDR) mediates targeting to the basal body and substrate recognition. Proteomics previously identified katanin-interacting protein (KATNIP), also known as KIAA0556, as a CILK1 interacting partner. In this study we discovered that CILK1 colocalizes with KATNIP at the basal body and the CILK1 IDR is sufficient to mediate binding to KATNIP. Deletion analysis of KATNIP shows one of three domains of unknown function (DUF) is required for association with CILK1. KATNIP binding with CILK1 drastically elevated CILK1 protein levels and TDY phosphorylation in cells. This resulted in a profound increase in phosphorylation of known CILK1 substrates and suppression of cilia length. Thus, KATNIP functions as a regulatory subunit of CILK1 that potentiates its actions. This advances our understanding of the molecular basis of control of primary cilia.
Collapse
Affiliation(s)
- Jacob S. Turner
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ellie A. McCabe
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kevin W. Kuang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Casey D. Gailey
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - David L. Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ana Limerick
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Elena X. Wang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Hesketh SJ, Mukhopadhyay AG, Nakamura D, Toropova K, Roberts AJ. IFT-A structure reveals carriages for membrane protein transport into cilia. Cell 2022; 185:4971-4985.e16. [PMID: 36462505 DOI: 10.1016/j.cell.2022.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Intraflagellar transport (IFT) trains are massive molecular machines that traffic proteins between cilia and the cell body. Each IFT train is a dynamic polymer of two large complexes (IFT-A and -B) and motor proteins, posing a formidable challenge to mechanistic understanding. Here, we reconstituted the complete human IFT-A complex and obtained its structure using cryo-EM. Combined with AlphaFold prediction and genome-editing studies, our results illuminate how IFT-A polymerizes, interacts with IFT-B, and uses an array of β-propeller and TPR domains to create "carriages" of the IFT train that engage TULP adaptor proteins. We show that IFT-A⋅TULP carriages are essential for cilia localization of diverse membrane proteins, as well as ICK-the key kinase regulating IFT train turnaround. These data establish a structural link between IFT-A's distinct functions, provide a blueprint for IFT-A in the train, and shed light on how IFT evolved from a proto-coatomer ancestor.
Collapse
Affiliation(s)
- Sophie J Hesketh
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Dai Nakamura
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK
| | - Katerina Toropova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK.
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck University of London, London, WC1E 7HX, UK.
| |
Collapse
|
7
|
Pratelli A, Corbo D, Lupetti P, Mencarelli C. The distal central pair segment is structurally specialised and contributes to IFT turnaround and assembly of the tip capping structures in Chlamydomonas flagella. Biol Cell 2022; 114:349-364. [PMID: 36101924 DOI: 10.1111/boc.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cilia and flagella are dynamic organelles whose assembly and maintenance depend on an activetrafficking process known as the IntraFlagellar Transport (IFT), during which trains of IFT protein particles are moved by specific motors and carry flagellar precursors and turnover products along the axoneme. IFT consists of an anterograde (from base to tip) and a retrograde (from tip to base) phase. During IFT turnaround at the flagellar tip, anterograde trains release their cargoes and remodel to form the retrograde trains. Thus, turnaround is crucial for correct IFT. However, current knowledge of its mechanisms is limited. RESULTS We show here that in Chlamydomonas flagella the distal ∼200 nm central pair (CP) segment is structurally differentiated for the presence of a ladder-like structure (LLS). During IFT turnaround, the IFT172 subunit dissociates from the IFT- B protein complex and binds to the LLS-containing CP segment, while the IFT-B complex participates in the assembly of the CP capping structures. The IFT scaffolding function played by the LLS-containing CP segment relies on anchoring components other than the CP microtubules, since IFT turnaround occurs also in the CP-devoid pf18 mutant flagella. CONCLUSIONS During IFT turnaround in Chlamydomonas flagella, i) the LLS and the CP terminal plates act as anchoring platforms for IFT172 and the IFT-B complex, respectively, and ii) during its remodeling, the IFT-B complex contributes to the assembly of the CP capping structures. SIGNIFICANCE Our results indicate that in full length Chlamydomonas flagella IFT remodeling occurs by a specialized mechanism that involves flagellar tip structures and is distinct from the previously proposed model in which the capability to reverse motility would be intrinsic of IFT train and independent by any other flagellar structure.
