1
|
Santana CVN, Magno LAV, Ramos AV, Rios MA, Sandrim VC, De Marco LA, de Miranda DM, Romano-Silva MA. Genetic Variations in AMPK, FOXO3A, and POMC Increase the Risk of Extreme Obesity. J Obes 2024; 2024:3813621. [PMID: 39484290 PMCID: PMC11527528 DOI: 10.1155/2024/3813621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024] Open
Abstract
Objective: Genetic variability significantly impacts metabolism, weight gain, and feeding behaviors, predisposing individuals to obesity. This study explored how variations in key genes related to obesity-FOXO3A (forkhead box O3), AMPK (protein kinase AMP-activated), and POMC (proopiomelanocortin)-are associated with extreme obesity (EOB). Methods: We conducted a case-control study with 251 EOB patients and 212 healthy controls with a body mass index (BMI) of less than 25 kg/m2. We genotyped 10 single nucleotide variants (SNVs) using TaqMan-based assays. Results: Four SNVs-rs1536057 in FOXO3A, rs103685 in AMPK, rs934778, and rs6545975 in POMC-were associated with an increased risk of EOB. The strongest association was observed with rs934778 (POMC), which had a maximum odds ratio (OR) of 5.26 (95% CI: 2.86-9.09). While these genetic variations are closely linked to EOB, they do not affect serum glucose, triglycerides, HDL, LDL, BMI, or waist circumference. Conclusions: These findings indicate that factors beyond traditional metabolic pathways, potentially related to feeding behavior or hormonal regulation, may also link these genetic variations to obesity. Further research in a larger sample is essential to validate these findings and explore their potential to guide clinical interventions and public health strategies.
Collapse
Affiliation(s)
- Cinthia Vila Nova Santana
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | | | - Maria Angélica Rios
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte, Brazil
| | - Valéria Cristina Sandrim
- Instituto de Biociências Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, Brazil
| | - Luiz Armando De Marco
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | - Débora Marques de Miranda
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| |
Collapse
|
2
|
Hemedan AA, Satagopam V, Schneider R, Ostaszewski M. Cohort-specific boolean models highlight different regulatory modules during Parkinson's disease progression. iScience 2024; 27:110956. [PMID: 39429779 PMCID: PMC11489052 DOI: 10.1016/j.isci.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) involves complex molecular interactions and diverse comorbidities. To better understand its molecular mechanisms, we employed systems medicine approaches using the PD map, a detailed repository of PD-related interactions and applied Probabilistic Boolean Networks (PBNs) to capture the stochastic nature of molecular dynamics. By integrating cohort-level and real-world patient data, we modeled PD's subtype-specific pathway deregulations, providing a refined representation of its molecular landscape. Our study identifies key regulatory biomolecules and pathways that vary across PD subtypes, offering insights into the disease's progression and patient stratification. These findings have significant implications for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Elmorsy EA, Youssef ME, Abdel-Hamed MR, Amer MM, Elghandour SR, Alkhamiss AS, Mohamed NB, Khodeir MM, Elsisi HA, Alsaeed TS, Kamal MM, Ellethy AT, Elesawy BH, Saber S. Activation of AMPK/SIRT1/FOXO3a signaling by BMS-477118 (saxagliptin) mitigates chronic colitis in rats: uncovering new anti-inflammatory and antifibrotic roles. Front Pharmacol 2024; 15:1456058. [PMID: 39359253 PMCID: PMC11445602 DOI: 10.3389/fphar.2024.1456058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nahla B. Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thamir Saad Alsaeed
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Manal M. Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
4
|
Wan Z, Liu X, Yang X, Huang Z, Chen X, Feng Q, Cao H, Deng H. MicroRNA-411-5p alleviates lipid deposition in metabolic dysfunction-associated steatotic liver disease by targeting the EIF4G2/FOXO3 axis. Cell Mol Life Sci 2024; 81:398. [PMID: 39261317 PMCID: PMC11391004 DOI: 10.1007/s00018-024-05434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Abnormal lipid deposition is an important driver of the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). MicroRNA-411-5p (miR-411-5p) and eukaryotic translation initiation factor 4γ2 (EIF4G2) are related to abnormal lipid deposition, but the specific mechanism is unknown. METHODS A high-fat, high-cholesterol diet (HFHCD) and a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) and a high-fructose diet (HFrD) were used to establish MASLD rat and mouse models, respectively. MiR-411-5p agomir and mimic were used to upregulate the miR-411-5p in vivo and in vitro, respectively. Adeno-associated virus type 8 (AAV8) carrying EIF4G2 short hairpin RNA (shRNA) and small interfering RNA (siRNA) were used to downregulate the EIF4G2 expression in vivo and in vitro, respectively. Liver histopathological analysis, Biochemical analysis and other experiments were used to explore the functions of miR-411-5p and EIF4G2. RESULTS MiR-411-5p was decreased in both MASLD rats and mice, and was negatively correlated with liver triglycerides and serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. Upregulation of miR-411-5p alleviated liver lipid deposition and hepatocellular steatosis. Moreover, miR-411-5p targeted and downregulated EIF4G2. Downregulation of EIF4G2 not only reduced liver triglycerides and serum ALT and AST levels in MASLD model, but also alleviated lipid deposition. Notably, upregulation of miR-411-5p and downregulation of EIF4G2 led to the reduction of forkhead box class O3 (FOXO3) and inhibited the expression of sterol regulatory-element binding protein 1 (SREBP1), acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FASN), thereby reducing fatty acid synthesis. CONCLUSIONS Upregulation of miR-411-5p inhibits EIF4G2 to reduce the FOXO3 expression, thereby reducing fatty acid synthesis and alleviating abnormal lipid deposition in MASLD.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zexuan Huang
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoman Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qingqing Feng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Park SH. Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation. Antioxidants (Basel) 2024; 13:1099. [PMID: 39334758 PMCID: PMC11428386 DOI: 10.3390/antiox13091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
6
|
Khin M, Davis LJ, Lantvit DD, Orjala J, Burdette JE. Aulosirazole Stimulates FOXO3a Nuclear Translocation to Regulate Apoptosis and Cell-Cycle Progression in High-Grade Serous Ovarian Cancer (HGSOC) Cells. Mol Pharmacol 2024; 106:145-154. [PMID: 39079718 PMCID: PMC11331498 DOI: 10.1124/molpharm.124.000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/18/2024] Open
Abstract
Ovarian cancer, the fifth leading cause of cancer-related mortality in women, is the most lethal gynecological malignancy globally. Within various ovarian cancer subtypes, high-grade serous ovarian cancer is the most prevalent and there is frequent emergence of chemoresistance. Aulosirazole, an isothiazolonaphthoquinone alkaloid, isolated from the cyanobacterium Nostoc sp. UIC 10771, demonstrated cytotoxic activity against OVCAR3 cells (IC50 = 301 ± 80 nM). Using immunocytochemistry, OVCAR3 cells treated with aulosirazole demonstrated increased concentrations of phosphorylated protein kinase B and phosphorylated c-Jun N-terminal kinase with subsequent accumulation of forkhead box O3a (FOXO3a) in the nucleus. The combination of aulosirazole with protein kinase B inhibitors resulted in the most nuclear accumulation of FOXO3a aulosirazole-induced apoptosis based on cleavage of poly(ADP-ribose) polymerase, annexin V staining, and induction of caspase 3/7 activity in OVCAR3, OVCAR5, and OVCAR8. The expression of downstream targets of FOXO3a, including B-cell lymphoma 2 (BCL2) and p53-upregulator modulator of apoptosis, increased following aulosirazole treatment. Aulosirazole upregulated the FOXO3a target, cyclin-dependent kinase inhibitor 1, and increased cell-cycle arrest in the G0/G1 phase. The downregulation of FOXO3a by short hairpin RNA (shRNA) reduced the cytotoxicity after aulosirazole treatment by 3-fold IC50 (949 ± 16 nM) and eliminated its ability to regulate downstream targets of FOXO3a. These findings underscore FOXO3a as a critical mediator of aulosirazole-induced cytotoxicity. Additionally, aulosirazole was able to decrease migration and invasion while increasing cell death in 3D tumor spheroids. However, in vivo OVCAR8 tumor burden was not reduced by aulosirazole using an intraperitoneal tumor model. Given the mechanism of action of aulosirazole, this class of alkaloids represents promising lead compounds to develop treatments against FOXO3a-downregulated cancers. SIGNIFICANCE STATEMENT: Aulosirazole, an isothiazolonaphthoquinone alkaloid, exhibits potent cytotoxic effects against high-grade serous ovarian cancer by promoting forkhead box O3a (FOXO3a) nuclear accumulation and modulating downstream targets. These findings highlight the potential of aulosirazole as a promising therapeutic intervention for cancers characterized by FOXO3a downregulation.
