1
|
Zhou C, Liang C, Zhang R, Wang Y, Luo S, Pan J. TREM2 improves coagulopathy and lung inflammation in sepsis through the AKT-mTOR pathway. Int Immunopharmacol 2025; 150:114330. [PMID: 39970715 DOI: 10.1016/j.intimp.2025.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Sepsis is a systemic inflammatory response syndrome triggered by infection, often accompanied by severe coagulopathy, leading to high mortality. Tissue factor (TF) plays a pivotal role in sepsis by promoting both coagulation and inflammation. Recently, TREM2 (Triggering Receptor Expressed on Myeloid cells 2) has emerged as a key regulator of macrophage function, but its specific role in sepsis remains unclear. METHODS An in vitro sepsis model was established by stimulating RAW264.7 cells with 10 μg/mL lipopolysaccharide (LPS) for 6 h, with four groups: Negative Control (NC), NC + LPS, TREM2, and TREM2 + LPS. Inflammatory cytokines and coagulation factors were measured in each group. Cells in the TREM2 and TREM2 + LPS groups were pretreated with TREM2 overexpression plasmid for 48 h. In vivo, mice were assigned to Sham, TREM2, Cecal Ligation and Puncture (CLP), CLP + NC, and CLP + TREM2 groups. Mice in the NC group received macrophages via tail vein injection, while those in the TREM2 and CLP + TREM2 groups received TREM2-overexpressing macrophages. Lung tissue and plasma samples were collected to assess inflammatory cytokines, coagulation factors, and signaling pathway activity. RESULTS TREM2 overexpression significantly improved survival, reduced lung inflammation, and alleviated coagulopathy in mice. It increased platelet counts and reduced fibrin deposition. Furthermore, TREM2 inhibited TF release from macrophages by suppressing aberrant activation of the AKT-mTOR signaling pathway, thereby modulating the macrophage inflammatory response. CONCLUSIONS TREM2 plays a crucial protective role in sepsis-associated coagulopathy, suggesting that it could serve as a potential therapeutic target, providing novel strategies to improve clinical outcomes in sepsis patients.
Collapse
Affiliation(s)
- Chen Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China
| | - Chenglong Liang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China
| | - Rongrong Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Ying Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Shuang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingye Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Hu J, Chen Z, Wang J, Xu A, Sun J, Xiao W, Yang M. Identification and Evaluation of Lipocalin-2 in Sepsis-Associated Encephalopathy via Machine Learning Approaches. J Inflamm Res 2025; 18:3843-3858. [PMID: 40109658 PMCID: PMC11920642 DOI: 10.2147/jir.s504390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Purpose Sepsis-associated encephalopathy (SAE) critically contributes to poor prognosis in septic patients. Identifying and screening key genes responsible for SAE, as well as exploring potential targeted therapies, are vital for improving the management of sepsis and advancing precision medicine. Patients and Methods Single-cell RNA sequencing (scRNA-seq) was administrated to identify cell subpopulations related to poor prognosis in septic patients. Next, hierarchical dynamic weighted gene co-expression network analysis (hdWGCNA) was employed to identify genes associated with specific neutrophil subpopulations. Enrichment analysis revealed the biological functions of these genes. Subsequently, neuroinflammation-related genes were obtained to construct a neuroinflammation-related signature. The AddModuleScore algorithm was used to calculate neuroinflammation scores for each cell subpopulation, whereas the CellCall algorithm was used to assess the crosstalk between neutrophils and other cell subpopulations. To identify key genes accurately, four binary classification machine learning algorithms were utilized. Finally, Western blotting and behavioral tests were used to confirm the role of LCN2-related neuroinflammation in septic mice. Results This study utilized scRNA-seq to reveal the critical role of peripheral neutrophils during sepsis, identifying these neutrophils as contributors to poor prognosis and associated with neuroinflammation. On the basis of various machine learning algorithms, we discovered that Lipocalin-2 (LCN2) may be the key gene involved in neutrophil-induced SAE. To prove these findings, we conducted in vivo experiments and an animal model. Increased LCN2 expression and cognitive dysfunction occurred in septic mice. Additionally, the levels of markers of astrocytes and microglia and inflammatory factors such as TNF-α and IL-6 were significantly increased. All these phenomena were reversed by the downregulation of LCN2. Conclusion The upregulation of LCN2 expression on peripheral neutrophils is a critical step that triggers neuroinflammation in the central nervous system during SAE.