Collapse
Affiliation(s)
- Ambra Pratelli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Dalia Corbo
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
8
|
Mul W, Mitra A, Peterman EJG. Mechanisms of Regulation in Intraflagellar Transport. Cells 2022; 11:2737. [PMID: 36078145 PMCID: PMC9454703 DOI: 10.3390/cells11172737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Cilia are eukaryotic organelles essential for movement, signaling or sensing. Primary cilia act as antennae to sense a cell's environment and are involved in a wide range of signaling pathways essential for development. Motile cilia drive cell locomotion or liquid flow around the cell. Proper functioning of both types of cilia requires a highly orchestrated bi-directional transport system, intraflagellar transport (IFT), which is driven by motor proteins, kinesin-2 and IFT dynein. In this review, we explore how IFT is regulated in cilia, focusing from three different perspectives on the issue. First, we reflect on how the motor track, the microtubule-based axoneme, affects IFT. Second, we focus on the motor proteins, considering the role motor action, cooperation and motor-train interaction plays in the regulation of IFT. Third, we discuss the role of kinases in the regulation of the motor proteins. Our goal is to provide mechanistic insights in IFT regulation in cilia and to suggest directions of future research.
Collapse
Affiliation(s)
| | | | - Erwin J. G. Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Satoda Y, Noguchi T, Fujii T, Taniguchi A, Katoh Y, Nakayama K. BROMI/TBC1D32 together with CCRK/CDK20 and FAM149B1/JBTS36 contributes to intraflagellar transport turnaround involving ICK/CILK1. Mol Biol Cell 2022; 33:ar79. [PMID: 35609210 PMCID: PMC9582636 DOI: 10.1091/mbc.e22-03-0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are antenna-like organelles that contain specific proteins, and are crucial for tissue morphogenesis. Anterograde and retrograde trafficking of ciliary proteins are mediated by the intraflagellar transport (IFT) machinery. BROMI/TBC1D32 interacts with CCRK/CDK20, which phosphorylates and activates the intestinal cell kinase (ICK)/CILK1 kinase, to regulate the change in direction of the IFT machinery at the ciliary tip. Mutations in BROMI, CCRK, and ICK in humans cause ciliopathies, and mice defective in these genes are also known to demonstrate ciliopathy phenotypes. We show here that BROMI interacts not only with CCRK but also with CFAP20, an evolutionarily conserved ciliary protein, and with FAM149B1/ Joubert syndrome (JBTS)36, a protein in which mutations cause JBTS. In addition, we show that FAM149B1 interacts directly with CCRK as well as with BROMI. Ciliary defects observed in CCRK-knockout (KO), BROMI-KO, and FAM149B1-KO cells, including abnormally long cilia and accumulation of the IFT machinery and ICK at the ciliary tip, resembled one another, and BROMI mutants that are defective in binding to CCRK and CFAP20 were unable to rescue the ciliary defects of BROMI-KO cells. These data indicate that CCRK, BROMI, FAM149B1, and probably CFAP20 altogether regulate the IFT turnaround process under the control of ICK.
Collapse
Affiliation(s)
- Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuro Noguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taiju Fujii
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Aoi Taniguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Modulation of Primary Cilia by Alvocidib Inhibition of CILK1. Int J Mol Sci 2022; 23:ijms23158121. [PMID: 35897693 PMCID: PMC9329819 DOI: 10.3390/ijms23158121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
The primary cilium provides cell sensory and signaling functions. Cilia structure and function are regulated by ciliogenesis-associated kinase 1 (CILK1). Ciliopathies caused by CILK1 mutations show longer cilia and abnormal Hedgehog signaling. Our study aimed to identify small molecular inhibitors of CILK1 that would enable pharmacological modulation of primary cilia. A previous screen of a chemical library for interactions with protein kinases revealed that Alvocidib has a picomolar binding affinity for CILK1. In this study, we show that Alvocidib potently inhibits CILK1 (IC50 = 20 nM), exhibits selectivity for inhibition of CILK1 over cyclin-dependent kinases 2/4/6 at low nanomolar concentrations, and induces CILK1-dependent cilia elongation. Our results support the use of Alvocidib to potently and selectively inhibit CILK1 to modulate primary cilia.
