1
|
Sun X, Li C. Neural repair function of osteopontin in stroke and stroke‑related diseases (Review). Exp Ther Med 2024; 28:459. [PMID: 39478739 PMCID: PMC11523235 DOI: 10.3892/etm.2024.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Stroke, including hemorrhagic stroke and ischemic stroke, is a common disease of the central nervous system. It is characterized by a high mortality and disability rate and is closely associated with atherosclerosis, hypertension hyperglycemia, atrial fibrillation and unhealthy living habits. The continuous development of surgery and medications has decreased the mortality rate of patients with stroke and has greatly improved the disease prognosis. At present, the direction of clinical treatment and research has gradually shifted to the repair of nerve function after stroke. Osteopontin (OPN) is a widely distributed extracellular matrix protein. Due to its structural characteristics, OPN can be cut and modified into terminal fragments with different functions, which play different roles in various pathophysiological processes, such as formation of tumors, inflammation and autoimmune diseases. It has also become a potential diagnostic and therapeutic marker. In order to comprehensively analyze the specific role of OPN in nerve repair and its relationship with stroke and stroke-related diseases, the following key words were used: 'Osteopontin, stroke, atherosis, neuroplasticity, neural repair'. PubMed, Web of Science and Cochrane articles related to OPN were searched and summarized. The present review describes the OPN structure, isoforms, functions and its neural repair mechanism, and its association with the occurrence and development of stroke and related diseases was explored.
Collapse
Affiliation(s)
- Xin Sun
- Department of Neurosurgery, Yanbian University Affiliated Hospital, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Chunhao Li
- Department of Neurosurgery, Yanbian University Affiliated Hospital, Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
2
|
Lad M, Beniwal AS, Jain S, Shukla P, Kalistratova V, Jung J, Shah SS, Yagnik G, Saha A, Sati A, Babikir H, Nguyen AT, Gill S, Rios J, Young JS, Lui A, Salha D, Diaz A, Aghi MK. Glioblastoma induces the recruitment and differentiation of dendritic-like "hybrid" neutrophils from skull bone marrow. Cancer Cell 2024; 42:1549-1569.e16. [PMID: 39255776 PMCID: PMC11446475 DOI: 10.1016/j.ccell.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Tumor-associated neutrophil (TAN) effects on glioblastoma (GBM) biology remain under-characterized. We show here that neutrophils with dendritic features-including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate major histocompatibility complex (MHC)II-dependent T cell activation-accumulate intratumorally and suppress tumor growth in vivo. Trajectory analysis of patient TAN scRNA-seq identifies this "hybrid" dendritic-neutrophil phenotype as a polarization state that is distinct from canonical cytotoxic TANs, and which differentiates from local precursors. These hybrid-inducible immature neutrophils-which we identified in patient and murine glioblastomas-arise not from circulation, but from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a contributor of antitumoral myeloid antigen-presenting cells (APCs), including TANs, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow-such as intracalvarial AMD3100, whose survival-prolonging effect in GBM we report-present therapeutic potential.
Collapse
Affiliation(s)
- Meeki Lad
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Angad S Beniwal
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Saket Jain
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Poojan Shukla
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Venina Kalistratova
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jangham Jung
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Sumedh S Shah
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Garima Yagnik
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Atul Saha
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Ankita Sati
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Husam Babikir
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Alan T Nguyen
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Sabraj Gill
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jennifer Rios
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Jacob S Young
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Austin Lui
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Diana Salha
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Aaron Diaz
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA
| | - Manish K Aghi
- University of California, San Francisco (UCSF), Department of Neurosurgery, San Francisco, CA, USA.
| |
Collapse
|
3
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024:10.1007/s00277-024-05773-1. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Nguyen TT, Loureiro ZY, Desai A, DeSouza T, Joyce S, Khair L, Samant A, Cirka H, Solivan-Rivera J, Ziegler R, Brehm M, Messina LM, Corvera S. A distinct class of hematopoietic stem cells develop from the human yellow bone marrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555167. [PMID: 37693594 PMCID: PMC10491256 DOI: 10.1101/2023.08.29.555167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Aging and metabolic diseases are accompanied by systemic inflammation, but the mechanisms that induce this state are not known. We developed a human bone-marrow organoid system to explore mechanisms underlying metabolic-disease associated systemic inflammation. We find that a distinct type of hematopoietic stem cell (HSC) develops in the adipose-rich, yellow bone marrow, which is known to gradually replace the hematopoietic red marrow as we age and during metabolic disease. Unlike HSCs derived from the red bone marrow, HSCs derived from the yellow bone marrow have higher proliferation rates, increase myeloid differentiation, skew towards pro-inflammatory M1 macrophage differentiation, and express a distinct transcriptomic profile associated with responsiveness to wounding. Yellow marrow-derived HSCs express higher levels of the leptin receptor, which we find to be further increased in patients with type 2 diabetes. Our work demonstrates that the human long bone yellow marrow is a niche for a distinct class of HSCs which could underlie hematopoietic dysfunction during aging and metabolic disease processes suggesting a shared inflammaging mechanism.