Collapse
Affiliation(s)
- Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Lydia J Davis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois (M.K., D.D.L., J.O., J.E.B.); and Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina (L.J.D.)
| |
Collapse
|
7
|
Abdel Halim AS, Ali MAM, Inam F, Alhalwan AM, Daoush WM. Fe 3O 4-Coated CNTs-Gum Arabic Nano-Hybrid Composites Exhibit Enhanced Anti-Leukemia Potency Against AML Cells via ROS-Mediated Signaling. Int J Nanomedicine 2024; 19:7323-7352. [PMID: 39055376 PMCID: PMC11269411 DOI: 10.2147/ijn.s467733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prior studies on magnetite (Fe3O4) NPs and carbon nanotubes (CNTs) cytotoxic effects against acute myeloid leukemia (AML) are inconclusive rather than definitive. Purpose Investigation of the effects of Gum Arabic (GA)-stabilized/destabilized Fe3O4 NPs and CNTs, alone or in combination, on AML cell proliferation. Methods Hybrid NPs were synthesized, characterized, and assessed for their cytotoxicity against Kasumi-1, HL-60, and THP-1 in comparison to normal primary bone marrow CD34+ cells. The molecular pathways of nanostructures' cytotoxicity were also investigated. Results The Fe3O4 NPs were effectively synthesized and attached to the surface of the CNTs, resulting in the formation of a novel hybrid through their interaction with the GA colloidal solution in an aqueous media. Although the evaluated nanostructured nanoparticles had significant growth suppression ability against the leukemia cell lines, with IC50 values ranging from 42.437 to 189.842 μg/mL, they exhibited comparatively modest toxicity towards normal hematopoietic cells (IC50: 113.529‒162.656 μg/mL). The incorporation of Fe3O4 NPs with CNTs in a hybrid nanocomposite significantly improved their effectiveness against leukemia cells, with the extent of improvement varying depending on the specific cell type. The nanostructured particles were stabilized by GA, which enhances their ability to inhibit cell proliferation in a manner that depends on the specific cell type. Also, nanoparticles exhibit cytotoxicity due to their capacity to stimulate the production of intracellular ROS, halt the cell cycle at the G1 phase, and induce apoptosis. This is supported by the activation of p53, BAX, cytochrome C, and caspase-3, which are triggered by ROS. The nanostructures lead to an increase in the expression of genes encoding proteins related to oxidative stress (SIRT1, FOXO3, NFE2L2, and MAP3K5) and cyclin-dependent kinase inhibitors (CDKN1A and CDKN1B) in response to ROS. Conclusion We provide an effective Fe3O4 NPs/CNTs nano-hybrid composite that induces apoptosis and has strong anti-leukemic capabilities. This hybrid nanocomposite is promising for in vivo testing and validation.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Kingdom of Saudi Arabia
| | - Fawad Inam
- Department of Engineering and Computing, School of Architecture, Computing and Engineering, University of East London, London, UK
- Executive Principal Office, Oxford Business College, Oxford, OX1 2EP, UK
| | - Abdulrahman M Alhalwan
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
| | - Walid M Daoush
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
- Department of Production Technology, Faculty of Technology and Education, Helwan University, Cairo, 11281, Egypt
| |
Collapse
|
8
|
Da Costa RT, Urquiza P, Perez MM, Du Y, Khong ML, Zheng H, Guitart-Mampel M, Elustondo PA, Scoma ER, Hambardikar V, Ueberheide B, Tanner JA, Cohen A, Pavlov EV, Haynes CM, Solesio ME. Mitochondrial inorganic polyphosphate is required to maintain proteostasis within the organelle. Front Cell Dev Biol 2024; 12:1423208. [PMID: 39050895 PMCID: PMC11266304 DOI: 10.3389/fcell.2024.1423208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Renata T. Da Costa
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Matheus M. Perez
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - YunGuang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Mei Li Khong
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pia A. Elustondo
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ernest R. Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Vedangi Hambardikar
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University-Grossman School of Medicine, New York City, NY, United States
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Alejandro Cohen
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York City, NY, United States
| | - Cole M. Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| |
Collapse
|
9
|
Wang X, Liu Y, Wang J, Lu X, Guo Z, Lv S, Sun Z, Gao T, Gao F, Yuan J. Mitochondrial Quality Control in Ovarian Function: From Mechanisms to Therapeutic Strategies. Reprod Sci 2024:10.1007/s43032-024-01634-4. [PMID: 38981995 DOI: 10.1007/s43032-024-01634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Mitochondrial quality control plays a critical role in cytogenetic development by regulating various cell-death pathways and modulating the release of reactive oxygen species (ROS). Dysregulated mitochondrial quality control can lead to a broad spectrum of diseases, including reproductive disorders, particularly female infertility. Ovarian insufficiency is a significant contributor to female infertility, given its high prevalence, complex pathogenesis, and profound impact on women's health. Understanding the pathogenesis of ovarian insufficiency and devising treatment strategies based on this understanding are crucial. Oocytes and granulosa cells (GCs) are the primary ovarian cell types, with GCs regulated by oocytes, fulfilling their specific energy requirements prior to ovulation. Dysregulation of mitochondrial quality control through gene knockout or external stimuli can precipitate apoptosis, inflammatory responses, or ferroptosis in both oocytes and GCs, exacerbating ovarian insufficiency. This review aimed to delineate the regulatory mechanisms of mitochondrial quality control in GCs and oocytes during ovarian development. This study highlights the adverse consequences of dysregulated mitochondrial quality control on GCs and oocyte development and proposes therapeutic interventions for ovarian insufficiency based on mitochondrial quality control. These insights provide a foundation for future clinical approaches for treating ovarian insufficiency.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Basic Medical, Jining Medical University, Jining, China
| | - Yuxin Liu
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinzheng Wang
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xueyi Lu
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhipeng Guo
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Shenmin Lv
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhenyu Sun
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Tan Gao
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
10
|
El-Gazar AA, El-Emam SZ, M El-Sayyad S, El-Mancy SS, Fayez SM, Sheta NM, Al-Mokaddem AK, Ragab GM. Pegylated polymeric micelles of boswellic acid-selenium mitigates repetitive mild traumatic brain injury: Regulation of miR-155 and miR-146a/BDNF/ Klotho/Foxo3a cue. Int Immunopharmacol 2024; 134:112118. [PMID: 38705029 DOI: 10.1016/j.intimp.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.
Collapse
Affiliation(s)
- Amira A El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt.
| | - Soad Z El-Emam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shorouk M El-Sayyad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shereen S El-Mancy
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sahar M Fayez
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Nermin M Sheta
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ghada M Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
11
|
Poljšak B, Milisav I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation-The Effect on the Ageing Process and Age-Related Damage. Int J Mol Sci 2024; 25:6321. [PMID: 38928027 PMCID: PMC11203720 DOI: 10.3390/ijms25126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. Like the cells, mitochondria are thermodynamically open systems exchanging matter and energy with their surroundings-the rest of the cell. Based on the calculations from cancer cells, glycolysis was reported to produce less entropy than mitochondrial oxidative phosphorylation. However, these estimations depended on the CO2 concentration so that at slightly increased CO2, it was oxidative phosphorylation that produced less entropy. Also, the thermodynamic efficiency of mitochondrial respiratory complexes varies depending on the respiratory state and oxidant/antioxidant balance. Therefore, in spite of long-standing theoretical and practical efforts, more measurements, also in isolated mitochondria, with intact and suboptimal respiration, are needed to resolve the issue. Entropy increases in ageing while mitochondrial efficiency of energy conversion, quality control, and turnover mechanisms deteriorate. Optimally functioning mitochondria are necessary to meet energy demands for cellular defence and repair processes to attenuate ageing. The intuitive approach of simply supplying more metabolic fuels (more nutrients) often has the opposite effect, namely a decrease in energy production in the case of nutrient overload. Excessive nutrient intake and obesity accelerate ageing, while calorie restriction without malnutrition can prolong life. Balanced nutrient intake adapted to needs/activity-based high ATP requirement increases mitochondrial respiratory efficiency and leads to multiple alterations in gene expression and metabolic adaptations. Therefore, rather than overfeeding, it is necessary to fine-tune energy production by optimizing mitochondrial function and reducing oxidative stress; the evidence is discussed in this paper.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Li H, Tang X, Sun Z, Qu Z, Zou X. Integrating bioinformatics and experimental models to investigate the mechanism of the chelidonine-induced mitotic catastrophe via the AKT/FOXO3/FOXM1 axis in breast cancer cells. BIOMOLECULES & BIOMEDICINE 2024; 24:560-574. [PMID: 37976368 PMCID: PMC11088894 DOI: 10.17305/bb.2023.9665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer (BC) is currently the most frequent and lethal cancer among women, and therefore, identification of novel biomarkers and potential anticancer agents for BC is crucial. Chelidonine is one of the main active ingredients of Chelidonium majus, which has been applied in Chinese medicine prescriptions to treat cancer. This paper aimed to evaluate the ability of chelidonine to trigger mitotic catastrophe in BC cells and to clarify its mechanism through the AKT/FOXO3/FOXM1 pathway. Bioinformatics analysis revealed that forkhead box O3 (FOXO3) was downregulated in different subtypes of BC. Factors such as age, stage, Scarff-Bloom-Richardson (SBR) grade, diverse BC subclasses, and triple-negative status were inversely correlated to FOXO3 levels in BC patients compared with healthy controls. Notably, patients exhibiting higher FOXO3 expression levels demonstrated better overall survival (OS) and relapse-free survival (RFS). Moreover, FOXM1 levels were negatively correlated with both OS and RFS in BC patients. These results revealed that FOXO3 might be considered a predictive biomarker for the prognosis of BC. By utilizing Gene Set Enrichment Analysis (GSEA), we delved into the main Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways of FOXO3, and the results suggested that FOXO3 was mainly involved in cancer-related pathways and the cell cycle. Thereafter, MTT and flow cytometry (FCM) analysis indicated that chelidonine inhibited BC cell line proliferation and induced M phase arrest. It was found that chelidonine treatment induced MCF-7 cell apoptosis, significantly reduced the expression of survivin and promoted the expression of p53 and caspase-9. Further morphological observation illustrated depolymerization of the actin skeleton and shortening of actin filaments in BC cells, leading to the typical characteristics of mitotic catastrophe, such as abnormal mitosis and multinucleated cells. Western blot analysis demonstrated that chelidonine inhibited the expression of p-AKT to promote the expression of FOXO3 protein and weaken the expression levels of FOXM1 and polo-like kinase 1 (PLK1). Taken together, our present work proved that FOXO3 might be considered a potential therapeutic target for BC. Chelidonine emerges as a promising agent to treat BC by inducing M phase arrest of BC cells and hindering the AKT/FOXO3/FOXM1 axis, thereby inducing mitotic catastrophe in BC.
