1
|
Li S, Liu J, Yang Q, Lyu S, Han Q, Fu M, Du Z, Liu X, Zhang T. Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: the role of the gut-muscle axis. Food Funct 2025. [PMID: 39871582 DOI: 10.1039/d4fo04220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Bioactive peptides rich in branched-chain amino acids (BCAAs) are an effective way to alleviate fatigue conditions, but the deep mechanism remains unclear. This study investigated the anti-fatigue effect of branched-chain amino acid-enriched egg white peptides (BEWPs) through the gut-muscle axis by gut bacteria and untargeted metabolomic analyses. The results demonstrated that BEWPs enhanced exercise endurance and strength by also promoting gastrocnemius development in mice. Furthermore, there was a reduction in oxidative stress, inflammatory response, and the accumulation of unexpected metabolites generated under fatigue conditions. The intake of BEWPs increased the abundances of Lactobacillus, Akkermansia, and unclassified_f_Lachnospiraceae, while decreasing the abundance of Bacteroides. BEWPs also regulated the levels of key metabolites in mouse muscles, including L-glutamic acid by arginine biosynthesis and bile secretion pathways. Notably, Spearman's correlation analysis indicated that there was a significant correlation between these altered metabolites, microbial populations, and indicators of fatigue. In summary, our research demonstrated that BEWPs alleviated fatigue through the gut-muscle axis, which provided new insights into fatigue management and prevention.
Collapse
Affiliation(s)
- Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qingwen Han
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Menghan Fu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| |
Collapse
|
2
|
Gloriani M, Cheli B, D'Ercole C, Ruggieri V, Cosentino M, Serrat Pineda M, Lozanoska-Ochser B, Grassi F, Bouché M, Madaro L, Sánchez Riera C. Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner. Cell Death Dis 2025; 16:37. [PMID: 39843456 PMCID: PMC11754441 DOI: 10.1038/s41419-025-07353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role. Here, we show that SGC proteins are enriched at the post-synaptic membrane of neuromuscular junctions (NMJs). Using a mouse model lacking the beta-sarcoglycan subunit, we describe for the first time that the loss of the SGC in the NMJ area results in alterations of pre- and postsynaptic membrane, as well as a significant reduction of membrane potential. Moreover, using different denervated wild-type mouse models, we demonstrate that nerve presence precedes the sarcoglycan enrichment at NMJ, suggesting a nerve-dependent sarcoglycan expression. Altogether, our findings suggest that pathological decline should no longer be understood only in terms of sarcolemma damage but also in terms of sarcoglycans' participation in the NMJ. Henceforth, our work paves the way for the identification of new mechanisms involving sarcoglycans and new approaches for the treatment of sarcoglycanopathies.
Collapse
Affiliation(s)
- Michela Gloriani
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Bianca Cheli
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Chiara D'Ercole
- Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de recherche en Myologie, 75013, Paris, France
| | - Veronica Ruggieri
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Marianna Cosentino
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Mireia Serrat Pineda
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
- Department of Medicine & Surgery, LUM University, Casamassima, Italy
| | - Francesca Grassi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Luca Madaro
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Carles Sánchez Riera
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
3
|
Sadakierska-Chudy A, Szymanowski P, Szepieniec WK, Boniewska-Bernacka E, Pollak A. Whole Exome Sequencing Reveals Candidate Variants in Ion Channel Genes for Pelvic Muscle Dysfunction in Young Females with a Family History. Int Urogynecol J 2025:10.1007/s00192-025-06048-7. [PMID: 39833541 DOI: 10.1007/s00192-025-06048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION AND HYPOTHESIS Pelvic floor dysfunction usually results in pelvic organ prolapse (POP) and/or urinary incontinence. In women, several factors, including pregnancy and vaginal delivery, can affect pelvic muscle conditions. The aim of the study was to perform a genetic analysis in young women with a family history of pelvic floor dysfunction to find potentially harmful variants or variants that increase the risk of developing pelvic floor disorders. METHODS We employed whole exome sequencing to test ten young women with pelvic floor muscle dysfunction (along with their parents) and a family history. The average age of symptoms was 29.1 (± 3.98) years old, soon after their first delivery. RESULTS In five out of ten patients, trio-based WES analysis revealed potentially pathogenic, causative nonsense variants in ion channel genes, including ATP1A4, CLCN1, GRIN2C, and ORAI1, as well as missense variants in PIEZO1 and RYR1. Additionally, some of these patients had variants in genes related to muscle function (MUSK) and connective tissue disorder (FKBP14, p.Glu122ArgfsTer7). The variants found in this study, such as CLCN1 (p.Arg894Ter) and MUSK (p.Val790Met), have already been associated with neuromuscular channelopathy and severe muscle weakness. CONCLUSIONS The identified candidate genes encode mainly proteins involved in electrical action potential and mechanical muscle contraction. The results suggest that the identified genetic variants may result in skeletal muscle ion channelopathies that affect muscle function, gradually leading to muscle hypotonia and weakness.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine, Collegium Medicum, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705, Krakow, Poland.
| | - Paweł Szymanowski
- Department of Gynecology and Urogynecology, Faculty of Medicine, Collegium Medicum, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705, Krakow, Poland
| | - Wioletta Katarzyna Szepieniec
- Department of Gynecology and Urogynecology, Faculty of Medicine, Collegium Medicum, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705, Krakow, Poland
| | - Ewa Boniewska-Bernacka
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Warsaw Medical University, Pawinskiego 3C, 02-106, Warsaw, Poland
| |
Collapse
|
4
|
Petrov K, Lenina O, Leroy J, Bernard V, Germain T, Truong C, Nurullin L, Sibgatullina G, Ohno K, Samigullin D, Krejci E. An α7 nicotinic and GABA B receptor-mediated pathway controls acetylcholine release in the tripartite neuromuscular junction. J Physiol 2025; 603:507-527. [PMID: 39740234 PMCID: PMC11737540 DOI: 10.1113/jp287243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025] Open
Abstract
Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABAB receptors on the nerve terminal that subsequently reduce ACh release. Indeed, specific deletion of the α7 nAChR in TSCs or inhibition of the metabotropic GABAB receptor prevents the reduction in the quantal content of the end-plate potential induced by cholinesterase inhibitors. The α7/GABAB receptor-mediated pathway is activated when ACh that escapes from collagen Q (ColQ) anchored AChE in the synaptic cleft and from PRiMA-anchored butyrylcholinesterase on the TSC activates α7 nAChRs on the TSC. Consequently, prolonged tetanic stimulation of isolated muscle activates the α7/GABAB receptor pathway, which reduces post-tetanic ACh release. When AChE levels are low in neonatal mice, the α7/GABAB receptor-mediated pathway decreases ACh release and reduces ex vivo muscle fatigue. For ColQ-deficient mice where AChE is not clustered, the decrease in AСh release following activation of this pathway contributes to mouse fatigue in vivo. KEY POINTS: Acetylcholine (ACh) released from the nerve terminal at the neuromuscular junction (NMJ) can activate α7 nicotinic ACh receptor (nAChR) on terminal Schwann cells, releasing gamma-aminobutyric acid (GABA) that activates metabotropic GABAB receptors on the nerve terminal which then reduces further ACh release from the nerve. At the mature NMJ, before reaching α7 nAChRs on terminal Schwann cells ACh is normally hydrolyzed by AChE clustered in the synaptic cleft and by BChE anchored to the TSC. ACh can activate the α7/GABAB receptor-mediated pathway and depress subsequent ACh release when AChE at the NMJ is low, either during development or in congenital myasthenic syndrome. In the latter case, this pathway contributes to muscle fatigue.