Collapse
|
11
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
12
|
Noguchi T, Nakamura K, Satoda Y, Katoh Y, Nakayama K. CCRK/CDK20 regulates ciliary retrograde protein trafficking via interacting with BROMI/TBC1D32. PLoS One 2021; 16:e0258497. [PMID: 34624068 PMCID: PMC8500422 DOI: 10.1371/journal.pone.0258497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
CCRK/CDK20 was reported to interact with BROMI/TBC1D32 and regulate ciliary Hedgehog signaling. In various organisms, mutations in the orthologs of CCRK and those of the kinase ICK/CILK1, which is phosphorylated by CCRK, are known to result in cilia elongation. Furthermore, we recently showed that ICK regulates retrograde ciliary protein trafficking and/or the turnaround event at the ciliary tips, and that its mutations result in the elimination of intraflagellar transport (IFT) proteins that have overaccumulated at the bulged ciliary tips as extracellular vesicles, in addition to cilia elongation. However, how these proteins cooperate to regulate ciliary protein trafficking has remained unclear. We here show that the phenotypes of CCRK-knockout (KO) cells closely resemble those of ICK-KO cells; namely, the overaccumulation of IFT proteins at the bulged ciliary tips, which appear to be eliminated as extracellular vesicles, and the enrichment of GPR161 and Smoothened on the ciliary membrane. The abnormal phenotypes of CCRK-KO cells were rescued by the exogenous expression of wild-type CCRK but not its kinase-dead mutant or a mutant defective in BROMI binding. These results together indicate that CCRK regulates the turnaround process at the ciliary tips in concert with BROMI and probably via activating ICK.
Collapse
Affiliation(s)
- Tatsuro Noguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kentaro Nakamura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
14
|
Park K, Li C, Tsiropoulou S, Gonçalves J, Kondratev C, Pelletier L, Blacque OE, Leroux MR. CDKL kinase regulates the length of the ciliary proximal segment. Curr Biol 2021; 31:2359-2373.e7. [PMID: 33857430 DOI: 10.1016/j.cub.2021.03.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Cilia are organelles found throughout most unicellular eukaryotes and different metazoan cell types. To accomplish their essential roles in cell motility, fluid flow, and signaling, cilia are divided into subcompartments with variable structures, compositions, and functions. How these specific subcompartments are built remains almost completely unexplored. Here, we show that C. elegans CDKL-1, related to the human CDKL kinase family (CDKL1/CDKL2/CDKL3/CDKL4/CDKL5), specifically controls the length of the proximal segment, a ciliary subdomain conserved in evolution from Tetrahymena motile cilia to C. elegans chemosensory, mammalian olfactory, and photoreceptor non-motile cilia. CDKL-1 associates with intraflagellar transport (IFT), influences the distribution of the IFT anterograde motors heterotrimeric kinesin-II and homodimeric OSM-3-kinesin/KIF17 in the proximal segment, and shifts the boundary between the proximal and distal segments (PS/DS boundary). CDKL-1 appears to function independently from several factors that influence cilium length, namely the kinases DYF-5 (mammalian CILK1/MAK) and NEKL-1 (NEK9), as well as the depolymerizing kinesins KLP-13 (KIF19) and KLP-7 (KIF2). However, a different kinase, DYF-18 (CCRK), is needed for the correct localization and function of CDKL-1 and similarly influences the length of the proximal segment. Loss of CDKL-1, which affects proximal segment length without impairing overall ciliary microtubule structural integrity, also impairs cilium-dependent processes, namely cGMP-signaling-dependent body length control and CO2 avoidance. Collectively, our findings suggest that cilium length is regulated by various pathways and that the IFT-associated kinase CDKL-1 is essential for the construction of a specific ciliary compartment and contributes to development and sensory physiology.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Christine Kondratev
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
15
|