Collapse
|
5
|
Lad BM, Beniwal AS, Jain S, Shukla P, Jung J, Shah SS, Yagnik G, Babikir H, Nguyen AT, Gill S, Young JS, Lui A, Salha D, Diaz A, Aghi MK. Glioblastoma induces the recruitment and differentiation of hybrid neutrophils from skull bone marrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534105. [PMID: 36993266 PMCID: PMC10055347 DOI: 10.1101/2023.03.24.534105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tumor-associated neutrophil (TAN) effects on glioblastoma biology remain under-characterized. We show here that 'hybrid' neutrophils with dendritic features - including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate MHCII-dependent T cell activation - accumulate intratumorally and suppress tumor growth in vivo . Trajectory analysis of patient TAN scRNA-seq identifies this phenotype as a polarization state which is distinct from canonical cytotoxic TANs and differentiates intratumorally from immature precursors absent in circulation. Rather, these hybrid-inducible immature neutrophils - which we identified in patient and murine glioblastomas - arise from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a potent contributor of antitumoral myeloid APCs, including hybrid TANs and dendritic cells, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow - such as intracalvarial AMD3100 whose survival prolonging-effect in GBM we demonstrate - present therapeutic potential.
Collapse
|
6
|
Asada N, Katayama Y. A mysterious triangle of blood, bones, and nerves. J Bone Miner Metab 2023; 41:404-414. [PMID: 36752904 DOI: 10.1007/s00774-023-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
The relationship between bone tissue and bone marrow, which is responsible for hematopoiesis, is inseparable. Osteoblasts and osteocytes, which produce and consist of bone tissue, regulate the function of hematopoietic stem cells (HSC), the ancestors of all hematopoietic cells in the bone marrow. The peripheral nervous system finely regulates bone remodeling in bone tissue and modulates HSC function within the bone marrow, either directly or indirectly via modification of the HSC niche function. Peripheral nerve signals also play an important role in the development and progression of malignant tumors (including hematopoietic tumors) and normal tissues, and peripheral nerve control is emerging as a potential new therapeutic target. In this review, we summarize recent findings on the linkage among blood system, bone tissue, and peripheral nerves.
Collapse
Affiliation(s)
- Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yoshio Katayama
- Division of Hematology, Department of Medicine, Kobe University Hospital, 7-5-2 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
7
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient’s conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Huang X, Wang Y, Wang T, Wen F, Liu S, Oudeng G. Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Front Bioeng Biotechnol 2022; 10:1049965. [PMID: 36507253 PMCID: PMC9730123 DOI: 10.3389/fbioe.2022.1049965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide a life-long supply of haemopoietic cells and are indispensable for clinical transplantation in the treatment of malignant hematological diseases. Clinical applications require vast quantities of HSCs with maintained stemness characteristics. Meeting this demand poses often insurmountable challenges for traditional culture methods. Creating a supportive artificial microenvironment for the culture of HSCs, which allows the expansion of the cells while maintaining their stemness, is becoming a new solution for the provision of these rare multipotent HSCs. Hydrogels with good biocompatibility, excellent hydrophilicity, tunable biochemical and biophysical properties have been applied in mimicking the hematopoietic niche for the efficient expansion of HSCs. This review focuses on recent progress in the use of hydrogels in this specialized application. Advanced biomimetic strategies use for the creation of an artificial haemopoietic niche are discussed, advances in combined use of hydrogel matrices and microfluidics, including the emerging organ-on-a-chip technology, are summarized. We also provide a brief description of novel stimulus-responsive hydrogels that are used to establish an intelligent dynamic cell microenvironment. Finally, current challenges and future perspectives of engineering hydrogels for HSC biomedicine are explored.