Collapse
Affiliation(s)
- Konstantin Petrov
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RASKazanRussia
- Kazan Institute of Biochemistry and BiophysicsFRC Kazan Scientific Center of RASKazanRussia
| | - Oksana Lenina
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RASKazanRussia
| | - Jacqueline Leroy
- Université Paris Cité, CNRS, ENS Paris SaclayCentre Borelli UMR 9010ParisFrance
| | | | - Thibaut Germain
- Université Paris Saclay, CNRS, ENS Paris Saclay, Centre Borelli UMR 9010Gif sur YvetteFrance
| | - Charles Truong
- Université Paris Saclay, CNRS, ENS Paris Saclay, Centre Borelli UMR 9010Gif sur YvetteFrance
| | - Leniz Nurullin
- Kazan Institute of Biochemistry and BiophysicsFRC Kazan Scientific Center of RASKazanRussia
- Kazan State Medical UniversityKazanRussia
| | - Guzel Sibgatullina
- Kazan Institute of Biochemistry and BiophysicsFRC Kazan Scientific Center of RASKazanRussia
| | - Kinji Ohno
- Graduate School of Nutritional SciencesNagoya University of Arts and SciencesNisshinJapan
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and BiophysicsFRC Kazan Scientific Center of RASKazanRussia
- Department of Radiophotonics and Microwave TechnologiesKazan National Research Technical University Named after A.N. Tupolev‐KAIKazanRussia
| | - Eric Krejci
- Université Paris Cité, CNRS, ENS Paris SaclayCentre Borelli UMR 9010ParisFrance
| |
Collapse
|
5
|
Zou Y, Gao B, Lu J, Zhang K, Zhai M, Yuan Z, Aschner M, Chen J, Luo W, Wang L, Zhang J. Long non-coding RNA CASC15 enhances learning and memory in mice by promoting synaptic plasticity in hippocampal neurons. EXPLORATION (BEIJING, CHINA) 2024; 4:20230154. [PMID: 39713210 PMCID: PMC11655312 DOI: 10.1002/exp.20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating systemic disorder that has a detrimental impact on the overall well-being of individuals. Emerging research suggests that long non-coding RNAs play a role in neural development and function. Nevertheless, the precise relationship between lncRNAs and Alzheimer's disease remains uncertain. The authors' recent discoveries have uncovered an unconventional mechanism involving the regulation of synaptic plasticity and the functioning of the hippocampal fragile X mental retardation protein 1 (FMR1)-neurotrophin 3 (NTF3) pathway, which is mediated by cancer susceptibility candidate 15 (CASC15). Subsequently, functional rescue experiments were performed to illustrate the efficient delivery of exosomes harboring a significant amount of 2610307p16Rik transcripts, which is the murine equivalent of human CASC15, to the hippocampal region of mice. This resulted in significant improvements in synaptic morphological plasticity and cognitive function in APP/PS1 mice. Given the pivotal involvement of CASC15 in synaptic plasticity and the distinctive regulatory mechanisms of the CASC15-FMR1-NTF3 axis, CASC15 emerges as a promising biomarker for Alzheimer's disease and may even possess potential as a feasible therapeutic target.
Collapse
Affiliation(s)
- Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Bo Gao
- Institute of Orthopaedic SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jiaqiao Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Keying Zhang
- Department of UrologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Maodeng Zhai
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Ziyan Yuan
- Institute of Medical Information and LibraryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Lei Wang
- Department of Medical Research Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| |
Collapse
|
6
|
Siddique YH, Naz F, Rahul, Varshney H, Idrisi M, Shahid M. Effect of donepezil hydrochloride on the transgenic Drosophila expressing human Aβ-42. Int J Neurosci 2024; 134:1293-1308. [PMID: 37733478 DOI: 10.1080/00207454.2023.2262109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/03/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
AIM In the present study, the effect of donepezil hydrochloride was studied on the transgenic Drosophila expressing human amyloid beta-42 in the neurons. METHODS Donepezil hydrochloride at final concentration of 0.1, 1 and 10 mM was mixed in the diet and the flies expressing human amyloid beta-42 under Upstream Activation Sequence control (Alzheimer Disease [AD] flies) were allowed to feed on it for 30 days. RESULTS The AD flies exposed to various doses of Donepezil hydrochloride showed a dose dependent significant delay in the loss of climbing ability, increase in activity, reduction in the oxidative stress and apoptotic markers. A significant improvement was also observed in cognitive parameters. A dose dependent significant reduction in the activity of acetylcholinesterase was also observed. The docking studies suggest the positive interaction between donepezil, amyloid beta-42 and acetylcholinesterase. The results obtained from immunohistochemistry also showed a dose dependent significant reduction in the amyloid beta-42 aggregates. CONCLUSION The results suggest that donepezil hydrochloride is potent enough to reduce the AD symptoms being mimicked in transgenic flies.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mantasha Idrisi
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, India
| | - M Shahid
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Andrade-Guerrero J, Martínez-Orozco H, Villegas-Rojas MM, Santiago-Balmaseda A, Delgado-Minjares KM, Pérez-Segura I, Baéz-Cortés MT, Del Toro-Colin MA, Guerra-Crespo M, Arias-Carrión O, Diaz-Cintra S, Soto-Rojas LO. Alzheimer's Disease: Understanding Motor Impairments. Brain Sci 2024; 14:1054. [PMID: 39595817 PMCID: PMC11592238 DOI: 10.3390/brainsci14111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, profoundly impacts health and quality of life. While cognitive impairments-such as memory loss, attention deficits, and disorientation-predominate in AD, motor symptoms, though common, remain underexplored. These motor symptoms, including gait disturbances, reduced cardiorespiratory fitness, muscle weakness, sarcopenia, and impaired balance, are often associated with advanced stages of AD and contribute to increased mortality. Emerging evidence, however, suggests that motor symptoms may be present in earlier stages and can serve as predictive markers for AD in older adults. Despite a limited understanding of the underlying mechanisms driving these motor symptoms, several key pathways have been identified, offering avenues for further investigation. This review provides an in-depth analysis of motor symptoms in AD, discussing its progression, potential mechanisms, and therapeutic strategies. Addressing motor symptoms alongside cognitive decline may enhance patient functionality, improve quality of life, and support more comprehensive disease management strategies.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Karen M. Delgado-Minjares
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Mauricio T. Baéz-Cortés
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Miguel A. Del Toro-Colin
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.A.-G.); (M.M.V.-R.); (A.S.-B.); (K.M.D.-M.); (I.P.-S.); (M.T.B.-C.); (M.A.D.T.-C.)