Collapse
Affiliation(s)
- Jia Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jinyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Aoxue Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Jinkai Sun
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Wenyan Xiao
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Min Yang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
3
|
Jiang RD, Luo YZ, Lin HF, Zheng XS, Zeng WT, Liu MQ, Deng HH, Wang Q, Lai YN, Chen Y, Guo ZS, Zeng Y, Gong QC, Qiu C, Dong M, Wang X, Wang ZY, Ji LN, Hou PP, Li Q, Shen XR, Li B, Gao Y, Zhang AH, Jiang TT, Shi AM, Zhou P, Lin XH, Deng ZQ, Li JM, Shi ZL. Impaired inflammatory resolution with severe SARS-CoV-2 infection in leptin knock out obese hamster. iScience 2025; 28:111837. [PMID: 39981511 PMCID: PMC11841202 DOI: 10.1016/j.isci.2025.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 12/13/2024] [Indexed: 02/22/2025] Open
Abstract
Comorbidities, such as obesity, increase the risk of severe COVID-19. However, the mechanisms underlying severe illnesses in individuals with obesity are poorly understood. Here, we used gene-edited leptin knock out (Leptin -/-) obese hamsters to establish a severe infection model. This model exhibits robust viral replication, severe lung lesions, pronounced clinical symptoms, and fatal infection, mirroring severe COVID-19 in patients with obesity. Using single-cell transcriptomics on lung tissues pre- and post-infection, we found that monocyte-derived alveolar macrophages (MD-AM) play a key role in lung hyper-inflammation, including two unique MD-AM cell fate branches specific to Leptin -/- hamsters. Notably, reduced Trem2-dependent efferocytosis pathways in Leptin -/- hamsters indicated weakened inflammation resolution, consistent with the scRNA-seq data from patients with obesity. In summary, our study highlights the obesity-associated mechanisms underlying severe SARS-CoV-2 infections and establishes a reliable preclinical animal model for developing obesity-specific therapeutics for critical COVID-19.
Collapse
Affiliation(s)
- Ren-Di Jiang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Zhe Luo
- BGI Research, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Feng Lin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Shuang Zheng
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Wen-Tao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mei-Qin Liu
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Hao-Hao Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Qi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Na Lai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zi-Shuo Guo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Zeng
- BGI Research, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Chun Gong
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mei Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Yi Wang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Li-Na Ji
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Pan-Pan Hou
- Guangzhou National Laboratory, Guangzhou, China
| | - Qian Li
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xu-Rui Shen
- Guangzhou National Laboratory, Guangzhou, China
| | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ai-Hua Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Jiang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ai-Min Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Peng Zhou
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Xin-Hua Lin
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Zi-Qing Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Jian-Min Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Anaeigoudari A. A Narrative Review of Protective Effects of Natural Compounds Against Lipopolysaccharide-Induced Injuries. Food Sci Nutr 2025; 13:e70026. [PMID: 39898124 PMCID: PMC11786020 DOI: 10.1002/fsn3.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Lipopolysaccharide (LPS) is a large amphipathic glycoconjugate molecule in the cell wall of Gram-negative bacteria. This bacterial endotoxin binds to toll-like receptor 4 (TLR4) and stimulates the inflammatory reactions and oxidative stress. The current paper presents the protective effects of natural compounds against LPS-induced injuries. The relevant findings were extracted from PubMed, Web of Science, Scopus, and Google Scholar databases from the beginning of 2005 until the end of September 2023 were employed. The results of in vitro and in vivo studies indicated that thymoquinone, crocin, carvacrol, and quercetin effectively attenuated LPS-induced damages via lowering the level of inflammatory cytokines and free radicals. These natural compounds could also amplify the antioxidant defense against LPS by increasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT). In addition, a part of the protective effects of these phytochemicals against detrimental impacts of LPS is attributed to their ability to downregulate the TLR4 expression and to inhibit the NF-κB signaling pathway. Briefly, the protective effects of natural compounds mentioned in current review against LPS-caused damages mainly are mediated by their anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