Collapse
Affiliation(s)
- Xiaochan Huang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Yuting Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Tianci Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
10
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Bai RJ, Li YS, Zhang FJ. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front Endocrinol (Lausanne) 2022; 13:1012508. [PMID: 36387862 PMCID: PMC9649917 DOI: 10.3389/fendo.2022.1012508] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease characterized by degradation of articular cartilage, inflammation, and changes in periarticular and subchondral bone of joints. Osteoporosis (OP) is another systemic skeletal disease characterized by low bone mass and bone mineral density (BMD) accompanied by microarchitectural deterioration in bone tissue and increased bone fragility and fracture risk. Both OA and OP are mainly affected on the elderly people. Recent studies have shown that osteopontin (OPN) plays a vital role in bone metabolism and homeostasis. OPN involves these biological activities through participating in the proliferation, migration, differentiation, and adhesion of several bone-related cells, including chondrocytes, synoviocytes, osteoclasts, osteoblasts, and marrow mesenchymal stem cells (MSCs). OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as OA and OP. This review summarizes the role of OPN in regulating inflammation activity and bone metabolism in OA and OP. Furthermore, some drugs that targeted OPN to treat OA and OP are also summarized in the review. However, the complex mechanism of OPN in regulating OA and OP is not fully elucidated, which drives us to explore the depth effect of OPN on these two bone diseases.
Collapse
Affiliation(s)
- Rui-Jun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| |
Collapse
|
12
|
Zeytin IC, Alkan B, Ozdemir C, Cetinkaya DU, Okur FV. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:310-321. [PMID: 35356978 PMCID: PMC8969067 DOI: 10.1093/stcltm/szab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Osteopetrosis is a rare inherited disease characterized by impaired osteoclast activity causing defective bone resorption and bone marrow aplasia. It is fatal in early childhood unless hematopoietic stem cell transplantation is performed. But, the transplant course is complicated with engraftment failure. Recently, osteoclasts have been described as the potential regulators of hematopoietic stem cell (HSC) niche. Here we investigated the alterations in the HSC and mesenchymal stromal cell (MSC) components of osteopetrotic niche and their interactions to mimic the stem cell dynamics/trafficking in the BM niche after HSC transplantation. Induced pluripotent stem cells were generated from peripheral blood mononuclear cells of patients with osteopetrosis carrying TCIRG1 mutation. iPSC lines were differentiated into hematopoietic and myeloid progenitors, then into osteoclasts using a step-wise protocol. We first demonstrated a shift toward monocyte-macrophages lineage regarding hematopoietic differentiation potential of osteopetrotic iPSC-derived hematopoietic progenitors (HPCs) and phenotypically normal and functionally defective osteoclast formation. The expression of the genes involved in HSC homing and maintenance (Sdf-1, Jagged-1, Kit-L, and Opn) in osteopetrotic MSCs recovered significantly after coculture with healthy HPCs. Similarly, the restoration of phenotype, impaired differentiation, and migratory potential of osteopetrotic iHPCs were observed upon interaction with healthy MSCs. Our results establish significant alterations in both MSC and HPC compartments of the osteopetrotic niche, and support the impact of functionally impaired osteoclasts in defective niche formation.
Collapse
Affiliation(s)
- Inci Cevher Zeytin
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Berna Alkan
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Cansu Ozdemir
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan Cetinkaya
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| | - Fatma Visal Okur
- Center for Stem Cell Research and Development PEDI-STEM, Hacettepe University, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Corresponding authors: Duygu Uckan Cetinkaya and Fatma Visal Okur, Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey, (F.V.O.), (D.U.C.)
| |
Collapse
|
13
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
14
|
O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev 2021; 50:100850. [PMID: 34049731 DOI: 10.1016/j.blre.2021.100850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
15
|
Sendker S, Waack K, Reinhardt D. Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. CHILDREN (BASEL, SWITZERLAND) 2021; 8:371. [PMID: 34066861 PMCID: PMC8150304 DOI: 10.3390/children8050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is the second most common leukemia among children. Although significant progress in AML therapy has been achieved, treatment failure is still associated with poor prognosis, emphasizing the need for novel, innovative therapeutic approaches. To address this major obstacle, extensive knowledge about leukemogenesis and the complex interplay between leukemic cells and their microenvironment is required. The tremendous role of this bone marrow microenvironment in providing a supportive and protective shelter for leukemic cells, leading to disease development, progression, and relapse, has been emphasized by recent research. It has been revealed that the interplay between leukemic cells and surrounding cellular as well as non-cellular components is critical in the process of leukemogenesis. In this review, we provide a comprehensive overview of recently gained knowledge about the importance of the microenvironment in AML whilst focusing on promising future therapeutic targets. In this context, we describe ongoing clinical trials and future challenges for the development of targeted therapies for AML.