| |
Collapse
|
8
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
9
|
Tam LM, Rand MD. Review: myogenic and muscle toxicity targets of environmental methylmercury exposure. Arch Toxicol 2024; 98:1645-1658. [PMID: 38546836 PMCID: PMC11105986 DOI: 10.1007/s00204-024-03724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
A number of environmental toxicants are noted for their activity that leads to declined motor function. However, the role of muscle as a proximal toxicity target organ for environmental agents has received considerably less attention than the toxicity targets in the nervous system. Nonetheless, the effects of conventional neurotoxicants on processes of myogenesis and muscle maintenance are beginning to resolve a concerted role of muscle as a susceptible toxicity target. A large body of evidence from epidemiological, animal, and in vitro studies has established that methylmercury (MeHg) is a potent developmental toxicant, with the nervous system being a preferred target. Despite its well-recognized status as a neurotoxicant, there is accumulating evidence that MeHg also targets muscle and neuromuscular development as well as contributes to the etiology of motor defects with prenatal MeHg exposure. Here, we summarize evidence for targets of MeHg in the morphogenesis and maintenance of skeletal muscle that reveal effects on MeHg distribution, myogenesis, myotube formation, myotendinous junction formation, neuromuscular junction formation, and satellite cell-mediated muscle repair. We briefly recapitulate the molecular and cellular mechanisms of skeletal muscle development and highlight the pragmatic role of alternative model organisms, Drosophila and zebrafish, in delineating the molecular underpinnings of muscle development and MeHg-mediated myotoxicity. Finally, we discuss how toxicity targets in muscle development may inform the developmental origins of health and disease theory to explain the etiology of environmentally induced adult motor deficits and accelerated decline in muscle fitness with aging.
Collapse
Affiliation(s)
- Lok Ming Tam
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA.
- Clinical and Translational Science Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
10
|
Deyhle MR, Tiede D, Xin L, Hyldahl RD, Hubal MJ. Common Markers of Muscle Damage Are Associated with Divergent Gene Expression Patterns after Eccentric Contractions. Med Sci Sports Exerc 2024; 56:1108-1117. [PMID: 38294822 DOI: 10.1249/mss.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
PURPOSE Unaccustomed eccentric (ECC) exercise evokes exercise-induced muscle damage (EIMD). Soreness, strength loss, and serum creatine kinase (CK) are often used to quantify EIMD severity. However, changes in these markers are not fully understood mechanistically. To test the hypothesis that muscle damage markers are associated with unique molecular processes, we correlated gene expression responses with variation in each marker post-ECC. METHODS Vastus lateralis biopsies were collected from 35 young men 3 h post-ECC (10 sets of 10 maximal eccentric contractions; contralateral leg [CON] as control). Maximal isometric strength, soreness, and serum CK activity were assessed 24 h preexercise and every 24 h for 5 d post-ECC. Strength was also measured 10 min post-ECC. Over the 5 d after ECC, average peak strength loss was 51.5 ± 20%; average soreness increased from 0.9 ± 1.9 on a 100-mm visual analog scale to 39 ± 19; serum CK increased from 160 ± 130 to 1168 ± 3430 U·L -1 . Muscle RNA was used to generate gene expression profiles. Partek Genomics Suite correlated peak values of soreness, strength loss, and CK post-ECC with gene expression in ECC (relative to paired CON) using Pearson linear correlation ( P < 0.05) and repeated-measures ANOVA used to detect influence of ECC. RESULTS After ECC, 2677 genes correlated with peak soreness, 3333 genes with peak strength loss, and 3077 genes with peak CK. Less than 1% overlap existed across all markers (16/9087). Unique genes included 2346 genes for peak soreness, 3032 genes for peak strength loss, and 2937 genes for peak CK. CONCLUSIONS The largely unique molecular pathways associated with common indirect markers of EIMD indicate that each marker of "damage" represents unique mechanistic processes.
Collapse
Affiliation(s)
| | - Dakota Tiede
- Department of Kinesiology, Indiana University-Purdue University Indianapolis, Indianapolis IN
| | - Ling Xin
- Exercise Science Program, Biology Department, Simmons University, Boston, MA
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo UT
| | - Monica J Hubal
- Department of Kinesiology, Indiana University-Purdue University Indianapolis, Indianapolis IN
| |
Collapse
|
11
|
Colognesi M, Shkodra A, Gabbia D, Kawamata H, Manfredi PL, Manfredi G, De Martin S. Sex-dependent effects of the uncompetitive N-methyl-D-aspartate receptor antagonist REL-1017 in G93A-SOD1 amyotrophic lateral sclerosis mice. Front Neurol 2024; 15:1384829. [PMID: 38765264 PMCID: PMC11100767 DOI: 10.3389/fneur.2024.1384829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction The pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the demise of motor neurons has been linked to excitotoxicity caused by excessive calcium influx via N-methyl-D-aspartate receptors (NMDARs), suggesting that uncompetitive NMDAR antagonism could be a strategy to attenuate motor neuron degeneration. REL-1017, the dextro-isomer of racemic methadone, is a low-affinity uncompetitive NMDAR antagonist. Importantly, in humans REL-1017 has shown excellent tolerability in clinical trials for major depression. Methods Here, we tested if REL-1017 improves the disease phenotypes in the G93A SOD1 mouse, a well-established model of familial ALS, by examining survival and motor functions, as well as the expression of genes and proteins involved in neuroplasticity. Results We found a sex-dependent effect of REL-1017 in G93A SOD1 mice. A delay of ALS symptom onset, assessed as 10%-decrease of body weight (p < 0.01 vs. control untreated mice) and an extension of lifespan (p < 0.001 vs. control untreated mice) was observed in male G93A SOD1 mice. Female G93A SOD1 mice treated with REL-1017 showed an improvement of muscle strength (p < 0.01 vs. control untreated mice). Both males and females treated with REL-1017 showed a decrease in hind limb clasping. Sex-dependent effects of REL-1017 were also detected in molecular markers of neuronal plasticity (PSD95 and SYN1) in the spinal cord and in the GluN1 NMDAR subunit in quadricep muscles. Conclusion In conclusion, this study provides preclinical in vivo evidence supporting the clinical evaluation of REL-1017 in ALS.