5
|
Yuan X, Ouedraogo SY, Jammeh ML, Simbiliyabo L, Jabang JN, Jaw M, Darboe A, Tan Y, Bajinka O. Can microbiota gut-brain axis reverse neurodegenerative disorders in human? Ageing Res Rev 2025; 104:102664. [PMID: 39818235 DOI: 10.1016/j.arr.2025.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis). Dysbiosis leads to neurodegenerative disorders (NDDs). The objective of this review is to ascertain the clinical significance of gut microbiota induced therapeutic strategies. While navigating this important area of interest, we will elucidate the research gaps, the prospects and the potential reverse interventions of the studied NDDs. In addition to our previous work, relevant literature published in English were searched and retrieved from the PubMed database. The 'gut microbiota and Neurodegenerative disorders' were used as keywords during the search period. The Filters applied are: Abstract, Full text, Meta-Analysis, Randomized Controlled Trial, Reviews, in the last 5 years. The articles were analyzed in our unrelenting quest to make sense of the prospects and research gap in gut microbiota-brain-axis. This chapter is a result of this meticulous work. More convincing data from researches on gut microbiota-brain-axis are required to provide clinical significance including neuroimaging studies. Addressing the structural (pathological footprints) and the functional changes (diseases manifestation) involving gut microbiota-brain-axis require a holistic approach. While the pharmacological therapies such as chemotherapeutic and chemobiotic treatment approaches come with low success rates, non-pharmacological interventions are found to be more useful in reversing NDDs. The inability to detect NDDs at an early stage in their clinical history, makes preventive medicinal approaches the must needed and best intervention strategy. Gut-driven treatments have a lot to offer in the management of refractory neurologic diseases.
Collapse
Affiliation(s)
- Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China
| | - Modou Lamin Jammeh
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Lucette Simbiliyabo
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China
| | - John Nute Jabang
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Mariam Jaw
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Alansana Darboe
- Vaccine & Immunity Theme, Infant Immunology, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine (MRCG@LSHTM), Gambia
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.
| | - Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China; School of Medicine and Allied Health Sciences, University of The Gambia, Gambia; Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.
| |
Collapse
|
6
|
Farzan M, Saberi-Rounkian M, Asadi-Rizi A, Heidari Z, Farzan M, Fathi M, Aghaei A, Azadegan-Dehkordi F, Bagheri N. The emerging role of the microglia triggering receptor expressed on myeloid cells (TREM) 2 in multiple sclerosis. Exp Neurol 2025; 384:115071. [PMID: 39586397 DOI: 10.1016/j.expneurol.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The chronic inflammatory condition known as multiple sclerosis (MS) causes inflammation and demyelination in the central nervous system (CNS). The activation of multiple cell types, including the CNS's resident immune cells called microglia, is a component of the immunological response in MS. Recently, the triggering receptor expressed on myeloid cells (TREM) family has emerged as a crucial player in modulating microglial function and subsequent neuroinflammation. Understanding the role of TREM receptors in MS pathogenesis could provide insightful information on how to develop new therapeutic approaches. MAIN BODY The TREM family consists of several receptors, including TREM-1 and TREM-2, which can be expressed on both immune cells, such as myeloid cells and microglia, and non-immune cells. These receptors interact with their respective ligands and regulate signaling pathways, ultimately leading to the control of microglial activation and inflammatory reactions. TREM-2, in particular, has garnered significant interest because of its connection with MS and other neurodegenerative diseases. The activation of microglia through TREM receptors in MS is thought to influence the equilibrium between helpful and detrimental inflammatory responses. TREM receptors can promote the phagocytosis of myelin debris and remove apoptotic cells, thus contributing to tissue repair and regeneration. However, excessive or