Collapse
Affiliation(s)
| | | | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, Essen University Hospital, 45147 Essen, Germany; (S.S.); (K.W.)
| |
Collapse
|
16
|
Huang Z, Xiao Y, Chen X, Li H, Gao J, Wei W, Zhang X, Feng X. Cotransplantation of Umbilical Cord Mesenchymal Stem Cells Promotes the Engraftment of Umbilical Cord Blood Stem Cells in Iron Overload NOD/SCID Mice. Transplant Cell Ther 2021; 27:230.e1-230.e7. [PMID: 35348116 DOI: 10.1016/j.jtct.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Iron overload aggravates the difficulty of umbilical cord blood (UCB) stem cell engraftment and reduces the survival of patients undergoing hematopoietic stem cell (HSC) transplantation. Mesenchymal stem cells (MSCs) have been suggested to have a significant role in HSC engraftment. This study aimed to determine the effect of intra-bone marrow (IBM) and i.v. cotransplantation of UBC mononuclear cells (MNCs) and umbilical cord (UC) MSCs on engraftment and hematopoietic recovery in an iron overload hematopoietic microenvironment. The iron overload model was established by dose-escalation intraperitoneal injection of iron dextran in NOD/SCID mice. Iron deposition in the bone marrow, heart, and liver was examined using hematoxylin and eosin (H&E) staining. Serum levels of ferritin and iron status in the liver were measured. The iron overload NOD/SCID mice were sublethally irradiated and divided into 5 groups for transplantation: (1) control group; (2) IBM+ group: IBM injection of combined UCB-MNCs/UC-MSCs; (3) IV+ group: i.v. injection of combined UCB-MNCs/UC-MSCs; (4) IBM group: IBM injection of only UCB-MNCs; and (5) IV group: i.v. injection of UCB-MNCs. At 6 weeks after transplantation, the human CD45+ cells in the bone marrow were analyzed by flow cytometry. The semiquantitative analysis of vascular endothelial growth factor (VEGF-A), osteopontin (OPN), and stromal cell-derived factor-1a (SDF-1a) were examined by immunohistochemical staining (IHC). Compared with the IBM and IV groups, the survival rate and the percentages of human CD45+ cells and CD34+ cells and colony-forming units (CFU) in bone marrow were elevated in the IBM+ and IV+ groups. In addition, the levels of VEGF-A, OPN, and SDF-1a in bone marrow were all higher in the IBM+ and IV+ groups. Our data show that IBM and i.v. cotransplantation of UC-MSCs can improve the engraftment and proliferation of UCB-MNCs in iron overload NOD/SCID mice. The increased expression of VEGF-A, OPN, and SDF-1a in the bone marrow may be involved in improving the hematopoietic microenvironment and promoting the implantation of human UCB stem cells in the bone marrow with iron overload.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Xiao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiping Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Gao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wei
- Experimental Center, Guangdong Cord Blood Bank, Guangzhou, China
| | - Xinyao Zhang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Butti R, Nimma R, Kundu G, Bulbule A, Kumar TVS, Gunasekaran VP, Tomar D, Kumar D, Mane A, Gill SS, Patil T, Weber GF, Kundu GC. Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression. Oncogene 2021; 40:2002-2017. [PMID: 33603163 DOI: 10.1038/s41388-021-01663-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 01/01/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Tumor-stroma interactions are important determinants for the disease course in cancer. While stromal influence has been known to often play a tumor-promoting role, incomplete mechanistic insight into this phenomenon has prevented its therapeutic targeting. Stromal fibroblasts can be activated by tumor cells to differentiate into cancer-associated fibroblasts (CAFs), that exhibit the traits of myofibroblasts, and in turn, they increase cancer aggressiveness. Here, we report the crosstalk between the cancer cells and stromal fibroblasts that leads to tumor progression. The process is initiated by secretion of a chemokine like protein, osteopontin (OPN) from the cancer cells that differentiates the fibroblasts to myofibroblasts. Tumor-derived OPN achieves this transition by engaging CD44 and αvβ3 integrins on the fibroblast surface, which mediates signaling via Akt and ERK to induce Twist1-dependent gene expression. The OPN-driven CAFs then secrete CXCL12, which in turn triggers epithelial to mesenchymal transition (EMT) in the tumor cells. OPN, produced by the cancer cells, and CXCL12, secreted by activated fibroblasts, are necessary and sufficient to perpetuate the crosstalk. Knocking out OPN in carcinogen-induced mammary tumors or knocking down OPN in cancer cells and fibroblast co-implanted xenografts abrogates myofibroblast differentiation, Twist1, and CXCL12 expression. OPN expression is correlated with CAF-specific gene signature as shown by breast tumor tissue microarray consisting of 100 patient specimens. Bioinformatics analyses have confirmed that the expression of OPN is significantly correlated with the expression of myofibroblast-specific markers as demonstrated in human breast carcinoma dataset of 2509 patients. Our findings describe OPN and CXCL12 act as compelling targets to curb the tumor-promoting features of the stromal components and further suggested that OPN-regulated CXCL12 network might act as potential therapeutic target for the management of CAF-mediated breast cancer progression.