Chaya T, Furukawa T. Post-translational modification enzymes as key regulators of ciliary protein trafficking. J Biochem 2021; 169:633-642. [PMID: 33681987 PMCID: PMC8423421 DOI: 10.1093/jb/mvab024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are evolutionarily conserved microtubule-based organelles that protrude from the surface of almost all cell types and decode a variety of extracellular stimuli. Ciliary dysfunction causes human diseases named ciliopathies, which span a wide range of symptoms, such as developmental and sensory abnormalities. The assembly, disassembly, maintenance and function of cilia rely on protein transport systems including intraflagellar transport (IFT) and lipidated protein intraflagellar targeting (LIFT). IFT is coordinated by three multisubunit protein complexes with molecular motors along the ciliary axoneme, while LIFT is mediated by specific chaperones that directly recognize lipid chains. Recently, it has become clear that several post-translational modification enzymes play crucial roles in the regulation of IFT and LIFT. Here, we review our current understanding of the roles of these post-translational modification enzymes in the regulation of ciliary protein trafficking as well as their regulatory mechanisms, physiological significance and involvement in human diseases.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Gailey CD, Wang EJ, Jin L, Ahmadi S, Brautigan DL, Li X, Xu W, Scott MM, Fu Z. Phosphosite T674A mutation in kinesin family member 3A fails to reproduce tissue and ciliary defects characteristic of CILK1 loss of function. Dev Dyn 2021; 250:263-273. [PMID: 32935890 PMCID: PMC8460152 DOI: 10.1002/dvdy.252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Kinesin family member 3A (KIF3A) is a molecular motor protein in the heterotrimeric kinesin-2 complex that drives anterograde intraflagellar transport. This process plays a pivotal role in both biogenesis and maintenance of the primary cilium that supports tissue development. Ciliogenesis associated kinase 1 (CILK1) phosphorylates human KIF3A at Thr672. CILK1 loss of function causes ciliopathies that manifest profound and multiplex developmental defects, including hydrocephalus, polydactyly, shortened and hypoplastic bones and alveoli airspace deficiency, leading to perinatal lethality. Prior studies have raised the hypothesis that CILK1 phosphorylation of KIF3A is critical for its regulation of organ development. RESULTS We produced a mouse model with phosphorylation site Thr674 in mouse Kif3a mutated to Ala. Kif3a T674A homozygotes are viable and exhibit no skeletal and brain abnormalities, and only mildly reduced airspace in alveoli. Mouse embryonic fibroblasts carrying Kif3a T674A mutation show a normal rate of ciliation and a moderate increase in cilia length. CONCLUSION These results indicate that eliminating Kif3a Thr674 phosphorylation by Cilk1 is insufficient to reproduce the severe developmental defects in ciliopathies caused by Cilk1 loss of function. This suggests KIF3A-Thr672 phosphorylation by CILK1 is not essential for tissue development and other substrates are involved in CILK1 ciliopathies.
Collapse
Affiliation(s)
- Casey D. Gailey
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Eric J. Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Li Jin
- Department of Orthopedic Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sean Ahmadi
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David L. Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
- NCI designated Cancer Center, Cancer Biology Program, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Xudong Li
- Department of Orthopedic Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Michael M. Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
- NCI designated Cancer Center, Cancer Biology Program, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
17
|
Webb S, Mukhopadhyay AG, Roberts AJ. Intraflagellar transport trains and motors: Insights from structure. Semin Cell Dev Biol 2020; 107:82-90. [PMID: 32684327 PMCID: PMC7561706 DOI: 10.1016/j.semcdb.2020.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport.
Collapse
Affiliation(s)
- Stephanie Webb
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom.