dysregulated activation of microglia mediated by TREM receptors can lead to the release of pro-inflammatory cytokines and neurotoxic factors, exacerbating neuroinflammation and neurodegeneration in MS. CONCLUSION The emerging role of the TREM family in demyelinating diseases highlights the importance of microglia in disease pathogenesis. Understanding the mechanisms by which TREM receptors modulate microglial function can provide valuable insights into the development of targeted therapies for these disorders. By selectively targeting TREM receptors, it may be possible to harness their beneficial effects on tissue repair while dampening their detrimental pro-inflammatory responses. Further research is warranted to elucidate the precise signaling pathways and ligand interactions involved in TREM-mediated microglial activation, which could uncover novel therapeutic avenues for treating MS and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Masoumeh Saberi-Rounkian
- Student Research committee, School of Paramedicine, Guilan University of Medical sciences, Rasht, Iran
| | - Atefeh Asadi-Rizi
- Young researchers and Elite club, Flavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Heidari
- Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Zhou XP, Sun LB, Liu WH, Zhu WM, Li LC, Song XY, Xing JP, Gao SH. The complex relationship between gut microbiota and Alzheimer's disease: A systematic review. Ageing Res Rev 2025; 104:102637. [PMID: 39662839 DOI: 10.1016/j.arr.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the central nervous system. Despite extensive research conducted on this disorder, its precise pathogenesis remains unclear. In recent years, the microbiota-gut-brain axis has attracted considerable attention within the field of AD. The gut microbiota communicates bidirectionally with the central nervous system through the gut-brain axis, and alterations in its structure and function can influence the progression of AD. Consequently, regulating the gut microbiota to mitigate the progression of AD has emerged as a novel therapeutic approach. Currently, numerous studies concentrate on the intrinsic relationship between the microbiota-gut-brain axis and AD. In this paper, we summarize the multifaceted role of the gut microbiota in AD and present detailed therapeutic strategies targeting the gut microbiota, including the treatment of AD with Traditional Chinese Medicine (TCM), which has garnered increasing attention in recent years. Finally, we discuss potential therapeutic strategies for modulating the gut microbiota to alleviate the progression of AD, the current challenges in this area of research, and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wu-Ming Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Lin-Chun Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
8
|
Hsu FC, Weng TH, Pu TW, Chang PK, Lin TC, Jao SW, Chen CY, Hu JM, Chien WC. Infectious intestinal diseases elevate neurodegenerative disease risk based on a nationwide population-based cohort study. Sci Rep 2024; 14:30968. [PMID: 39730770 PMCID: PMC11681060 DOI: 10.1038/s41598-024-81950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Infectious intestinal diseases (IIDs) pose a significant health and economic burden worldwide. Recent observations at the Tri-Service General Hospital, Taiwan, suggest a potential association between IIDs and neurodegenerative diseases, prompting an investigation into this relationship. This study explored interactions between IIDs and neurodegenerative diseases. We conducted a population-based retrospective cohort analysis using data from the National Health Insurance Research Database (NHIRD) of Taiwan. Patients diagnosed with IIDs between 2000 and 2015 were identified along with a matched control group. Covariates, including demographics, comorbidities, and healthcare utilization were considered. The hazard ratios (HRs) of neurodegenerative diseases were assessed using a Cox proportional regression analysis. This study included 297,438 patients: 99,146 and 198,292 patients in the IID and control groups, respectively. Patients with IIDs showed a significantly higher overall risk of neurodegenerative diseases (adjusted hazard ratio [aHR] = 1.144, P < 0.001). Subgroup analyses revealed an elevated risk of Parkinson's disease, multiple sclerosis, and other neurodegeneration-associated disorders in the study group. Additionally, a positive correlation was observed between the frequency of medical visits for IIDs and neurodegenerative disease risk. This study provides evidence for a significant association between IIDs and the neurodegenerative disease risk. Early detection and management of IIDs may have implications for long-term neurological health outcomes. Further research is required to elucidate underlying mechanisms and develop targeted interventions and preventive strategies.