Collapse
Affiliation(s)
- Huimin Li
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xiyu Tang
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Zhiwei Sun
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
| | - Zhongyuan Qu
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xiang Zou
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
| |
Collapse
|
13
|
Yarmohammadi F, Wallace Hayes A, Karimi G. Molecular mechanisms involved in doxorubicin-induced cardiotoxicity: A bibliometrics analysis by VOSviewer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1971-1984. [PMID: 37812241 DOI: 10.1007/s00210-023-02773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Doxorubicin is a potent chemotherapeutic agent that can cause cardiotoxicity. Many documents (more than 14,000) have been published in the area of doxorubicin-induced cardiotoxicity (DIC) since 1970. A comprehensive bibliographic analysis of author keywords was used to describe better and understand the molecular mechanisms involved in DIC. The objective was to consider the state of the author keywords of research on the molecular mechanisms involved in DIC based on a bibliometrics study of articles published over the past fifty years. A bibliometrics analysis was conducted using VOSviewer with data collected from the Web of Science Core Collection database of over 14,000 documents (from 1970 to July 19, 2023). Using scientific publications retrieved about DIC, author keywords were assessed at the scientific field level. The current study showed that the annual number of DIC-related publications has increased over the past 50 years. The Journal of Clinical Oncology is the leading journal in this field. The top cited DIC document was published in 2004. The top keywords with high frequency were "doxorubicin," "cardiotoxicity," and "adriamycin." According to the results of this study, the most common mechanisms involved in DIC were as follows oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis. The highest occurrences of regulators-related author keywords were "AKT," "Sirt1," and "AMPK." Based on the findings, oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis were hot research mechanisms of DIC from 1970 to July 19, 2023.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Zhao T, Niu D, Chen Y, Fu P. The role of mitochondrial quality control mechanisms in chondrocyte senescence. Exp Gerontol 2024; 188:112379. [PMID: 38378048 DOI: 10.1016/j.exger.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Chondrocytes are the exclusive cellular constituents of articular cartilage, and their functional status governs the health of the cartilage. The primary factor contributing to the deterioration of cartilage structure and function is chondrocyte senescence. In hypoxia and hypodextrose environment, chondrocytes heavily rely on glycolysis for energy metabolism. Mitochondria, acting as the regulatory hub for chondrocyte energy metabolism, exhibit dysfunction before chondrocyte senescence, indicating their crucial involvement in the process. Previous research has suggested that molecules associated with mitochondrial quality control mechanisms can effectively restore mitochondrial function and alleviate chondrocyte senescence. However, there remains to be clarity regarding the relationship between mitochondrial quality control mechanisms and differences in efficacy among various target molecules, which pose challenges when evaluating them in chondrocytes. By conducting a comprehensive review of the existing literature on mitochondrial quality control mechanisms and chondrocyte senescence, we gain further insights into this intricate relationship while identifying promising targets that could potentially open up novel avenues for the treatment of chondrocyte senescence.
Collapse
Affiliation(s)
- Tianlei Zhao
- Naval Medical Center, Naval Medical University, Shanghai 200003, China; Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China; Department of Orthopaedics, The 971 hospital of CPLA Navy, Qingdao 266071, China
| | - Yancheng Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
15
|
Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium-induced lung injury is associated with oxidative stress, apoptosis, and altered SIRT1 and Nrf2/HO-1 signaling; protective role of the melatonin agonist agomelatine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2335-2345. [PMID: 37819390 DOI: 10.1007/s00210-023-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Cadmium (Cd) is a hazardous heavy metal extensively employed in manufacturing polyvinyl chloride, batteries, and other industries. Acute lung injury has been directly connected to Cd exposure. Agomelatine (AGM), a melatonin analog, is a drug licensed for treating severe depression. This study evaluated the effect of AGM against Cd-induced lung injury in rats. AGM was administered in a dose of 25 mg/kg/day orally, while cadmium chloride (CdCl2) was injected intraperitoneally in a dose of 1.2 mg/kg to induce lung injury. Pre-treatment with AGM remarkably ameliorated Cd-induced lung histopathological abrasions. AGM decreased reactive oxygen species (ROS) production, lipid peroxidation, suppressed NDAPH oxidase, and boosted the antioxidants. AGM increased Nrf2, GCLC, HO-1, and TNXRD1 mRNA, as well as HO-1 activity and downregulated Keap1. AGM downregulated Bax and caspase-3 and upregulated Bcl-2, SIRT1, and FOXO3 expression levels in the lung. In conclusion, AGM has a protective effect against Cd-induced lung injury via its antioxidant and anti-apoptotic effects mediated via regulating Nrf2/HO-1 and SIRT1/FOXO3 signaling.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71562, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
16
|
Li K, Deng Z, Lei C, Ding X, Li J, Wang C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024; 13:441. [PMID: 38474405 DOI: 10.3390/cells13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the endogenous antioxidant defense system. Its involvement in cell senescence, apoptosis, and series diseases has been demonstrated. Advances in carcinogenic research have revealed oxidative stress as a pivotal pathophysiological pathway in tumorigenesis and to be involved in lung cancer, glioma, hepatocellular carcinoma, leukemia, and so on. This review combs the effects of oxidative stress on tumorigenesis on each phase and cell fate determination, and three features are discussed. Oxidative stress takes part in the processes ranging from tumorigenesis to tumor death via series pathways and processes like mitochondrial stress, endoplasmic reticulum stress, and ferroptosis. It can affect cell fate by engaging in the complex relationships between senescence, death, and cancer. The influence of oxidative stress on tumorigenesis and progression is a multi-stage interlaced process that includes two aspects of promotion and inhibition, with mitochondria as the core of regulation. A deeper and more comprehensive understanding of the effects of oxidative stress on tumorigenesis is conducive to exploring more tumor therapies.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Zhangyuzi Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Chunran Lei
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Xiaoqing Ding
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Jing Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
17
|
Wang B, Zou F, Xin G, Xiang BL, Zhao JQ, Yuan SF, Zhang XL, Zhang ZH. STS ⅡA inhibited angiogenesis of lung adenocarcinoma by activating FOXO3 to inhibit CXCL1/STAT3/VEGF pathway. Toxicon 2024; 240:107627. [PMID: 38253207 DOI: 10.1016/j.toxicon.2024.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most popular type of lung cancer. Sulfotanshinone IIA sodium (STS IIA) has been proven to have an anticancer effect. However, its role in LUAD and its underlying mechanism remain unclear. OBJECTIVE To investigate the role and mechanism of STS IIA in LUAD angiogenesis. METHODS The mRNA levels of genes, including forkhead box O3 (FOXO3) and chemokine C-X-C motif ligand 1 (CXCL1), were detected by qRT-PCR. The levels of proteins, including FOXO3, CXCL1, and vascular endothelial growth factor (VEGF), were measured by Western blot. The proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs) were detected by the EdU assay and the tubule formation assay, respectively. The binding relationship between FOXO3 and CXCL1 was detected by dual-luciferase reporter assay. RESULTS Our results illustrated that different concentrations of STS IIA inhibited the proliferation and angiogenesis of HUVECs. FOXO3 regulated the proliferation and angiogenesis of HUVECs inhibited by STS ⅡA via targeting CXCL1. Subsequently, we proved that exogenous CXCL1 alleviated the inhibition of proliferation and angiogenesis of HUVECs regulated by STS IIA via activating the STAT3/VEGF pathway. Finally, we found that STS IIA inhibited the angiogenesis of lung adenocarcinoma though FOXO3 to inhibit the CXCL1/STAT3/VEGF pathway. CONCLUSION Our study finally elucidated the underlying molecular mechanism by which STS ⅡA inhibits LUAD angiogenesis.
Collapse
Affiliation(s)
- Bu Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China
| | - Fang Zou
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China
| | - Gu Xin
- Department of Neurology physician, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China
| | - Bao-Li Xiang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China
| | - Jian-Qing Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China
| | - Sheng-Fang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China
| | - Xiu-Long Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China
| | - Zhi-Hua Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, 075000, Hebei Province, PR China.
| |
Collapse
|
18
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
19
|
Wang D, Zhang Z, Li X, He L. RNA binding protein PUM2 promotes IL-1β-induced apoptosis of chondrocytes via regulating FOXO3 expression. Heliyon 2024; 10:e25080. [PMID: 38356524 PMCID: PMC10865267 DOI: 10.1016/j.heliyon.2024.e25080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Objective RNA-binding proteins (RBPs) have been recently proven to be involved in the pathogenesis of several diseases. However, few studies elaborated RBPs in regulating osteoarthritis. This study aims to define the function and mechanism of RBPs-PUM2 in chondrocyte apoptosis during osteoarthritis. Methods Cartilage tissue samples and human juvenile chondrocyte cell line C28/I2 were collected for further study. PUM2 expression in the human tissues and cells was determined using qRT-PCR. Chondrocyte viability and apoptosis were determined by MTT and flow cytometry. ROS generation was determined by flow cytometry. The regulation of PUM2 on FOXO3 translation was evaluated by RNA immunoprecipitation, RNA pull-down, and Luciferase gene reporter analysis. Results PUM2 is upregulated in both cartilage tissue of osteoarthritis patients and IL-1β-stimulated chondrocytes. PUM2 overexpression reduces cell viability and promotes cell apoptosis and ROS generation of chondrocytes. PUM2 silencing increases cell viability and ameliorates cell apoptosis as well as ROS generation in chondrocytes induced by IL-1β. PUM2 inhibits FOXO3 expression via binding its mRNA 3'-UTR. PUM2 forms a signaling axis with FOXO3 in IL-1β induced chondrocyte damage. Conclusion PUM2 is upregulated in cartilage tissue of osteoarthritis and positively regulates chondrocytes apoptosis through controlling FOXO3 protein expression.