Collapse
Affiliation(s)
- Ramesh Butti
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | | | | | | - Deepti Tomar
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Dhiraj Kumar
- National Centre for Cell Science, Pune, Maharashtra, India.,The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Tushar Patil
- Yashwantrao Chavan Memorial Hospital, Pune, Maharashtra, India
| | | | - Gopal C Kundu
- National Centre for Cell Science, Pune, Maharashtra, India. .,School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, Odisha, India.
| |
Collapse
|
18
|
Wirth F, Lubosch A, Hamelmann S, Nakchbandi IA. Fibronectin and Its Receptors in Hematopoiesis. Cells 2020; 9:cells9122717. [PMID: 33353083 PMCID: PMC7765895 DOI: 10.3390/cells9122717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Fibronectin is a ubiquitous extracellular matrix protein that is produced by many cell types in the bone marrow and distributed throughout it. Cells of the stem cell niche produce the various isoforms of this protein. Fibronectin not only provides the cells a scaffold to bind to, but it also modulates their behavior by binding to receptors on the adjacent hematopoietic stem cells and stromal cells. These receptors, which include integrins such as α4β1, α9β1, α4β7, α5β1, αvβ3, Toll-like receptor-4 (TLR-4), and CD44, are found on the hematopoietic stem cell. Because the knockout of fibronectin is lethal during embryonal development and because fibronectin is produced by almost all cell types in mammals, the study of its role in hematopoiesis is difficult. Nevertheless, strong and direct evidence exists for its stimulation of myelopoiesis and thrombopoiesis using in vivo models. Other reviewed effects can be deduced from the study of fibronectin receptors, which showed their activation modifies the behavior of hematopoietic stem cells. Erythropoiesis was only stimulated under hemolytic stress, and mostly late stages of lymphocytic differentiation were modulated. Because fibronectin is ubiquitously expressed, these interactions in health and disease need to be taken into account whenever any molecule is evaluated in hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Alexander Lubosch
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Stefan Hamelmann
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Inaam A. Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-622-156-8744
| |
Collapse
|
19
|
Omran AA, Nageeb RS, Nageeb GS, Yosif MA, Mohammad YA, Ali AA, Atfy M, Azmy TM, Elsaid HH. COL1A1 polymorphism and neurological complications in pediatric acute lymphoblastic leukemia patients and their associations with altered bone mineral density. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoporosis and neurological complications are consequences of acute lymphoblastic leukemia (ALL). Collagen type I alpha 1 gene (COL1A1) polymorphism is associated with osteoporosis. This study aimed to detect the COL1A1 polymorphism and the neurological complications in ALL patients and their association with decreased lumbar spine bone mineral density (BMDLS). This study included 100 pediatric ALL patients and 100 controls. All participants were subjected to laboratory assessment and assessment of BMDLS at the start of the study and 3 years later. COLIA1 genotyping was done once for all participants.
Results
At the start of the study, there was a significant decrease in osteocalcin (OC), alkaline phosphatase (ALP), and BMDLS levels in the patients. G/T variants and “T” alleles were significantly more detected in the patients (34% and 35% respectively); also, significant differences were detected between patients with polymorphism (G/T and T/T) and those without polymorphism (G/G) regarding OC, ALP, and BMDLS. After 3 years, significant decrement in BMDLS, OC, and ALP was detected in the patients. Twenty-four patients had neurological complications and seven patients had bone fractures. Those patients had significant decrement in BMDLS, OC, and ALP levels. As regards COL1A1 gene polymorphism, the GT and TT variants were significantly detected in fractured patients, while there was no significant difference regarding GT and TT variants in the patients with neurological complications. T allele, neurological complications, high-risk stratification, and age were significantly associated with decreased BMDLS. T allele was the most significant risk factor.