Collapse
Affiliation(s)
- Fang-Chin Hsu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Hsuan Weng
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ta-Wei Pu
- Division of Colon and Rectal Surgery, Department of Surgery, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Kai Chang
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Chiao Lin
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Wen Jao
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Je-Ming Hu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan.
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
9
|
Bi J, Chen Y, Zhang J, Yan J, Ge A, Ye W, Liu C, Wen H, Ma C. Causal relationship between immune cells and periodontitis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40918. [PMID: 39686447 DOI: 10.1097/md.0000000000040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
This study employed Mendelian randomization (MR) analysis to explore potential causal relationships between 731 immune cell subtypes and periodontitis. Utilizing a 2-sample MR design, our study delved into the diverse landscape of immune cell interactions with periodontitis-associated factors. Multiple MR methods, including inverse variance weighting, weighted median, and MR-Egger tests, were employed to ensure reliability and mitigate potential pleiotropic effects. The study revealed significant causal effects (FDR < 0.15) between immune cells (B cells, maturation stages of T cells, Treg) and periodontitis. Notably, receptors like triggering receptor expressed on myeloid cells-1 (TREM-1) and triggering receptor expressed on myeloid cells-2 (TREM-2) exhibited intricate roles, warranting further investigation. In conclusion, this MR analysis elucidates complex causal relationships between immune cell subtypes and periodontitis. The findings provide a foundation for understanding systemic implications, offering insights for clinical practice and highlighting avenues for future research.
Collapse
Affiliation(s)
- Junlei Bi
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Yuxin Chen
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Jie Zhang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Jiaqi Yan
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Aiyun Ge
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Wenhao Ye
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Changqing Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Hebao Wen
- Physical Education Department, Bengbu Medical University, Bengbu City, Anhui Province, China
| | - Caiyun Ma
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, School of Life Science, Bengbu Medical University, Bengbu City, Anhui Province, China
| |
Collapse
|
10
|
Wang H, Shi C, Jiang L, Liu X, Tang R, Tang M. Neuroimaging techniques, gene therapy, and gut microbiota: frontier advances and integrated applications in Alzheimer's Disease research. Front Aging Neurosci 2024; 16:1485657. [PMID: 39691161 PMCID: PMC11649678 DOI: 10.3389/fnagi.2024.1485657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder marked by cognitive decline, for which effective treatments remain elusive due to complex pathogenesis. Recent advances in neuroimaging, gene therapy, and gut microbiota research offer new insights and potential intervention strategies. Neuroimaging enables early detection and staging of AD through visualization of biomarkers, aiding diagnosis and tracking of disease progression. Gene therapy presents a promising approach for modifying AD-related genetic expressions, targeting amyloid and tau pathology, and potentially repairing neuronal damage. Furthermore, emerging evidence suggests that the gut microbiota influences AD pathology through the gut-brain axis, impacting inflammation, immune response, and amyloid metabolism. However, each of these technologies faces significant challenges, including concerns about safety, efficacy, and ethical considerations. This article reviews the applications, advantages, and limitations of neuroimaging, gene therapy, and gut microbiota research in AD, with a particular focus on their combined potential for early diagnosis, mechanistic insights, and therapeutic interventions. We propose an integrated approach that leverages these tools to provide a multi-dimensional framework for advancing AD diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Haitao Wang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chen Shi
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Jiang
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaozhu Liu
- Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rui Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxi Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
11
|
Zou K, Deng Q, Zhang H, Huang C. Glymphatic system: a gateway for neuroinflammation. Neural Regen Res 2024; 19:2661-2672. [PMID: 38595285 PMCID: PMC11168510 DOI: 10.4103/1673-5374.391312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
The glymphatic system is a relatively recently identified fluid exchange and transport system in the brain. Accumulating evidence indicates that glymphatic function is impaired not only in central nervous system disorders but also in systemic diseases. Systemic diseases can trigger the inflammatory responses in the central nervous system, occasionally leading to sustained inflammation and functional disturbance of the central nervous system. This review summarizes the current knowledge on the association between glymphatic dysfunction and central nervous system inflammation. In addition, we discuss the hypothesis that disease conditions initially associated with peripheral inflammation overwhelm the performance of the glymphatic system, thereby triggering central nervous system dysfunction, chronic neuroinflammation, and neurodegeneration. Future research investigating the role of the glymphatic system in neuroinflammation may offer innovative therapeutic approaches for central nervous system disorders.