Collapse
Affiliation(s)
- Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Atea Shkodra
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Hibiki Kawamata
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Castro-da-Silva MLRD, Farias-de-França AP, Ravazoli I, Oliveira KC, Orsi VDC, Yoshida EH, Tavares RVDS, Oshima-Franco Y. Multi targets of cannabidiol (CBD) on skeletal mammalian and avian neuromuscular preparations. Nat Prod Res 2023:1-10. [PMID: 38054804 DOI: 10.1080/14786419.2023.2290675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Cannabidiol (CBD) has been used in diseases that affect the central nervous system. Its effects on the peripheral synapses are of great interest, since endocannabinoid receptors are expressed in muscles. CBD (0.3 mM) was analysed using mammalian and avian neuromuscular preparations, through myographic techniques in complementary protocols. Mammalian cells were examined by light microscopy while exogenous acetylcholine (40 µM) and potassium chloride (100 mM) were added into avian preparations, before and at the end of experiments. Pharmacological tools such as atropine (2 µM), polyethylene glycol (PEG 400, 20 µM), Ca2+ (1.8 mM), F55-6 (20 µg/mL), and nifedipine (1.3 mM) were assessed with CBD. In mice, CBD causes a facilitatory effect and paralysis, whereas in avian, paralysis. Concluding, CBD is responsible for activated or inhibited channels, for ACh release via muscarinic receptor modulation, and by the inhibition of nicotinic receptors leading to neuromuscular blockade, with no damage to striated muscle cells.
Collapse
Affiliation(s)
| | | | | | | | - Valéria de Campos Orsi
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| | - Edson Hideaki Yoshida
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| | | | - Yoko Oshima-Franco
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| |
Collapse
|
13
|
Yang Q, Song J, Deng Z, Shi C, Li S, Zhuang G, Hao H, Cai Y. Discrimination of blood metabolomics profiles in neonates with idiopathic polyhydramnios. Eur J Pediatr 2023; 182:5015-5024. [PMID: 37644170 DOI: 10.1007/s00431-023-05171-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
This study aimed to compare the blood metabolic status of neonates with idiopathic polyhydramnios (IPH) and those with normal amniotic fluid, and to explore the relationship between IPH and fetal health. Blood metabolites of 32 patients with IPH and 32 normal controls admitted to the Sixth Affiliated Hospital of Sun Yat-sen University between January 2017 and December 2022 were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Orthogonal partial least squares discriminant analysis (OPLS-DA) and metabolite enrichment analyses were performed to identify the differential metabolites and metabolic pathways. There was a significant difference in the blood metabolism between newborns with IPH and those with normal amniotic fluid. Six discriminant metabolites were identified: glutamate, serine, asparagine, aspartic acid, homocysteine, and phenylalanine. Differential metabolites were mainly enriched in two pathways: aminoacyl-tRNA biosynthesis, and alanine, aspartate, and glutamate metabolism. CONCLUSIONS This study is the first to investigate metabolomic profiles in newborns with IPH and examine the correlation between IPH and fetal health. Differential metabolites and pathways may affect amino acid synthesis and the nervous system. Continuous attention to the development of the nervous system in children with IPH is necessary. WHAT IS KNOWN • There is an increased risk of adverse pregnancy outcomes with IPH, such as perinatal death, neonatal asphyxia, neonatal intensive care admission, cesarean section rates, and postpartum hemorrhage. • Children with a history of IPH have a higher proportion of defects than the general population, particularly central nervous system problems, neuromuscular disorders, and other malformations. WHAT IS NEW • In neonates with IPH, six differential metabolites were identified with significant differences and good AUC values using LC-MS/MS analysis: glutamic acid, serine, asparagine, aspartic acid, homocysteine, and phenylalanine, which were mainly enriched in two metabolic pathways: aminoacyl-tRNA biosynthesis and alanine, aspartate, and glutamate metabolism. • These differential metabolites and pathways may affect amino acid synthesis and development of the nervous system in neonates with IPH.
Collapse
Affiliation(s)
- Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China
| | - Jie Song
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, 519000, Zhuhai, China
| | - Zhirong Deng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China
| | - Congcong Shi
- Laboratory of Inborn Metabolism Errors, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China
| | - Guiying Zhuang
- Department of Neonatology, The Maternal and Child Health Care Hospital of Huadu, 510800, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China.
- Laboratory of Inborn Metabolism Errors, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China.
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510530, Guangzhou, China.
| |
Collapse
|
14
|
Gim JA, Lee SY, Kim SC, Baek KW, Seo SH, Yoo JI. Relationship between DNA methylation changes and skeletal muscle mass. BMC Genom Data 2023; 24:48. [PMID: 37653517 PMCID: PMC10472633 DOI: 10.1186/s12863-023-01152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Sarcopenia is a disease diagnosed in the elderly. In patients with sarcopenia, the muscle mass decreases every year. The occurrence of sarcopenia is greatly affected by extrinsic factors such as eating habits, exercise, and lifestyle. The present study aimed to determine the relationship between muscle mass traits and genes affected by epigenetic factors with three different adjustment methods using Korean Genome and Epidemiology Study (KOGES) data. RESULTS We conducted a demographic study and DNA methylation profiling by three studies according to the muscle mass index (MMI) adjustment methods: appendicular skeletal muscle mass divided by body weight (MMI1); appendicular skeletal muscle mass divided by square of height (MMI2); appendicular skeletal muscle mass divided by BMI (MMI3). We analyzed differentially methylated regions (DMRs) for each group. We then restricted our subjects to be top 30% (T30) and bottom 30% (B30) based on each MMI adjustment method. Additionally, we performed enrichment analysis using PathfindR to evaluate the relationship between identified DMRs and sarcopenia. A total of 895 subjects were included in the demographic study. The values of BMI, waist, and hip showed a significant difference in all three groups. Among 446 participants, 44 subjects whose DNA methylation profiles were investigated were included for DNA methylation analysis. The results of enrichment analysis showed differences between groups. In the women group through MMI1 method, only the glutamatergic synapse pathway showed a significant result. In the men group through MMI2 method, the adherens junction pathway was the most significant. Women group through MMI2 method showed similar results, having an enriched Rap1 signaling pathway. In men group through MMI3 method, the Fc epsilon RI signaling pathway was the most enriched. Particularly, the notch signaling pathway was significantly enriched in women group through MMI3 method. CONCLUSION This study presents results about which factor should be concerned first in muscle mass index (MMI) adjustment. The present study suggested that GAB2 and JPH3 in MMI1 method, HLA-DQB1 and TBCD in MMI2 method, GAB2, NDUFB4 and ISPD in MMI3 method are potential genes that can have an impact on muscle mass. It could enable future epigenetic studies of genes based on annotation results. The present study is a nationwide study in Korea with the largest size up to date that compares adjustment indices for MMI in epigenetic research.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Medical Science Research Center, College of Medicine, Korea University, Seoul, South Korea
| | - Sang-Yeob Lee
- Department of Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Seung Chan Kim
- Department of Biostatistics Cooperation Center, Gyeongsang National University Hospital, Jinju, South Korea
| | - Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, South Korea
- Department of Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Sung Hyo Seo
- Department of Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea.