Collapse
Affiliation(s)
- Du Wang
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - ZhiLi Zhang
- Department of Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xili Li
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Ling He
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Shen ZQ, Chang CY, Yeh CH, Lu CK, Hung HC, Wang TW, Wu KS, Tung CY, Tsai TF. Hesperetin activates CISD2 to attenuate senescence in human keratinocytes from an older person and rejuvenates naturally aged skin in mice. J Biomed Sci 2024; 31:15. [PMID: 38263133 PMCID: PMC10807130 DOI: 10.1186/s12929-024-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND CDGSH iron-sulfur domain-containing protein 2 (CISD2), a pro-longevity gene, mediates healthspan in mammals. CISD2 is down-regulated during aging. Furthermore, a persistently high level of CISD2 promotes longevity and ameliorates an age-related skin phenotype in transgenic mice. Here we translate the genetic evidence into a pharmaceutical application using a potent CISD2 activator, hesperetin, which enhances CISD2 expression in HEK001 human keratinocytes from an older person. We also treated naturally aged mice in order to study the activator's anti-aging efficacy. METHODS We studied the biological effects of hesperetin on aging skin using, firstly, a cell-based platform, namely a HEK001 human keratinocyte cell line established from an older person. Secondly, we used a mouse model, namely old mice at 21-month old. In the latter case, we investigate the anti-aging efficacy of hesperetin on ultraviolet B (UVB)-induced photoaging and naturally aged skin. Furthermore, to identify the underlying mechanisms and potential biological pathways involved in this process we carried out transcriptomic analysis. Finally, CISD2 knockdown HEK001 keratinocytes and Cisd2 knockout mice were used to study the Cisd2-dependent effects of hesperetin on skin aging. RESULTS Four findings are pinpointed. Firstly, in human skin, CISD2 is mainly expressed in proliferating keratinocytes from the epidermal basal layer and, furthermore, CISD2 is down-regulated in the sun-exposed epidermis. Secondly, in HEK001 human keratinocytes from an older person, hesperetin enhances mitochondrial function and protects against reactive oxygen species-induced oxidative stress via increased CISD2 expression; this enhancement is CISD2-dependent. Additionally, hesperetin alleviates UVB-induced damage and suppresses matrix metalloproteinase-1 expression, the latter being a major indicator of UVB-induced damage in keratinocytes. Thirdly, transcriptomic analysis revealed that hesperetin modulates a panel of differentially expressed genes that are associated with mitochondrial function, redox homeostasis, keratinocyte function, and inflammation in order to attenuate senescence. Intriguingly, hesperetin activates two known longevity-associated regulators, namely FOXO3a and FOXM1, in order to suppress the senescence-associated secretory phenotype. Finally, in mouse skin, hesperetin enhances CISD2 expression to ameliorate UVB-induced photoaging and this occurs via a mechanism involving CISD2. Most strikingly, late-life treatment with hesperetin started at 21-month old and lasting for 5 months, is able to retard skin aging and rejuvenate naturally aged skin in mice. CONCLUSIONS Our results reveal that a pharmacological elevation of CISD2 expression at a late-life stage using hesperetin treatment is a feasible approach to effectively mitigating both intrinsic and extrinsic skin aging and that hesperetin could act as a functional food or as a skincare product for fighting skin aging.
Collapse
Affiliation(s)
- Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Cheng-Yen Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Kuang Lu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Hao-Chih Hung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Tai-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Kuan-Sheng Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Peitou, Taipei, 112, Taiwan.
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
21
|
Um JH, Lee KM, Kim YY, Lee DY, Kim E, Kim DH, Yun J. Berberine Induces Mitophagy through Adenosine Monophosphate-Activated Protein Kinase and Ameliorates Mitochondrial Dysfunction in PINK1 Knockout Mouse Embryonic Fibroblasts. Int J Mol Sci 2023; 25:219. [PMID: 38203389 PMCID: PMC10779002 DOI: 10.3390/ijms25010219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Mitophagy stimulation has been shown to have a therapeutic effect on various neurodegenerative diseases. However, nontoxic mitophagy inducers are still very limited. In this study, we found that the natural alkaloid berberine exhibited mitophagy stimulation activity in various human cells. Berberine did not interfere with mitochondrial function, unlike the well-known mitophagy inducer carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and subsequently induced mitochondrial biogenesis. Berberine treatment induced the activation of adenosine monophosphate-activated protein kinase (AMPK), and the AMPK inhibitor compound C abolished berberine-induced mitophagy, suggesting that AMPK activation is essential for berberine-induced mitophagy. Notably, berberine treatment reversed mitochondrial dysfunction in PINK1 knockout mouse embryonic fibroblasts. Our results suggest that berberine is a mitophagy-specific inducer and can be used as a therapeutic treatment for neurodegenerative diseases, including Parkinson's disease, and that natural alkaloids are potential sources of mitophagy inducers.
Collapse
Affiliation(s)
- Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Young-Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Da-Ye Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Eunmi Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
22
|
Ruankham W, Songtawee N, Prachayasittikul V, Worachartcheewan A, Suwanjang W, Pingaew R, Prachayasittikul V, Prachayasittikul S, Phopin K. Promising 8-Aminoquinoline-Based Metal Complexes in the Modulation of SIRT1/3-FOXO3a Axis against Oxidative Damage-Induced Preclinical Neurons. ACS OMEGA 2023; 8:46977-46988. [PMID: 38107906 PMCID: PMC10720006 DOI: 10.1021/acsomega.3c06764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
The discovery of novel bioactive molecules as potential multifunctional neuroprotective agents has clinically drawn continual interest due to devastating oxidative damage in the pathogenesis and progression of neurodegenerative diseases. Synthetic 8-aminoquinoline antimalarial drug is an attractive pharmacophore in drug development and chemical modification owing to its wide range of biological activities, yet the underlying molecular mechanisms are not fully elucidated in preclinical models for oxidative damage. Herein, the neuroprotective effects of two 8-aminoquinoline-uracil copper complexes were investigated on the hydrogen peroxide-induced human neuroblastoma SH-SY5Y cells. Both metal complexes markedly restored cell survival, alleviated apoptotic cascades, maintained antioxidant defense, and prevented mitochondrial function by upregulating the sirtuin 1 (SIRT1)/3-FOXO3a signaling pathway. Intriguingly, in silico molecular docking and pharmacokinetic prediction suggested that these synthetic compounds acted as SIRT1 activators with potential drug-like properties, wherein the uracil ligands (5-iodoracil and 5-nitrouracil) were essential for effective binding interactions with the target protein SIRT1. Taken together, the synthetic 8-aminoquinoline-based metal complexes are promising brain-targeting drugs for attenuating neurodegenerative diseases.
Collapse
Affiliation(s)
- Waralee Ruankham
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department
of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Veda Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Apilak Worachartcheewan
- Department
of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Wilasinee Suwanjang
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Kamonrat Phopin
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
23
|
Wang R, Wang J, Zhang Z, Ma B, Sun S, Gao L, Gao G. FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Mol Med 2023; 29:165. [PMID: 38049769 PMCID: PMC10696847 DOI: 10.1186/s10020-023-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Disruption of the BBB is a harmful event after intracranial hemorrhage (ICH), and this disruption contributes to a series of secondary injuries. We hypothesized that FGF21 may have protective effects after intracranial hemorrhage (ICH) and investigated possible underlying molecular mechanisms. METHODS Blood samples of ICH patients were collected to determine the relationship between the serum level of FGF21 and the [Formula: see text]GCS%. Wild-type mice, SIRT6flox/flox mice, endothelial-specific SIRT6-homozygous-knockout mice (eSIRT6-/- mice) and cultured human brain microvascular endothelial cells (HCMECs) were used to determine the protective effects of FGF21 on the BBB. RESULTS We obtained original clinical evidence from patient data identifying a positive correlation between the serum level of FGF21 and [Formula: see text]GCS%. In mice, we found that FGF21 treatment is capable of alleviating BBB damage, mitigating brain edema, reducing lesion volume and improving neurofunction after ICH. In vitro, after oxyhemoglobin injury, we further explored the protective effects of FGF21 on endothelial cells (ECs), which are a significant component of the BBB. Mitochondria play crucial roles during various types of stress reactions. FGF21 significantly improved mitochondrial biology and function in ECs, as evidenced by alleviated mitochondrial morphology damage, reduced ROS accumulation, and restored ATP production. Moreover, we found that the crucial regulatory mitochondrial factor deacylase sirtuin 6 (SIRT6) played an irreplaceable role in the effects of FGF21. Using endothelial-specific SIRT6-knockout mice, we found that SIRT6 deficiency largely diminished these neuroprotective effects of FGF21. Then, we revealed that FGF21 might promote the expression of SIRT6 via the AMPK-Foxo3a pathway. CONCLUSIONS We provide the first evidence that FGF21 is capable of protecting the BBB after ICH by improving SIRT6-mediated mitochondrial homeostasis.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
24
|
Yang H, Ding C, Cheng M, Sheng Z, Chen L, Chen J, Wang Y. Perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway. Sci Rep 2023; 13:21320. [PMID: 38044382 PMCID: PMC10694148 DOI: 10.1038/s41598-023-48802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) occurs most commonly after rupture of an aneurysm, resulting in high disability and mortality due to the absence of effective therapy. Its subsequent stage, early brain injury (EBI), promotes the sustainable development of injury in the brain and ultimately leads to poor prognosis. As a new antiepileptic drug, the effect of perampanel on EBI after SAH is unknown. Pyroptosis, a process of inflammatory programmed cell death, has been confirmed in most studies to play a substantial role in aggravating SAH-post EBI. Similarly, oxidative stress is closely involved in neuronal pyroptosis and the pathophysiological mechanism of SAH-post EBI, leading to a devastating outcome for SAH patients. Nonetheless, no studies have been conducted to determine whether perampanel reduces pyroptosis and oxidative stress in the context of SAH-induced EBI. Rat SAH model via endovascular perforation was constructed in this study, to assess the neuroprotective effect of perampanel on SAH-post EBI, and to clarify the possible molecular mechanism. By means of the neurological score, brain edema detection, FJB staining, immunofluorescence, WB, ELISA, and ROS assay, we found that perampanel can improve neuroscores and reduce brain edema and neuronal degeneration at 24 h after SAH; we also found that perampanel reduced oxidative stress, neuronal pyroptosis, and inhibition of the SIRT3-FOXO3α pathway at 24 h after SAH. When 3-TYP, an inhibitor of SIRT3, was administered, the effects of perampanel on the SIRT3-FOXO3a pathway, antioxidant stress, and neuronal pyroptosis were reversed. Taken together, our data indicate that perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway. This study highlights the application value of perampanel in subarachnoid hemorrhage and lays a foundation for clinical research and later transformation of perampanel in SAH.