Collapse
Affiliation(s)
- Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qingwei Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hong Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Telemaco Contreras Colmenares M, de Oliveira Matos A, Henrique Dos Santos Dantas P, Rodrigues do Carmo Neto J, Silva-Sales M, Sales-Campos H. Unveiling the impact of TREM-2 + Macrophages in metabolic disorders. Cell Immunol 2024; 405-406:104882. [PMID: 39369473 DOI: 10.1016/j.cellimm.2024.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid cells 2 (TREM-2) has been widely known by its anti-inflammatory activity. It can be activated in response to microbes and tissue damage, leading to phagocytosis, autophagy, cell polarization and migration, counter inflammation, and tissue repair. So far, the receptor has been largely explored in neurodegenerative disorders, however, a growing number of studies have been investigating its contribution in different pathological conditions, including metabolic diseases, in which (resident) macrophages play a crucial role. In this regard, TREM-2 + macrophages have been implicated in the onset and development of obesity, atherosclerosis, and fibrotic liver disease. These macrophages can be detected in the brain, white adipose tissue, liver, and vascular endothelium. In this review we discuss how different murine models have been demonstrating the ability of such cells to contribute to tissue and body homeostasis by phagocytosing cellular debris and lipid structures, besides contributing to lipid homeostasis in metabolic diseases. Therefore, understanding the role of TREM-2 in metabolic disorders is crucial to expand our current knowledge concerning their immunopathology as well as to foster the development of more targeted therapies to treat such conditions.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | |
Collapse
|
13
|
Vinolo E, Maillefer M, Jolly L, Colné N, Meiffren G, Carrasco K, Derive M. The potential of targeting TREM-1 in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:301-330. [PMID: 39521605 DOI: 10.1016/bs.apha.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Innate immune dysfunction is a hallmark of the pathogenesis of Inflammatory Bowel Disease, both in Crohn's disease and ulcerative colitis. Despite considerable efforts in research to better understand the pathophysiology of IBD and for the development of new therapeutic modalities for IBD patients, there is no therapy specifically targeting the dysregulations of the innate immune response available today in that field. TREM-1 is exclusively expressed by innate immune cells and is an immune amplifier. Its engagement following the primary activation of Pattern Recognition Receptors, including Toll-Like Receptors, triggers the development of a dysregulated and sustained innate immune response, promoting the perpetuation of the inflammatory response in the mucosa of IBD patients, microscopic mucosal tissue alterations, impaired autophagy, impaired epithelial barrier integrity and function, ulcerations, and mucosal damages. In patients, TREM-1 activation is associated with the active status of the disease as well as with severity. Blocking TREM-1 in experimental colitis attenuates the dysregulated innate immune response leading to improved clinical signs. Anti-TREM-1 approaches have the potential of controlling the pathogenic dysregulation of the immune response in IBD by targeting an upstream amplification loop of the activation of innate immunity.