| |
Collapse
|
15
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
16
|
Personius KE, Siebert D, Koch DW, Udin SB. Blockage of neuromuscular glutamate receptors impairs reinnervation following nerve crush in adult mice. Front Cell Neurosci 2022; 16:1000218. [PMID: 36212695 PMCID: PMC9535682 DOI: 10.3389/fncel.2022.1000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Motor axons in peripheral nerves are capable of regeneration following injury. However, complete recovery of motor function is rare, particularly when reinnervation is delayed. We have previously found that glutamate receptors play a crucial role in the successful innervation of muscle during mouse development. In particular, blocking N-methyl-D-aspartate (NMDA) receptor activity delays the normal elimination of excess innervation of each neuromuscular junction. Here, we use behavioral, immunohistochemical, electrophysiological, and calcium imaging methods to test whether glutamate receptors play a similar role in the transition from polyneuronal to mono-innervation and in recovery of function following peripheral nerve injury in mature muscle.
Collapse
Affiliation(s)
- Kirkwood E. Personius
- Program in Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Kirkwood E. Personius,
| | - Danielle Siebert
- Program in Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Dennis W. Koch
- Department of Kinesiology, Canisius College, Buffalo, NY, United States
| | - Susan B. Udin
- Program in Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, Buffalo, NY, United States
| |
Collapse
|
17
|
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961872. [PMID: 36176673 PMCID: PMC9514553 DOI: 10.3389/fpls.2022.961872] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuhui Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Chen J, Li Z, Zhang Y, Zhang X, Zhang S, Liu Z, Yuan H, Pang X, Liu Y, Tao W, Chen X, Zhang P, Chen GQ. Mechanism of reduced muscle atrophy via ketone body (D)-3-hydroxybutyrate. Cell Biosci 2022; 12:94. [PMID: 35725651 PMCID: PMC9208164 DOI: 10.1186/s13578-022-00826-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle atrophy is an increasingly global health problem affecting millions, there is a lack of clinical drugs or effective therapy. Excessive loss of muscle mass is the typical characteristic of muscle atrophy, manifesting as muscle weakness accompanied by impaired metabolism of protein and nucleotide. (D)-3-hydroxybutyrate (3HB), one of the main components of the ketone body, has been reported to be effective for the obvious hemodynamic effects in atrophic cardiomyocytes and exerts beneficial metabolic reprogramming effects in healthy muscle. This study aims to exploit how the 3HB exerts therapeutic effects for treating muscle atrophy induced by hindlimb unloaded mice. RESULTS Anabolism/catabolism balance of muscle protein was maintained with 3HB via the Akt/FoxO3a and the mTOR/4E-BP1 pathways; protein homeostasis of 3HB regulation includes pathways of ubiquitin-proteasomal, autophagic-lysosomal, responses of unfolded-proteins, heat shock and anti-oxidation. Metabolomic analysis revealed the effect of 3HB decreased purine degradation and reduced the uric acid in atrophied muscles; enhanced utilization from glutamine to glutamate also provides evidence for the promotion of 3HB during the synthesis of proteins and nucleotides. CONCLUSIONS 3HB significantly inhibits the loss of muscle weights, myofiber sizes and myofiber diameters in hindlimb unloaded mouse model; it facilitates positive balance of proteins and nucleotides with enhanced accumulation of glutamate and decreased uric acid in wasting muscles, revealing effectiveness for treating muscle atrophy.
Collapse
Affiliation(s)
- Jin Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zihua Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yudian Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shujie Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zonghan Liu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Huimei Yuan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiangsheng Pang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yaxuan Liu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Wuchen Tao
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China.
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
- MOE Key Lab of Industrial Biocatalysis, Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Zhao Q, Shen H, Liu J, Chiu CY, Su KJ, Tian Q, Kakhniashvili D, Qiu C, Zhao LJ, Luo Z, Deng HW. Pathway-based metabolomics study of sarcopenia-related traits in two US cohorts. Aging (Albany NY) 2022; 14:2101-2112. [PMID: 35235538 PMCID: PMC8954970 DOI: 10.18632/aging.203926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
We aimed to validate two metabolites, aspartic acid and glutamic acid, which were associated with sarcopenia-related traits, muscle mass and strength, in our previous untargeted metabolomics study and to identify novel metabolites from five metabolic pathways involving these two metabolites. We included a discovery cohort of 136 white women aged 20-40 years (used for the previous untargeted metabolomics analysis) and a validation cohort of 174 subjects aged ≥ 60 years, including men and women of white and black. A targeted LC-MS assay successfully detected 12 important metabolites from these pathways. Aspartic acid was associated with muscle mass and strength in the discovery cohort, but not in the validation cohort. However, glutamic acid was associated with these sarcopenia traits in both cohorts. Additionally, N-acetyl-L-aspartic acid and carnosine were the newly identified metabolites that were associated with muscle strength in the discovery and validation cohorts, respectively. We did not observe any significant sex and race differences in the associations of these metabolites with sarcopenia traits in the validation cohort. Our findings indicated that glutamic acid might be consistently associated with sarcopenia-related traits across age, sex, and race. They also suggested that age-specific metabolites and metabolic pathways might be involved in muscle regulation.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jiawang Liu
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chi-Yang Chiu
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - David Kakhniashvili
- Proteomics and Metabolomics Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Patejdl R, Klawitter F, Walter U, Zanaty K, Schwandner F, Sellmann T, Porath K, Ehler J. A novel ex vivo model for critical illness neuromyopathy using freshly resected human colon smooth muscle. Sci Rep 2021; 11:24249. [PMID: 34930954 PMCID: PMC8688412 DOI: 10.1038/s41598-021-03711-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
Patients suffering from critical illness are at risk to develop critical illness neuromyopathy (CINM). The underlying pathophysiology is complex and controversial. A central question is whether soluble serum factors are involved in the pathogenesis of CINM. In this study, smooth muscle preparations obtained from the colon of patients undergoing elective surgery were used to investigate the effects of serum from critically ill patients. At the time of blood draw, CINM was assessed by clinical rating and electrophysiology. Muscle strips were incubated with serum of healthy controls or patients in organ baths and isometric force was measured. Fifteen samples from healthy controls and 98 from patients were studied. Ratios of responses to electric field stimulation (EFS) before and after incubation were 118% for serum from controls and 51% and 62% with serum from critically ill patients obtained at day 3 and 10 of critical illness, respectively (p = 0.003, One-Way-ANOVA). Responses to carbachol and high-K+ were equal between these groups. Ratios of post/pre-EFS responses correlated with less severe CINM. These results support the existence of pathogenic, i.e. neurotoxic factors in the serum of critically ill patients. Using human colon smooth muscle as a bioassay may facilitate their future molecular identification.