Conclusion
COLIA1 gene polymorphism, decreased BMDLS, and neurological complications were significantly detected in pediatric ALL patients. COLIA1 gene polymorphism is a significant risk factor for decreased BMDLS in pediatric ALL patients. There is no significant relation between COLIA1 gene polymorphism and the development of neurologic complications.
Collapse
|
20
|
Crosse EI, Gordon-Keylock S, Rybtsov S, Binagui-Casas A, Felchle H, Nnadi NC, Kirschner K, Chandra T, Tamagno S, Webb DJ, Rossi F, Anderson RA, Medvinsky A. Multi-layered Spatial Transcriptomics Identify Secretory Factors Promoting Human Hematopoietic Stem Cell Development. Cell Stem Cell 2020; 27:822-839.e8. [PMID: 32946788 PMCID: PMC7671940 DOI: 10.1016/j.stem.2020.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cells (HSCs) first emerge in the embryonic aorta-gonad-mesonephros (AGM) region. Studies of model organisms defined intersecting signaling pathways that converge to promote HSC emergence predominantly in the ventral domain of the dorsal aorta. Much less is known about mechanisms driving HSC development in humans. Here, to identify secreted signals underlying human HSC development, we combined spatial transcriptomics analysis of dorsoventral polarized signaling in the aorta with gene expression profiling of sorted cell populations and single cells. Our analysis revealed a subset of aortic endothelial cells with a downregulated arterial signature and a predicted lineage relationship with the emerging HSC/progenitor population. Analysis of the ventrally polarized molecular landscape identified endothelin 1 as an important secreted regulator of human HSC development. The obtained gene expression datasets will inform future studies on mechanisms of HSC development in vivo and on generation of clinically relevant HSCs in vitro. Spatial transcriptome profiling of the human HSC developmental niche Characterization of an HSC precursor population at single-cell resolution Cardiac EGF pathway is ventrally enriched next to developing IAHCs/HSCs Ventrally secreted endothelin promotes development of HSCs
Collapse
Affiliation(s)
- Edie I Crosse
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Stanislav Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anahi Binagui-Casas
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hannah Felchle
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nneka C Nnadi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kristina Kirschner
- Institute of Cancer Sciences, University of Glasgow, Bearsden G61 1QH, UK
| | - Tamir Chandra
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sara Tamagno
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - David J Webb
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Fiona Rossi
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
21
|
Soares-da-Silva F, Peixoto M, Cumano A, Pinto-do-Ó P. Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. Front Cell Dev Biol 2020; 8:612. [PMID: 32793589 PMCID: PMC7387668 DOI: 10.3389/fcell.2020.00612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) generated during embryonic development are able to maintain hematopoiesis for the lifetime, producing all mature blood lineages. HSC transplantation is a widely used cell therapy intervention in the treatment of hematologic, autoimmune and genetic disorders. Its use, however, is hampered by the inability to expand HSCs ex vivo, urging for a better understanding of the mechanisms regulating their physiological expansion. In the adult, HSCs reside in the bone marrow, in specific microenvironments that support stem cell maintenance and differentiation. Conversely, while developing, HSCs are transiently present in the fetal liver, the major hematopoietic site in the embryo, where they expand. Deeper insights on the dynamics of fetal liver composition along development, and on how these different cell types impact hematopoiesis, are needed. Both, the hematopoietic and hepatic fetal systems have been extensively studied, albeit independently. This review aims to explore their concurrent establishment and evaluate to what degree they may cross modulate their respective development. As insights on the molecular networks that govern physiological HSC expansion accumulate, it is foreseeable that strategies to enhance HSC proliferation will be improved.
Collapse
Affiliation(s)
- Francisca Soares-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Márcia Peixoto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ana Cumano
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Perpetua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Lee D, Kim DW, Cho JY. Role of growth factors in hematopoietic stem cell niche. Cell Biol Toxicol 2020; 36:131-144. [PMID: 31897822 DOI: 10.1007/s10565-019-09510-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) produce new blood cells everyday throughout life, which is maintained by the self-renewal and differentiation ability of HSCs. This is not controlled by the HSCs alone, but rather by the complex and exquisite microenvironment surrounding the HSCs, which is called the bone marrow niche and consists of various bone marrow cells, growth factors, and cytokines. It is essential to understand the characteristic role of the stem cell niche and the growth factors in the niche formation. In this review, we describe the role of the bone marrow niche and factors for niche homeostasis, and also summarize the latest research related to stem cell niche.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea.
| |
Collapse
|