Collapse
Affiliation(s)
- Hongqiao Yang
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Changgeng Ding
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Ming Cheng
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Zhengwei Sheng
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Lei Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
- The Fifth Clinical College of Anhui Medical University, Hefei, China
| | - Junhui Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
- The Fifth Clinical College of Anhui Medical University, Hefei, China.
| | - Yuhai Wang
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
- The Fifth Clinical College of Anhui Medical University, Hefei, China.
| |
Collapse
|
25
|
Hu C, Sun Y, Li W, Bi Y. Hypoxia improves self-renew and migration of urine-derived stem cells by upregulating autophagy and mitochondrial function through ERK signal pathway. Mitochondrion 2023; 73:1-9. [PMID: 37678426 DOI: 10.1016/j.mito.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Urine-derived stem cells (USCs) are autologous stem cells with self-renewal ability and multi-lineage differentiation potential. Our previous studies have shown that hypoxia preconditioning can improve self-renewal and migration abilities of USCs by up-regulating autophagy. The purpose of this study was to investigate the specific mechanism by which hypoxia treatment promotes the biological function of USCs. We found that hypoxia treatment upregulated the expression of phosphralated ERK protein without affecting the expression of total ERK protein. Inhibiting ERK signaling with the PD98059 inhibitor decreased cell proliferation, migration and colony formation during hypoxia treatment. Hypoxia increased ATP production, mitochondrial membrane potential and mt-DNA copy number, which were reversed by inhibiting the ERK signal. Additionally, the number of autophagosomes and autophagic lysosomes was significantly lower in PD98059 group than in the hypoxia group. PD98059 treatment inhibited the up-regulation of autophagy related proteins induced by hypoxia. Therefore, this study suggests that hypoxia improves the self-renewal and migration abilities of USCs by upregulating autophagy and mitochondrial function through ERK signaling pathway. This finding may provide a new therapeutic mechanism for hypoxia pretreated USCs as a source of stem cell transplantation.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Digestive Department, Chongqing People's Hospital, Chongqing, China
| | - Yanting Sun
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanxia Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Ewees MGED, Orfali R, Rateb EE, Hassan HM, Hozzein WN, Alkhalfah DHM, Sree HTA, Abdel Rahman FEZS, Rateb ME, Mahmoud NI. Modulation of mi-RNA25/Ox-LDL/NOX4 signaling pathway by polyphenolic compound Hydroxytyrosol as a new avenue to alleviate cisplatin-induced acute kidney injury, a mechanistic study in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104262. [PMID: 37699441 DOI: 10.1016/j.etap.2023.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Acute kidney injury (AKI) caused by Cis is considered one of the most severe adverse effects, which restricts its use and efficacy. This study seeks to examine the potential reno-protective impact of phenolic compound Hydroxytyrosol (HT) against Cis-induced AKI and the possible involvement of the mi-RNA25/Ox-LDL/NOX4 pathway elucidating the probable implicated molecular mechanisms. Forty rats were placed into 5 groups. Group I received saline only. Group II received Cis only. Group III, IV, and V received 20, 50, and 100 mg/kg b.w, of HT, respectively, with Cis delivery. NOX4, Ox-LDL, and gene expression of mi-RNA 25, TNF-α, and HO-1 in renal tissue were detected. HT showed reno-protective effect and significantly upregulated mi-RNA 25 and HO-1 as well as decreased the expression of NOX4, Ox-LDL, and TNF-α. In conclusion, HT may be promising in the fight against Cis-induced AKI through modulation of mi-RNA25/Ox-LDL/NOX4 pathway.
Collapse
Affiliation(s)
- Mohamed Gamal El-Din Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | - Enas Ezzat Rateb
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt.
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Dalal Hussien M Alkhalfah
- Department of Biology. College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Haidy Tamer Abo Sree
- Department of Basic Sciences Department, Biochemistry, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | - Fatema El-Zahraa S Abdel Rahman
- Department of Basic Sciences Department, Physiology, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Nesreen Ishak Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| |
Collapse
|
28
|
El-Maraghy SA, Reda A, Essam RM, Kortam MA. The citrus flavonoid "Nobiletin" impedes STZ-induced Alzheimer's disease in a mouse model through regulating autophagy mastered by SIRT1/FoxO3a mechanism. Inflammopharmacology 2023; 31:2701-2717. [PMID: 37598127 PMCID: PMC10518278 DOI: 10.1007/s10787-023-01292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/06/2023] [Indexed: 08/21/2023]
Abstract
The prominence of autophagy in the modulation of neurodegenerative disorders has sparked interest to investigate its stimulation in Alzheimer's disease (AD). Nobiletin possesses several bioactivities such as anti-inflammation, antioxidation, and neuroprotection. Consequently, the study's aim was to inspect the possible neurotherapeutic impact of Nobiletin in damping AD through autophagy regulation. Mice were randomly assigned into: Group I which received DMSO, Groups II, III, and IV obtained STZ (3 mg/kg) intracerebroventricularly once with Nobiletin (50 mg/kg/day; i.p.) in Group III and Nobiletin with EX-527 (2 mg/kg, i.p.) in Group IV. Interestingly, Nobiletin ameliorated STZ-induced AD through enhancing the motor performance and repressing memory defects. Moreover, Nobiletin de-escalated hippocampal acetylcholinesterase (AChE) activity and enhanced acetylcholine level while halting BACE1 and amyloid-β levels. Meanwhile, Nobiletin stimulated the autophagy process through activating the SIRT1/FoxO3a, LC3B-II, and ATG7 pathway. Additionally, Nobiletin inhibited Akt pathway and controlled the level of NF-κB and TNF-α. Nobiletin amended the oxidative stress through enhancing GSH and cutting down MDA levels. However, EX527, SIRT1 inhibitor, counteracted the neurotherapeutic effects of Nobiletin. Therefore, the present study provides a strong verification for the therapeutic influence of Nobiletin in AD. This outcome may be assigned to autophagy stimulation through SIRT1/FoxO3a, inhibiting AChE activity, reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aya Reda
- Expanded Programme of Immunization (EPI), Ministry of Health, Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
29
|
Chang PR, Liou JW, Chen PY, Gao WY, Wu CL, Wu MJ, Yen JH. The Neuroprotective Effects of Flavonoid Fisetin against Corticosterone-Induced Cell Death through Modulation of ERK, p38, and PI3K/Akt/FOXO3a-Dependent Pathways in PC12 Cells. Pharmaceutics 2023; 15:2376. [PMID: 37896136 PMCID: PMC10610442 DOI: 10.3390/pharmaceutics15102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The overactive hypothalamic-pituitary-adrenal (HPA) axis is believed to trigger the overproduction of corticosterone, leading to neurotoxicity in the brain. Fisetin is a flavonoid commonly found in fruits and vegetables. It has been suggested to possess various biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study aims to explore the potential neuroprotective properties of fisetin against corticosterone-induced cell death and its underlying molecular mechanism in PC12 cells. Our results indicate that fisetin, at concentrations ranging from 5 to 40 μM, significantly protected PC12 cells against corticosterone-induced cell death. Fisetin effectively reduced the corticosterone-mediated generation of reactive oxygen species (ROS) in PC12 cells. Fisetin treatments also showed potential in inhibiting the corticosterone-induced apoptosis of PC12 cells. Moreover, inhibitors targeting MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK, and phosphatidylinositol 3-kinase (PI3K) were found to significantly block the increase in cell viability induced by fisetin in corticosterone-treated cells. Consistently, fisetin enhanced the phosphorylation levels of ERK, p38, Akt, and c-AMP response element-binding protein (CREB) in PC12 cells. Additionally, it was found that the diminished levels of p-CREB and p-ERK by corticosterone can be restored by fisetin treatment. Furthermore, the investigation of crosstalk between ERK and CREB revealed that p-CREB activation by fisetin occurred through the ERK-independent pathway. Moreover, we demonstrated that fisetin effectively counteracted the corticosterone-induced nuclear accumulation of FOXO3a, an apoptosis-triggering transcription factor, and concurrently promoted FOXO3a phosphorylation and its subsequent cytoplasmic localization through the PI3K/Akt pathway. In conclusion, our findings indicate that fisetin exerts its neuroprotective effect against corticosterone-induced cell death by modulating ERK, p38, and the PI3K/Akt/FOXO3a-dependent pathways in PC12 cells. Fisetin emerges as a promising phytochemical for neuroprotection.