Collapse
Affiliation(s)
- Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany.
| | - Felix Klawitter
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Karim Zanaty
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Frank Schwandner
- Department of General, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
21
|
Kolos EA, Korzhevskii DE. Glutamine Synthetase in the Cells of the Developing Rat Spinal Cord. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Abstract
Eye movements are indispensable for visual image stabilization during self-generated and passive head and body motion and for visual orientation. Eye muscles and neuronal control elements are evolutionarily conserved, with novel behavioral repertoires emerging during the evolution of frontal eyes and foveae. The precise execution of eye movements with different dynamics is ensured by morphologically diverse yet complementary sets of extraocular muscle fibers and associated motoneurons. Singly and multiply innervated muscle fibers are controlled by motoneuronal subpopulations with largely selective premotor inputs from task-specific ocular motor control centers. The morphological duality of the neuromuscular interface is matched by complementary biochemical and molecular features that collectively assign different physiological properties to the motor entities. In contrast, the functionality represents a continuum where most motor elements contribute to any type of eye movement, although within preferential dynamic ranges, suggesting that signal transmission and muscle contractions occur within bands of frequency-selective pathways.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
23
|
Özerman-Edis B, Nurten A, Kara İ. Blockage of Voltage-Dependent Calcium Channels Affects Twitch Response of Rat Skeletal Muscle. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Song X, Cui Z, He J, Yang T, Sun X. κ‑opioid receptor agonist, U50488H, inhibits pyroptosis through NLRP3 via the Ca 2+/CaMKII/CREB signaling pathway and improves synaptic plasticity in APP/PS1 mice. Mol Med Rep 2021; 24:529. [PMID: 34036389 PMCID: PMC8170177 DOI: 10.3892/mmr.2021.12168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/09/2021] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder with slow onset in most cases. Clinically, dementia associated with AD is characterized by memory disorders, aphasia, executive dysfunction and personality and behavior changes. Currently, treatment strategies attempt to reduce certain symptoms, however there is no cure for AD. The aim of the present study was to identify a novel treatment strategy for AD. Thus, the protective effects of a κ‑opioid receptor (KOR) agonist, U50488H on neural damage in AD mice were investigated. The underlying mechanism of the Ca2+/calcium/calmodulin‑dependent protein kinase II/cyclic adenosine monophosphate‑response element binding protein (Ca2+/CaMKII/CREB) signaling pathway was evaluated. Amyloid precursor protein (APP)/presenilin‑1 (PS1) mice were treated subcutaneously with a KOR agonist for 28 days. The learning and memory abilities of the APP/PS1 mice were evaluated using the Morris water maze test. Damage to hippocampal neurons was assessed using hematoxylin and eosin staining. Inflammatory factors and brain injury markers were detected using ELISA. Neurons were examined using immunofluorescence and dendritic spines were observed using Golgi‑Cox staining. Western blotting was used to detect NOD‑, LRR‑ and pyrin domain‑containing protein 3, microglial ptosis and the Ca2+/CaMKII/CREB‑related protein pathway. The KOR agonist significantly improved the brain injury observed in APP/PS1 mice, inhibited microglia pyroptosis and improved the synaptic plasticity of APP/PS1 mice, which was reversed by a KOR antagonist. Thus, the KOR agonist improved the symptoms of APP/PS1 mice by inhibiting the Ca2+/CaMKII/CREB signaling pathway.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- Alzheimer Disease/metabolism
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Benzylamines/administration & dosage
- Brain Injuries/drug therapy
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Disease Models, Animal
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Maze Learning/drug effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neuronal Plasticity/drug effects
- Presenilin-1/genetics
- Pyrolysis/drug effects
- Pyroptosis/drug effects
- Receptors, Opioid, kappa/agonists
- Sulfonamides/administration & dosage
- Mice
Collapse
Affiliation(s)
- Xiaofu Song
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Zhiqiang Cui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jiahuan He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
25
|
Epigenetic mapping of the somatotropic axis in Nile tilapia reveals differential DNA hydroxymethylation marks associated with growth. Genomics 2021; 113:2953-2964. [PMID: 34214627 PMCID: PMC7611323 DOI: 10.1016/j.ygeno.2021.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
In vertebrates, the somatotropic axis comprising the pituitary gland, liver and muscle plays a major role in myogenesis. Its output in terms of muscle growth is highly affected by nutritional and environmental cues, and thus likely epigenetically regulated. Hydroxymethylation is emerging as a DNA modification that modulates gene expression but a holistic characterization of the hydroxymethylome of the somatotropic axis has not been investigated to date. Using reduced representation 5-hydroxymethylcytosine profiling we demonstrate tissue-specific localization of 5-hydroxymethylcytosines at single nucleotide resolution. Their abundance within gene bodies and promoters of several growth-related genes supports their pertinent role in gene regulation. We propose that cytosine hydroxymethylation may contribute to the phenotypic plasticity of growth through epigenetic regulation of the somatotropic axis.