| |
Collapse
|
18
|
Nakamura K, Noguchi T, Takahara M, Omori Y, Furukawa T, Katoh Y, Nakayama K. Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J Biol Chem 2020; 295:13363-13376. [PMID: 32732286 PMCID: PMC7504932 DOI: 10.1074/jbc.ra120.014142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
ICK (also known as CILK1) is a mitogen-activated protein kinase-like kinase localized at the ciliary tip. Its deficiency is known to result in the elongation of cilia and causes ciliopathies in humans. However, little is known about how ICK is transported to the ciliary tip. We here show that the C-terminal noncatalytic region of ICK interacts with the intraflagellar transport (IFT)-B complex of the IFT machinery and participates in its transport to the ciliary tip. Furthermore, total internal reflection fluorescence microscopy demonstrated that ICK undergoes bidirectional movement within cilia, similarly to IFT particles. Analysis of ICK knockout cells demonstrated that ICK deficiency severely impairs the retrograde trafficking of IFT particles and ciliary G protein-coupled receptors. In addition, we found that in ICK knockout cells, ciliary proteins are accumulated at the bulged ciliary tip, which appeared to be torn off and released into the environment as an extracellular vesicle. The exogenous expression of various ICK constructs in ICK knockout cells indicated that the IFT-dependent transport of ICK, as well as its kinase activity and phosphorylation at the canonical TDY motif, is essential for ICK function. Thus, we unequivocally show that ICK transported to the ciliary tip is required for retrograde ciliary protein trafficking and consequently for normal ciliary function.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tatsuro Noguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mariko Takahara
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
19
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Wang EJ, Gailey CD, Brautigan DL, Fu Z. Functional Alterations in Ciliogenesis-Associated Kinase 1 (CILK1) that Result from Mutations Linked to Juvenile Myoclonic Epilepsy. Cells 2020; 9:E694. [PMID: 32178256 PMCID: PMC7140639 DOI: 10.3390/cells9030694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
Ciliopathies are a group of human genetic disorders associated with mutations that give rise to the dysfunction of primary cilia. Ciliogenesis-associated kinase 1 (CILK1), formerly known as intestinal cell kinase (ICK), is a conserved serine and threonine kinase that restricts primary (non-motile) cilia formation and length. Mutations in CILK1 are associated with ciliopathies and are also linked to juvenile myoclonic epilepsy (JME). However, the effects of the JME-related mutations in CILK1 on kinase activity and CILK1 function are unknown. Here, we report that JME pathogenic mutations in the CILK1 N-terminal kinase domain abolish kinase activity, evidenced by the loss of phosphorylation of kinesin family member 3A (KIF3A) at Thr672, while JME mutations in the C-terminal non-catalytic domain (CTD) have little effect on KIF3A phosphorylation. Although CILK1 variants in the CTD retain catalytic activity, they nonetheless lose the ability to restrict cilia length and also gain function in promoting ciliogenesis. We show that wild type CILK1 predominantly localizes to the base of the primary cilium; in contrast, JME variants of CILK1 are distributed along the entire axoneme of the primary cilium. These results demonstrate that JME pathogenic mutations perturb CILK1 function and intracellular localization. These CILK1 variants affect the primary cilium, independent of CILK1 phosphorylation of KIF3A. Our findings suggest that CILK1 mutations linked to JME result in alterations of primary cilia formation and homeostasis.
Collapse
Affiliation(s)
- Eric J. Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (E.J.W.); (C.D.G.)
| | - Casey D. Gailey
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (E.J.W.); (C.D.G.)
| | - David L. Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- NCI-Designated Cancer Center, Cancer Biology Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (E.J.W.); (C.D.G.)
- NCI-Designated Cancer Center, Cancer Biology Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
21
|
Fu Z, Gailey CD, Wang EJ, Brautigan DL. Ciliogenesis associated kinase 1: targets and functions in various organ systems. FEBS Lett 2019; 593:2990-3002. [PMID: 31506943 DOI: 10.1002/1873-3468.13600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Ciliogenesis associated kinase 1 (CILK1) was previously known as intestinal cell kinase because it was cloned from that origin. However, CILK1 is now recognized as a widely expressed and highly conserved serine/threonine protein kinase. Mutations in the human CILK1 gene have been associated with ciliopathies, a group of human genetic disorders with defects in the primary cilium. In mice, both Cilk1 knock-out and Cilk1 knock-in mutations have recapitulated human ciliopathies. Thus, CILK1 has a fundamental role in the function of the cilium. Several candidate substrates have been proposed for CILK1 and the challenge is to relate these to the mutant phenotypes. In this review, we summarize what is known about CILK1 functions and targets, and discuss gaps in current knowledge that motivate further experimentation to fully understand the role of CILK1 in organ development in humans.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Casey D Gailey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Eric J Wang
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|