Collapse
Affiliation(s)
- Pei-Rong Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| |
Collapse
|
30
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
31
|
Debsharma S, Pramanik S, Bindu S, Mazumder S, Das T, Saha D, De R, Nag S, Banerjee C, Siddiqui AA, Ghosh Z, Bandyopadhyay U. Honokiol, an inducer of sirtuin-3, protects against non-steroidal anti-inflammatory drug-induced gastric mucosal mitochondrial pathology, apoptosis and inflammatory tissue injury. Br J Pharmacol 2023; 180:2317-2340. [PMID: 36914615 DOI: 10.1111/bph.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial oxidative stress, inflammation and apoptosis primarily underlie gastric mucosal injury caused by the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Alternative gastroprotective strategies are therefore needed. Sirtuin-3 pivotally maintains mitochondrial structural integrity and metabolism while preventing oxidative stress; however, its relevance to gastric injury was never explored. Here, we have investigated whether and how sirtuin-3 stimulation by the phytochemical, honokiol, could rescue NSAID-induced gastric injury. EXPERIMENTAL APPROACH Gastric injury in rats induced by indomethacin was used to assess the effects of honokiol. Next-generation sequencing-based transcriptomics followed by functional validation identified the gastroprotective function of sirtuin-3. Flow cytometry, immunoblotting, qRT-PCR and immunohistochemistry were used measure effects on oxidative stress, mitochondrial dynamics, electron transport chain function, and markers of inflammation and apoptosis. Sirtuin-3 deacetylase activity was also estimated and gastric luminal pH was measured. KEY RESULTS Indomethacin down-regulated sirtuin-3 to induce oxidative stress, mitochondrial hyperacetylation, 8-oxoguanine DNA glycosylase 1 depletion, mitochondrial DNA damage, respiratory chain defect and mitochondrial fragmentation leading to severe mucosal injury. Indomethacin dose-dependently inhibited sirtuin-3 deacetylase activity. Honokiol prevented mitochondrial oxidative damage and inflammatory tissue injury by attenuating indomethacin-induced depletion of both sirtuin-3 and its transcriptional regulators PGC1α and ERRα. Honokiol also accelerated gastric wound healing but did not alter gastric acid secretion, unlike lansoprazole. CONCLUSIONS AND IMPLICATIONS Sirtuin-3 stimulation by honokiol prevented and reversed NSAID-induced gastric injury through maintaining mitochondrial integrity. Honokiol did not affect gastric acid secretion. Sirtuin-3 stimulation by honokiol may be utilized as a mitochondria-based, acid-independent novel gastroprotective strategy against NSAIDs.
Collapse
Affiliation(s)
- Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, West Bengal, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Kolkata, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
32
|
Diez AF, Leroux LP, Chagneau S, Plouffe A, Gold M, Chaparro V, Jaramillo M. Toxoplasma gondii inhibits the expression of autophagy-related genes through AKT-dependent inactivation of the transcription factor FOXO3a. mBio 2023; 14:e0079523. [PMID: 37387601 PMCID: PMC10470550 DOI: 10.1128/mbio.00795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii induces host AKT activation to prevent autophagy-mediated clearance; however, the molecular underpinnings are not fully understood. Autophagy can be negatively regulated through AKT-sensitive phosphorylation and nuclear export of the transcription factor Forkhead box O3a (FOXO3a). Using a combination of pharmacological and genetic approaches, herein we investigated whether T. gondii hinders host autophagy through AKT-dependent inactivation of FOXO3a. We found that infection by type I and II strains of T. gondii promotes gradual and sustained AKT-dependent phosphorylation of FOXO3a at residues S253 and T32 in human foreskin fibroblasts (HFF) and murine 3T3 fibroblasts. Mechanistically, AKT-sensitive phosphorylation of FOXO3a by T. gondii required live infection and the activity of PI3K but was independent of the plasma membrane receptor EGFR and the kinase PKCα. Phosphorylation of FOXO3a at AKT-sensitive residues was paralleled by its nuclear exclusion in T. gondii-infected HFF. Importantly, the parasite was unable to drive cytoplasmic localization of FOXO3a upon pharmacological blockade of AKT or overexpression of an AKT-insensitive mutant form of FOXO3a. Transcription of a subset of bona fide autophagy-related targets of FOXO3a was reduced during T. gondii infection in an AKT-dependent fashion. However, parasite-directed repression of autophagy-related genes was AKT-resistant in cells deficient in FOXO3a. Consistent with this, T. gondii failed to inhibit the recruitment of acidic organelles and LC3, an autophagy marker, to the parasitophorous vacuole upon chemically or genetically induced nuclear retention of FOXO3a. In all, we provide evidence that T. gondii suppresses FOXO3a-regulated transcriptional programs to prevent autophagy-mediated killing. IMPORTANCE The parasite Toxoplasma gondii is the etiological agent of toxoplasmosis, an opportunistic infection commonly transmitted by ingestion of contaminated food or water. To date, no effective vaccines in humans have been developed and no promising drugs are available to treat chronic infection or prevent congenital infection. T. gondii targets numerous host cell processes to establish a favorable replicative niche. Of note, T. gondii activates the host AKT signaling pathway to prevent autophagy-mediated killing. Herein, we report that T. gondii inhibits FOXO3a, a transcription factor that regulates the expression of autophagy-related genes, through AKT-dependent phosphorylation. The parasite's ability to block the recruitment of the autophagy machinery to the parasitophorous vacuole is impeded upon pharmacological inhibition of AKT or overexpression of an AKT-insensitive form of FOXO3a. Thus, our study provides greater granularity in the role of FOXO3a during infection and reinforces the potential of targeting autophagy as a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- Andres Felipe Diez
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Sophie Chagneau
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Mackenzie Gold
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| |
Collapse
|
33
|
Francisco JT, Holt AW, Bullock MT, Williams MD, Poovey CE, Holland NA, Brault JJ, Tulis DA. FoxO3 normalizes Smad3-induced arterial smooth muscle cell growth. Front Physiol 2023; 14:1136998. [PMID: 37693008 PMCID: PMC10483145 DOI: 10.3389/fphys.2023.1136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Transition of arterial smooth muscle (ASM) from a quiescent, contractile state to a growth-promoting state is a hallmark of cardiovascular disease (CVD), a leading cause of death and disability in the United States and worldwide. While many individual signals have been identified as important mechanisms in this phenotypic conversion, the combined impact of the transcription factors Smad3 and FoxO3 in ASM growth is not known. The purpose of this study was to determine that a coordinated, phosphorylation-specific relationship exists between Smad3 and FoxO3 in the control of ASM cell growth. Using a rat in vivo arterial injury model and rat primary ASM cell lysates and fractions, validated low and high serum in vitro models of respective quiescent and growth states, and adenoviral (Ad-) gene delivery for overexpression (OE) of individual and combined Smad3 and/or FoxO3, we hypothesized that FoxO3 can moderate Smad3-induced ASM cell growth. Key findings revealed unique cellular distribution of Smad3 and FoxO3 under growth conditions, with induction of both nuclear and cytosolic Smad3 yet primarily cytosolic FoxO3; Ad-Smad3 OE leading to cytosolic and nuclear expression of phosphorylated and total Smad3, with almost complete reversal of each with Ad-FoxO3 co-infection in quiescent and growth conditions; Ad-FoxO3 OE leading to enhanced cytosolic expression of phosphorylated and total FoxO3, both reduced with Ad-Smad3 co-infection in quiescent and growth conditions; Ad-FoxO3 inducing expression and activity of the ubiquitin ligase MuRF-1, which was reversed with concomitant Ad-Smad3 OE; and combined Smad3/FoxO3 OE reversing both the pro-growth impact of singular Smad3 and the cytostatic impact of singular FoxO3. A primary takeaway from these observations is the capacity of FoxO3 to reverse growth-promoting effects of Smad3 in ASM cells. Additional findings lend support for reciprocal antagonism of Smad3 on FoxO3-induced cytostasis, and these effects are dependent upon discrete phosphorylation states and cellular localization and involve MuRF-1 in the control of ASM cell growth. Lastly, results showing capacity of FoxO3 to normalize Smad3-induced ASM cell growth largely support our hypothesis, and overall findings provide evidence for utility of Smad3 and/or FoxO3 as potential therapeutic targets against abnormal ASM growth in the context of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
34
|
Urushihara Y, Hashimoto T, Fujishima Y, Hosoi Y. AMPK/FOXO3a Pathway Increases Activity and/or Expression of ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 and Induces Radioresistance under Nutrient Starvation. Int J Mol Sci 2023; 24:12828. [PMID: 37629008 PMCID: PMC10454868 DOI: 10.3390/ijms241612828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Most solid tumors contain hypoxic and nutrient-deprived microenvironments. The cancer cells in these microenvironments have been reported to exhibit radioresistance. We have previously reported that nutrient starvation increases the expression and/or activity of ATM and DNA-PKcs, which are involved in the repair of DNA double-strand breaks induced by ionizing radiation. In the present study, to elucidate the molecular mechanisms underlying these phenomena, we investigated the roles of AMPK and FOXO3a, which play key roles in the cellular response to nutrient starvation. Nutrient starvation increased clonogenic cell survival after irradiation and increased the activity and/or expression of AMPKα, FOXO3a, ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 in MDA-MB-231 cells. Knockdown of AMPKα using siRNA suppressed the activity and/or expression of FOXO3a, ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 under nutrient starvation. Knockdown of FOXO3a using siRNA suppressed the activity and/or expression of AMPKα, ATM, DNA-PKcs, FOXO3a, Src, EGFR, PDK1, and SOD2 under nutrient starvation. Nutrient starvation decreased the incidence of apoptosis after 8 Gy irradiation. Knockdown of FOXO3a increased the incidence of apoptosis after irradiation under nutrient starvation. AMPK and FOXO3a appear to be key molecules that induce radioresistance under nutrient starvation and may serve as targets for radiosensitization.