Collapse
|
26
|
Uras G, Manca A, Zhang P, Markus Z, Mack N, Allen S, Bo M, Xu S, Xu J, Georgiou M, Zhu Z. In vivo Evaluation of a Newly Synthesized Acetylcholinesterase Inhibitor in a Transgenic Drosophila Model of Alzheimer's Disease. Front Neurosci 2021; 15:691222. [PMID: 34276297 PMCID: PMC8278008 DOI: 10.3389/fnins.2021.691222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by disrupted memory, learning functions, reduced life expectancy, and locomotor dysfunction, as a result of the accumulation and aggregation of amyloid peptides that cause neuronal damage in neuronal circuits. In the current study, we exploited a transgenic Drosophila melanogaster line, expressing amyloid-β peptides to investigate the efficacy of a newly synthesized acetylcholinesterase inhibitor, named XJP-1, as a potential AD therapy. Behavioral assays and confocal microscopy were used to characterize the drug effect on AD symptomatology and amyloid peptide deposition. The symptomatology induced in this particular transgenic model recapitulates the scenario observed in human AD patients, showing a shortened lifespan and reduced locomotor functions, along with a significant accumulation of amyloid plaques in the brain. XJP-1 treatment resulted in a significant improvement of AD symptoms and a reduction of amyloid plaques by diminishing the amyloid aggregation rate. In comparison with clinically effective AD drugs, our results demonstrated that XJP-1 has similar effects on AD symptomatology, but at 10 times lower drug concentration than donepezil. It also showed an earlier beneficial effect on the reduction of amyloid plaques at 10 days after drug treatment, as observed for donepezil at 20 days, while the other drugs tested have no such effect. As a novel and potent AChE inhibitor, our study demonstrates that inhibition of the enzyme AChE by XJP-1 treatment improves the amyloid-induced symptomatology in Drosophila, by reducing the number of amyloid plaques within the fruit fly CNS. Thus, compound XJP-1 has the therapeutic potential to be further investigated for the treatment of AD.
Collapse
Affiliation(s)
- Giuseppe Uras
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, The University of Nottingham, University Park, Nottingham, United Kingdom
| | - Alessia Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Zsuzsa Markus
- Queens Medical Centre, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Natalie Mack
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie Allen
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, The University of Nottingham, University Park, Nottingham, United Kingdom
| | - Marco Bo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Marios Georgiou
- Queens Medical Centre, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Zheying Zhu
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, The University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
27
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
28
|
Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021; 195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
29
|
Than K, Kim E, Navarro C, Chu S, Klier N, Occiano A, Ortiz S, Salazar A, Valdespino SR, Villegas NK, Wilkinson KA. Vesicle-released glutamate is necessary to maintain muscle spindle afferent excitability but not dynamic sensitivity in adult mice. J Physiol 2021; 599:2953-2967. [PMID: 33749829 DOI: 10.1113/jp281182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Muscle spindle afferents are slowly adapting low threshold mechanoreceptors that report muscle length and movement information critical for motor control and proprioception. The rapidly adapting cation channel PIEZO2 has been identified as necessary for muscle spindle afferent stretch sensitivity, although the properties of this channel suggest that additional molecular elements are necessary for mediating the complex slowly adapting response of muscle spindle afferents. We report that glutamate increases muscle spindle afferent static sensitivity in an ex vivo mouse muscle nerve preparation, although blocking glutamate packaging into vesicles by the sole vesicular glutamate transporter, VGLUT1, either pharmacologically or by transgenic knockout of one allele of VGLUT1 decreases muscle spindle afferent static but not dynamic sensitivity. Our results confirm that vesicle-released glutamate is an important contributor to maintained muscle spindle afferent excitability and may suggest a therapeutic target for normalizing muscle spindle afferent function. ABSTRACT Muscle spindle afferents are slowly adapting low threshold mechanoreceptors that have both dynamic and static sensitivity to muscle stretch. The exact mechanism by which these neurons translate muscle movement into action potentials is not well understood, although the PIEZO2 mechanically sensitive cation channel is essential for stretch sensitivity. PIEZO2 is rapidly adapting, suggesting the requirement for additional molecular elements to maintain firing during stretch. Spindle afferent sensory endings contain glutamate-filled synaptic-like vesicles that are released in a stretch- and calcium-dependent manner. Previous work has shown that glutamate can increase and a phospholipase-D coupled metabotropic glutamate antagonist can abolish firing during static stretch. Here, we test the hypothesis that vesicle-released glutamate is necessary for maintaining muscle spindle afferent excitability during static but not dynamic stretch. To test this hypothesis, we used a mouse muscle-nerve ex vivo preparation to measure identified muscle spindle afferent responses to stretch and vibration. In C57BL/6 adult mice, bath applied glutamate significantly increased the firing rate during the plateau phase of stretch but not during the dynamic phase of stretch. Blocking the packaging of glutamate into vesicles by the sole vesicular glutamate transporter, VGLUT1, either with xanthurenic acid or by using a transgenic mouse with only one copy of the VGLUT1 gene (VGLUT1+/- ), decreased muscle spindle afferent firing during sustained stretch but not during vibration. Our results suggest a model of mechanotransduction where calcium entering the PIEZO2 channel can cause the release of glutamate from synaptic-like vesicles, which then helps to maintain afferent depolarization and firing.
Collapse
Affiliation(s)
- Kimberly Than
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Enoch Kim
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Cebrina Navarro
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Sarah Chu
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Nikola Klier
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Alyssa Occiano
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Alexandra Salazar
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Steven R Valdespino
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Natanya K Villegas
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | | |
Collapse
|
30
|
Arkhipov AY, Samigullin DV, Semina II, Malomouzh AI. Functional Assessment of Peripheral
Cholinergic Neurotransmission in Rats with Fetal Valproate Syndrome. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Ding L, Xu X, Li C, Wang Y, Xia X, Zheng JC. Glutaminase in microglia: A novel regulator of neuroinflammation. Brain Behav Immun 2021; 92:139-156. [PMID: 33278560 DOI: 10.1016/j.bbi.2020.11.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is the inflammatory responses that are involved in the pathogenesis of most neurological disorders. Glutaminase (GLS) is the enzyme that catalyzes the hydrolysis of glutamine to produce glutamate. Besides its well-known role in cellular metabolism and excitatory neurotransmission, GLS has recently been increasingly noticed to be up-regulated in activated microglia under pathological conditions. Furthermore, GLS overexpression induces microglial activation, extracellular vesicle secretion, and neuroinflammatory microenvironment formation, which, are compromised by GLS inhibitors in vitro and in vivo. These results indicate that GLS has more complicated implications in brain disease etiology than what are previously known. In this review, we introduce GLS isoforms, expression patterns in the body and the brain, and expression/activities regulation. Next, we discuss the metabolic and neurotransmission functions of GLS. Afterwards, we summarize recent findings of GLS-mediated microglial activation and pro-inflammatory extracellular vesicle secretion, which, in turns, induces neuroinflammation. Lastly, we provide a comprehensive discussion for the involvement of microglial GLS in the pathogenesis of various neurological disorders, indicating microglial GLS as a promising target to treat these diseases.