Collapse
Affiliation(s)
- Yusuke Urushihara
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Kobe Research Lab, Oncolys BioPharma Inc., Kobe 650-0047, Japan
| | - Takuma Hashimoto
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yohei Fujishima
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
35
|
Li WH, Xiang ZTY, Lu AX, Wang SS, Yan CH. Manganese-induced apoptosis through the ROS-activated JNK/FOXO3a signaling pathway in CTX cells, a model of rat astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115326. [PMID: 37556958 DOI: 10.1016/j.ecoenv.2023.115326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Manganese (Mn) is an essential trace element that maintains many normal physiological functions. However, multi-system disorders would occur once overexposure to Mn, especially neurotoxicity. Despite evidence demonstrating the critical role of ROS-activated JNK/FOXO3a signaling pathway in neuronal survival, the specific mechanisms by which it contributes to Mn-induced neurotoxicity are still unclear. The objectives of this study was to examine the modulation of the JNK/FOXO3a signaling pathway, which is activated by ROS, in Mn-induced apoptosis, using a rat brain astrocyte cell line (CTX cells). This study found that a dose-dependent decrease in cell viability of CTX cells was observed with 150, 200, 250, 300 μmol/L Mn. The results of apoptosis-related protein assay showed that Mn decreased the expression of anti-apoptotic protein Bcl-2 and enhanced the expression of apoptosis-related proteins like Bax and Cleaved-Caspase3. In addition, treatment with Mn resulted in elevated ROS levels and increased phosphorylation levels of JNK. Conversely, phosphorylation of nuclear transcription factors FOXO3a, which regulates expression of transcription factors including Bim and PUMA, was decreased. Depletion of ROS by N-acetyl-L-cysteine (NAC) and inhibition of the JNK pathway by SP600125 prevented Mn-induced JNK/FOXO3a pathway activation and, more importantly, the level of apoptosis was also significantly reduced. Confirmation of Mn-induced apoptosis in CTX cells through ROS generation and activation of the JNK/FOXO3a signaling pathway was the outcome of this study. These findings offer fresh insights into the neurotoxic mechanisms of Mn and therapeutic targets following Mn exposure.
Collapse
Affiliation(s)
- Wan-He Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Ting-Yan Xiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Atayik MC, Çakatay U. Redox signaling in impaired cascades of wound healing: promising approach. Mol Biol Rep 2023; 50:6927-6936. [PMID: 37341917 DOI: 10.1007/s11033-023-08589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
In the aging communities, wound healing management is a quite remarkable problem especially in elderly individuals. The optimal level of healing of wounds developed spontaneously or due to surgery is of critical importance in order to prevent the negative effects that may occur due to delayed healing (for example, organ or system damage caused by infections that may develop in the wound area). The deteriorated subcellular redox signaling is considered to be as the main factor in the chronicity of wounds. The pivotal role of mitochondria in redox regulation reveals the importance of modulation of redox signaling pathways in senescent cells. Secretory factors released upon the acquisition of senescence-associated secretory phenotype (SASP) function in a paracrine manner to disseminate impaired tissue redox status by affecting the redox metabolome of nearby cells, which could promote age-related pro-inflammatory pathologies. Evaluating the wound-site redox regulation in impaired redox signaling pathways may help prevent the formation of chronic wounds and the development of long-term complications of the wounds, especially in the elderly. Using the redox modulatory pharmacologically active substances targeting the senescent cells in chronic wound areas hopefully opens a new avenue in wound management. As the signaling mechanisms of wound healing and its relationship with advanced age become more clearly understood, many promising therapeutic approaches and redox modulator substances are coming into clinical view for the management of chronic wounds.
Collapse
Affiliation(s)
- Mehmet Can Atayik
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
37
|
Donlon TA, Morris BJ, Chen R, Lim E, Morgen EK, Fortney K, Shah N, Masaki KH, Willcox BJ. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience 2023; 45:2303-2324. [PMID: 36881352 PMCID: PMC10651822 DOI: 10.1007/s11357-023-00740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA.
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Randi Chen
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eric K Morgen
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kristen Fortney
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Naisha Shah
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kamal H Masaki
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
38
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
39
|
Avcı CB, Sogutlu F, Pinar Ozates N, Shademan B, Gunduz C. Enhanced Anti-cancer Potency Using a Combination of Oleanolic Acid and Maslinic Acid to Control Treatment Resistance in Breast Cancer. Adv Pharm Bull 2023; 13:611-620. [PMID: 37646060 PMCID: PMC10460813 DOI: 10.34172/apb.2023.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/ mTOR) pathway is a complex intracellular metabolic pathway that leads to cell growth and tumor proliferation and plays a key role in drug resistance in breast cancer. Therefore, the anti-cancer effects of oleanolic acid (OA), maslinic acid (MA), and their combination were investigated to improve the performance of the treatment strategy. Methods We investigated the effect of OA and MA on cell viability using the WST-1 method. The synergistic effect of the combination was analyzed by isobologram analysis. In addition, the effects of the two compounds, individually and in combination, on apoptosis, autophagy, and the cell cycle were investigated in MCF7 cells. In addition, changes in the expression of PI3K/AKT/mTOR genes involved in apoptosis, cell cycle and metabolism were determined by quantitative RT-PCR. Results MA, OA, and a combination of both caused G0/G1 arrest. Apoptosis also increased in all treated groups. The autophagosomal LC3-II formation was induced 1.74-fold in the MA-treated group and 3.25-fold in the MA-OA-treated group. The combination treatment resulted in increased expression of genes such as GSK3B, PTEN, CDKN1B and FOXO3 and decreased expression of IGF1, PRKCB and AKT3 genes. Conclusion The results showed that the combination of these two substances showed the highest synergistic effect at the lowest dose and using MA-OA caused cancer cells to undergo apoptosis. The use of combination drugs may reduce the resistance of cancer cells to treatment.
Collapse
Affiliation(s)
- Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
40
|
Vardar Acar N, Özgül RK. The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. EXCLI JOURNAL 2023; 22:520-555. [PMID: 37534225 PMCID: PMC10390897 DOI: 10.17179/excli2023-6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
As a requirement of aerobic metabolism, regulation of redox homeostasis is indispensable for the continuity of living homeostasis and life. Since the stability of the redox state is necessary for the maintenance of the biological functions of the cells, the balance between the pro-oxidants, especially ROS and the antioxidant capacity is kept in balance in the cells through antioxidant defense systems. The pleiotropic transcription factor, Nrf2, is the master regulator of the antioxidant defense system. Disruption of redox homeostasis leads to oxidative and reductive stress, bringing about multiple pathophysiological conditions. Oxidative stress characterized by high ROS levels causes oxidative damage to biomolecules and cell death, while reductive stress characterized by low ROS levels disrupt physiological cell functions. The fact that ROS, which were initially attributed as harmful products of aerobic metabolism, at the same time function as signal molecules at non-toxic levels and play a role in the adaptive response called mithormesis points out that ROS have a dose-dependent effect on cell fate determination. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Nese Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Riza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
41
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
42
|
Hemedan AA, Schneider R, Ostaszewski M. Applications of Boolean modeling to study the dynamics of a complex disease and therapeutics responses. FRONTIERS IN BIOINFORMATICS 2023; 3:1189723. [PMID: 37325771 PMCID: PMC10267406 DOI: 10.3389/fbinf.2023.1189723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Computational modeling has emerged as a critical tool in investigating the complex molecular processes involved in biological systems and diseases. In this study, we apply Boolean modeling to uncover the molecular mechanisms underlying Parkinson's disease (PD), one of the most prevalent neurodegenerative disorders. Our approach is based on the PD-map, a comprehensive molecular interaction diagram that captures the key mechanisms involved in the initiation and progression of PD. Using Boolean modeling, we aim to gain a deeper understanding of the disease dynamics, identify potential drug targets, and simulate the response to treatments. Our analysis demonstrates the effectiveness of this approach in uncovering the intricacies of PD. Our results confirm existing knowledge about the disease and provide valuable insights into the underlying mechanisms, ultimately suggesting potential targets for therapeutic intervention. Moreover, our approach allows us to parametrize the models based on omics data for further disease stratification. Our study highlights the value of computational modeling in advancing our understanding of complex biological systems and diseases, emphasizing the importance of continued research in this field. Furthermore, our findings have potential implications for the development of novel therapies for PD, which is a pressing public health concern. Overall, this study represents a significant step forward in the application of computational modeling to the investigation of neurodegenerative diseases, and underscores the power of interdisciplinary approaches in tackling challenging biomedical problems.
Collapse
|
43
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
44
|
Razzaghi A, Choobineh S, Gaeini A, Soori R. Interaction of exercise training with taurine attenuates infarct size and cardiac dysfunction via Akt-Foxo3a-Caspase-8 signaling pathway. Amino Acids 2023:10.1007/s00726-023-03275-4. [PMID: 37204452 DOI: 10.1007/s00726-023-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
This research aimed to investigate the synergistic protective effect of exercise training and taurine on Akt-Foxo3a-Caspase-8 signaling related to infarct size and cardiac dysfunction. Therefore, 25 male Wistar rats with MI were divided into five groups: sham (Sh), control-MI(C-MI), exercise training-MI(Exe-MI), taurine supplementation-MI(Supp-MI), and exercise training + taurine-MI(Exe + Supp-MI). The taurine groups were given a 200 mg/kg/day dose of taurine by drinking water. Exercise training was conducted for 8 weeks (5 days/week), each session alternated 2 min with 25-30% VO2peak and 4 min with 55-60% VO2peak for 10 alternations. Then, the left ventricle tissue samples were taken from all groups. Exercise training and taurine activated Akt and decreased Foxo3a. Expression of the caspase-8 gene was increased in cardiac necrosis after MI, While, after 12 weeks of intervention decreased. Results exhibited that exercise training combined with taurine has a greater effect than either alone on activating the Akt-Foxo3a-caspase signaling pathway (P < 0.001). MI-induced myocardial injury leads to increase collagen deposition (P < 0.001) and infarct size and results in cardiac dysfunction via reduced stroke volume, ejection fraction, and fractional shortening (P < 0.001). Exercise training and taurine improved cardiac functional parameters (SV, EF, FS) and infarct size (P < 0.001) after 8 weeks of intervention in rats with MI. Also, the interaction of exercise training and taurine has a greater effect than alone on these variables. Interaction of exercise training with taurine supplementation induces a general amelioration of the cardiac histopathological profiles and improves cardiac remodeling via activating Akt-Foxo3a-Caspase-8 signaling with protective effects against MI.
Collapse
Affiliation(s)
| | - Siroos Choobineh
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Abbasali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Rahman Soori
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Chang YJ, Jenny L, Li YS, Cui X, Kong Y, Li Y, Sparrow J, Tsang S. CRISPR editing demonstrates rs10490924 raised oxidative stress in iPSC-derived retinal cells from patients with ARMS2/HTRA1-related AMD. Proc Natl Acad Sci U S A 2023; 120:e2215005120. [PMID: 37126685 PMCID: PMC10175836 DOI: 10.1073/pnas.2215005120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified genetic risk loci for age-related macular degeneration (AMD) on the chromosome 10q26 (Chr10) locus and are tightly linked: the A69S (G>T) rs10490924 single-nucleotide variant (SNV) and the AATAA-rich insertion-deletion (indel, del443/ins54), which are found in the age-related maculopathy susceptibility 2 (ARMS2) gene, and the G512A (G>A) rs11200638 SNV, which is found in the high-temperature requirement A serine peptidase 1 (HTRA1) promoter. The fourth variant is Y402H complement factor H (CFH), which directs CFH signaling. CRISPR manipulation of retinal pigment epithelium (RPE) cells may allow one to isolate the effects of the individual SNV and thus identify SNV-specific effects on cell phenotype. Clustered regularly interspaced short palindromic repeats (CRISPR) editing demonstrates that rs10490924 raised oxidative stress in induced pluripotent stem cell (iPSC)-derived retinal cells from patients with AMD. Sodium phenylbutyrate preferentially reverses the cell death caused by ARMS2 rs10490924 but not HTRA1 rs11200638. This study serves as a proof of concept for the use of patient-specific iPSCs for functional annotation of tightly linked GWAS to study the etiology of a late-onset disease phenotype. More importantly, we demonstrate that antioxidant administration may be useful for reducing reactive oxidative stress in AMD, a prevalent late-onset neurodegenerative disorder.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Laura A. Jenny
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Yong-Shi Li
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Xuan Cui
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Yang Kong
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Yao Li
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
| | - Janet R. Sparrow
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
- Department of Ophthalmology, Columbia University, New York, NY10032
- Department of Biomedical Engineering, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
| | - Stephen H. Tsang
- Jonas Children’s Vision Care, Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY10032
- Department of Ophthalmology, Columbia University, New York, NY10032
- Department of Biomedical Engineering, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
- Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, NY10032
| |
Collapse
|
46
|
Xiu Z, Tang S, Kong P, Yan M, Tong X, Liu X, Liang X, Li R, Duan Y. The effect and mechanism of Zigui-Yichong-Fang on improving ovarian reserve in premature ovarian insufficiency by activating SIRT1/Foxo3a pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116608. [PMID: 37150421 DOI: 10.1016/j.jep.2023.116608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zigui-Yichong-Fang (ZGYCF) is a traditional Chinese medicine prescription for the treatment of infertility. It is clinically used to regulate the hormone level of patients, improve ovarian reserve function and increase pregnancy rate. However, the exact mechanism of action is not yet clear. AIMS OF THE STUDY This study aims to explore the potential impact of ZGYCF on POI and its mechanism. MATERIALS AND METHODS Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to identify the main compounds of ZGYCF. After confirming the therapeutic effect of ZGYCF on cyclophosphamide-induced POI mice, RNA sequencing (RNA-seq) analysis was carried out to explore the mechanism. Then, the effects of ZGYCF on SIRT1 deacetylated Foxo3a and apoptosis were verified from multiple perspectives by serum hormone level, mRNA validation, histomorphology and protein expression, acetylation modification and other experiments. RESULTS ZGYCF can improve the morphological changes of ovarian tissue in POI model mice, reduce the damage of primordial follicles and other follicles at all stages, and protect ovarian reserve. The results of transcriptome sequencing showed that the genes expression of PI3K signal and apoptosis signal pathway were increased in POI model mice; ZGYCF can up-regulate the expression of SIRT1 gene and the expression of estradiol, apoptosis inhibition and other signal pathway genes. In addition, ZGYCF can reduce follicular damage and ovarian cell apoptosis in POI model mice through activating the deacetylation of Foxo3a by SIRT1, and improve ovarian reserve function. CONCLUSIONS ZGYCF may improve ovarian reserve function of CTX-induced POI mice by activating SIRT1-mediated deacetylation of Foxo3a, and play a role in the treatment of POI.
Collapse
Affiliation(s)
- Zi Xiu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Siling Tang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengxuan Yan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xue Tong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xueping Liu
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xiao Liang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Rongxia Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yancang Duan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| |
Collapse
|
47
|
Friedman B, Larranaga-Vera A, Castro CM, Corciulo C, Rabbani P, Cronstein BN. Adenosine A2A receptor activation reduces chondrocyte senescence. FASEB J 2023; 37:e22838. [PMID: 36884388 DOI: 10.1096/fj.202201212rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Osteoarthritis (OA) pathogenesis is associated with reduced chondrocyte homeostasis and increased levels of cartilage cellular senescence. Chondrosenescence is the development of cartilage senescence that increases with aging joints and disrupts chondrocyte homeostasis and is associated with OA. Adenosine A2A receptor (A2AR) activation in cartilage via intra-articular injection of liposomal A2AR agonist, liposomal-CGS21680, leads to cartilage regeneration in vivo and chondrocyte homeostasis. A2AR knockout mice develop early OA isolated chondrocytes demonstrate upregulated expression of cellular senescence and aging-associated genes. Based on these observations, we hypothesized that A2AR activation would ameliorate cartilage senescence. We found that A2AR stimulation of chondrocytes reduced beta-galactosidase staining and regulated levels and cell localization of common senescence mediators p21 and p16 in vitro in the human TC28a2 chondrocyte cell line. In vivo analysis similarly showed A2AR activation reduced nuclear p21 and p16 in obesity-induced OA mice injected with liposomal-CGS21680 and increased nuclear p21 and p16 in A2AR knockout mouse chondrocytes compared to wild-type mice. A2AR agonism also increased activity of the chondrocyte Sirt1/AMPK energy-sensing pathway by enhancing nuclear Sirt1 localization and upregulating T172-phosphorylated (active) AMPK protein levels. Lastly, A2AR activation in TC28a2 and primary human chondrocytes reduced wild-type p53 and concomitantly increased p53 alternative splicing leading to increase in an anti-senescent p53 variant, Δ133p53α. The results reported here indicate that A2AR signaling promotes chondrocyte homeostasis in vitro and reduces OA cartilage development in vivo by reducing chondrocyte senescence.
Collapse
Affiliation(s)
- Benjamin Friedman
- Division of Rheumatology, New York University Grossman School of Medicine, New York, New York, USA.,Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ane Larranaga-Vera
- Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Cristina M Castro
- Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Carmen Corciulo
- Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Piul Rabbani
- Division of Rheumatology, New York University Grossman School of Medicine, New York, New York, USA.,Hansjorg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- Division of Rheumatology, New York University Grossman School of Medicine, New York, New York, USA.,Division of Translational Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
48
|
Jang EH, Kim SA. Acute valproate exposure affects proneural factor expression by increasing FOXO3 in the hippocampus of juvenile mice with a sex-based difference. Neurosci Lett 2023; 806:137226. [PMID: 37019270 DOI: 10.1016/j.neulet.2023.137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Valproic acid (VPA), an anticonvulsant and mood stabilizer, may affect Notch signaling and mitochondrial function. In a previous study, acute VPA exposure induced increased expression of FOXO3, a transcription factor that shares common targets with pro-neuronal ASCL1. In this study, intraperitoneal acute VPA (400 mg/kg) administration in 4-week-old mice increased and decreased FOXO3 and ASCL1 expression, respectively, in the hippocampus, associated with sex-based differences. Treatment of Foxo3 siRNA increased the mRNA expression levels of Ascl1, Ngn2, Hes6, and Notch1 in PC12 cells. Furthermore, VPA exposure induced significant expression changes of mitochondria-related genes, including COX4 and SIRT1, in hippocampal tissues, associated with sex-based differences. This study suggests that acute VPA exposure differently affects proneural gene expression via FOXO3 induction in the hippocampus based on sex.
Collapse
Affiliation(s)
- Eun Hye Jang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| |
Collapse
|
49
|
Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, Bao X. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 2023; 62:1453-1466. [PMID: 36650315 DOI: 10.1007/s00394-023-03083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. METHODS Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. RESULTS Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. CONCLUSION Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.
Collapse
Affiliation(s)
- Yang Wang
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoping Chen
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, 999077, HK, People's Republic of China
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, BT37 0QB, UK
| | - Shujun Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Xiaoming Bao
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, People's Republic of China.
- Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
50
|
Li J, Dong T, Wu Z, Zhu D, Gu H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov 2023; 9:103. [PMID: 36966168 PMCID: PMC10039951 DOI: 10.1038/s41420-023-01403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
The oncogene MYC is dysregulated in a host of human cancers, and as an important point of convergence in multitudinous oncogenic signaling pathways, it plays a crucial role in tumor immune regulation in the tumor immune microenvironment (TIME). Specifically, MYC promotes the expression of immunosuppressive factors and inhibits the expression of immune activation regulators. Undoubtedly, a therapeutic strategy that targets MYC can initiate a new era of cancer treatment. In this review, we summarize the essential role of the MYC signaling pathway in tumor immunity and the development status of MYC-related therapies, including therapeutic strategies targeting MYC and combined MYC-based immunotherapy. These studies have reported extraordinary insights into the translational application of MYC in cancer treatment and are conducive to the emergence of more effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Tingyu Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|