Collapse
Affiliation(s)
- Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| |
Collapse
|
32
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
33
|
Hoy KC, Strain MM, Turtle JD, Lee KH, Huie JR, Hartman JJ, Tarbet MM, Harlow ML, Magnuson DSK, Grau JW. Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response. J Neurosci 2020; 40:9186-9209. [PMID: 33097637 PMCID: PMC7687054 DOI: 10.1523/jneurosci.2683-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons within the spinal cord are sensitive to environmental relations and can bring about a behavioral modification without input from the brain. For example, rats that have undergone a thoracic (T2) transection can learn to maintain a hind leg in a flexed position to minimize exposure to a noxious electrical stimulation (shock). Inactivating neurons within the spinal cord with lidocaine, or cutting communication between the spinal cord and the periphery (sciatic transection), eliminates the capacity to learn, which implies that it depends on spinal neurons. Here we show that these manipulations have no effect on the maintenance of the learned response, which implicates a peripheral process. EMG showed that learning augments the muscular response evoked by motoneuron output and that this effect survives a sciatic transection. Quantitative fluorescent imaging revealed that training brings about an increase in the area and intensity of ACh receptor labeling at the neuromuscular junction (NMJ). It is hypothesized that efferent motoneuron output, in conjunction with electrical stimulation of the tibialis anterior muscle, strengthens the connection at the NMJ in a Hebbian manner. Supporting this, paired stimulation of the efferent nerve and tibialis anterior generated an increase in flexion duration and augmented the evoked electrical response without input from the spinal cord. Evidence is presented that glutamatergic signaling contributes to plasticity at the NMJ. Labeling for vesicular glutamate transporter is evident at the motor endplate. Intramuscular application of an NMDAR antagonist blocked the acquisition/maintenance of the learned response and the strengthening of the evoked electrical response.SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is designed to faithfully elicit a muscular contraction in response to neural input. From this perspective, encoding environmental relations (learning) and the maintenance of a behavioral modification over time (memory) are assumed to reflect only modifications upstream from the NMJ, within the CNS. The current results challenge this view. Rats were trained to maintain a hind leg in a flexed position to avoid noxious stimulation. As expected, treatments that inhibit activity within the CNS, or disrupt peripheral communication, prevented learning. These manipulations did not affect the maintenance of the acquired response. The results imply that a peripheral modification at the NMJ contributes to the maintenance of the learned response.
Collapse
Affiliation(s)
- Kevin C Hoy
- Case Comprehensive Cancer Center/Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Misty M Strain
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, Texas 78234
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Kuan H Lee
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - J Russell Huie
- Department of Neuroscience, University of California San Francisco, San Francisco, California 94110
| | - John J Hartman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Megan M Tarbet
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Mark L Harlow
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - David S K Magnuson
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40202
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
34
|
Vogeler S, Carboni S, Li X, Nevejan N, Monaghan SJ, Ireland JH, Joyce A. Bivalves are NO different: nitric oxide as negative regulator of metamorphosis in the Pacific oyster, Crassostrea gigas. BMC DEVELOPMENTAL BIOLOGY 2020; 20:23. [PMID: 33228520 PMCID: PMC7686737 DOI: 10.1186/s12861-020-00232-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nitric oxide (NO) is presumed to be a regulator of metamorphosis in many invertebrate species, and although NO pathways have been comparatively well-investigated in gastropods, annelids and crustaceans, there has been very limited research on the effects of NO on metamorphosis in bivalve shellfish. RESULTS In this paper, we investigate the effects of NO pathway inhibitors and NO donors on metamorphosis induction in larvae of the Pacific oyster, Crassostrea gigas. The nitric oxides synthase (NOS) inhibitors s-methylisothiourea hemisulfate salt (SMIS), aminoguanidine hemisulfate salt (AGH) and 7-nitroindazole (7-NI) induced metamorphosis at 75, 76 and 83% respectively, and operating in a concentration-dependent manner. Additional induction of up to 54% resulted from exposures to 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, with which NO interacts to catalyse the synthesis of cyclic guanosine monophosphate (cGMP). Conversely, high concentrations of the NO donor sodium nitroprusside dihydrate in combination with metamorphosis inducers epinephrine, MK-801 or SMIS, significantly decreased metamorphosis, although a potential harmful effect of excessive NO unrelated to metamorphosis pathway cannot be excluded. Expression of CgNOS also decreased in larvae after metamorphosis regardless of the inducers used, but intensified again post-metamorphosis in spat. Fluorescent detection of NO in competent larvae with DAF-FM diacetate and localisation of the oyster nitric oxide synthase CgNOS expression by in-situ hybridisation showed that NO occurs primarily in two key larval structures, the velum and foot. cGMP was also detected in the foot using immunofluorescent assays, and is potentially involved in the foot's smooth muscle relaxation. CONCLUSION Together, these results suggest that the NO pathway acts as a negative regulator of metamorphosis in Pacific oyster larvae, and that NO reduction induces metamorphosis by inhibiting swimming or crawling behaviour, in conjunction with a cascade of additional neuroendocrine downstream responses.
Collapse
Affiliation(s)
- Susanne Vogeler
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden
| | - Stefano Carboni
- Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK
| | - Xiaoxu Li
- South Australia Research and Development Institute Aquatic Sciences Centre, 2 Hamra Ave, West Beach, SA, 5024, Australia
| | - Nancy Nevejan
- Department of Animal Production, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK
| | - Jacqueline H Ireland
- Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, Scotland, UK
| | - Alyssa Joyce
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden.
| |
Collapse
|
35
|
Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 2020; 469:144-159. [PMID: 33131707 DOI: 10.1016/j.ydbio.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Collapse
|
36
|
Harjuhaahto S, Rasila TS, Molchanova SM, Woldegebriel R, Kvist J, Konovalova S, Sainio MT, Pennonen J, Torregrosa-Muñumer R, Ibrahim H, Otonkoski T, Taira T, Ylikallio E, Tyynismaa H. ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons. Neurobiol Dis 2020; 141:104940. [PMID: 32437855 DOI: 10.1016/j.nbd.2020.104940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two proteins in human motor neurons. We show that gene edited human induced pluripotent stem cells (iPSC) lacking either CHCHD2 or CHCHD10 are viable and can be differentiated into functional motor neurons that fire spontaneous and evoked action potentials. Mitochondria in knockout iPSC and motor neurons sustain ultrastructure but show increased proton leakage and respiration, and reciprocal compensatory increases in CHCHD2 or CHCHD10. Knockout motor neurons have largely overlapping transcriptome profiles compared to isogenic control line, in particular for synaptic gene expression. Our results show that the absence of either CHCHD2 or CHCHD10 alters mitochondrial respiration in human motor neurons, inducing similar compensatory responses. Thus, pathogenic mechanisms may involve loss of synaptic function resulting from defective energy metabolism.
Collapse
Affiliation(s)
- Sandra Harjuhaahto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina S Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana M Molchanova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rosa Woldegebriel
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana Konovalova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus T Sainio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|