Collapse
|
14
|
Wang TT, Jiang WR, Xu L, Zhou MY, Huang YS. Effect of blockage of Trem1 on the M1 polarization of macrophages in the regulation dental pulp inflammation. Eur J Oral Sci 2024; 132:e13018. [PMID: 39267299 DOI: 10.1111/eos.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Dental pulp inflammation is a common and significant factor related to poor dental prognosis. Current treatment strategies primarily concentrate on managing the inflammatory response, with specific targets for intervention still under investigation. Triggering receptors expressed on myeloid cells (TREMs) are a group of receptor molecules extensively present on myeloid cell surfaces, crucial in the regulation of inflammatory process. Our analysis of transcriptomic sequencing data from clinical pulp samples of dataset GSE77459 and animal models revealed up-regulation of Trem1 during pulpitis. Administration of the Trem1-blocking peptide LP17 led to lower (more than 1-fold) levels of several pro-inflammatory factors and inhibition of M1 macrophage polarization both in vivo and in vitro. This study of the expression patterns and functions of Trem1 in the development of dental pulp inflammation provides novel insights into the therapeutic strategies for clinical pulpitis.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Wen-Rui Jiang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Li Xu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Mei-Yun Zhou
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yong-Song Huang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
15
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Liu M, Li T, Liang H, Zhong P. Herbal medicines in Alzheimer's disease and the involvement of gut microbiota. Front Pharmacol 2024; 15:1416502. [PMID: 39081953 PMCID: PMC11286407 DOI: 10.3389/fphar.2024.1416502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and cognitive impairment. It severely affects the quality of life of victims. The prevalence of AD has been increasing in recent years. Therefore, it is of great importance to elucidate the pathogenic mechanism of AD and search for effective therapeutic approaches. Gut microbiota dysbiosis, an altered state of gut microbiota, has been well known for its involvement in the pathogenesis of AD. Much effort has been made in searching for approaches capable of modulating the composition of gut microbiota in recent years. Herbal medicines have attracted extensive attention in recent decades for the prevention and treatment of AD. Here, we gave an overview of the recent research progress on the modulatory effects of herbal medicines and herbal formulae on gut microbiota as well as the possible beneficial effects on AD, which may provide new insights into the discovery of anti-AD agents and their therapeutic potential for AD through modulating the composition of gut microbiota.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Tuming Li
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Huazheng Liang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Monash Suzhou Research Institute, Suzhou, China
| | - Ping Zhong
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Qu L, Li Y, Liu F, Fang Y, He J, Ma J, Xu T, Wang L, Lei P, Dong H, Jin L, Yang Q, Wu W, Sun D. Microbiota-Gut-Brain Axis Dysregulation in Alzheimer's Disease: Multi-Pathway Effects and Therapeutic Potential. Aging Dis 2024; 15:1108-1131. [PMID: 37728579 PMCID: PMC11081173 DOI: 10.14336/ad.2023.0823-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
An essential regulator of neurodegenerative conditions like Alzheimer's disease (AD) is the gut microbiota. Alterations in intestinal permeability brought on by gut microbiota dysregulation encourage neuroinflammation, central immune dysregulation, and peripheral immunological dysregulation in AD, as well as hasten aberrant protein aggregation and neuronal death in the brain. However, it is unclear how the gut microbiota transmits information to the brain and how it influences brain cognition and function. In this review, we summarized the multiple pathways involved in the gut microbiome in AD and provided detailed treatment strategies based on the gut microbiome. Based on these observations, this review also discusses the problems, challenges, and strategies to address current therapeutic strategies.
Collapse
Affiliation(s)
- Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
- College of Veterinary Medicine, Jilin University, Changchun 130118, China.
| | - Yanwei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
18
|
Ouyang F, Yuan P, Ju Y, Chen W, Peng Z, Xu H. Alzheimer's disease as a causal risk factor for diabetic retinopathy: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1340608. [PMID: 38699385 PMCID: PMC11064697 DOI: 10.3389/fendo.2024.1340608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives This study aims to investigate the causal relationship between Alzheimer's Disease (AD) and Diabetic Retinopathy (DR). Methods Employing Mendelian Randomization (MR), Generalized Summary-data-based Mendelian Randomization (GSMR), and the MR-Steiger test, this study scrutinizes the genetic underpinnings of the hypothesized causal association between AD and DR, as well as its Proliferative DR (PDR) and Non-Proliferative DR (NPDR) subtypes. Comprehensive data from Genome-Wide Association Studies (GWAS) were analyzed, specifically AD data from the Psychiatric Genomics Consortium (71,880 cases/383,378 controls), and DR, PDR, and NPDR data from both the FinnGen consortium (FinnGen release R8, DR: 5,988 cases/314,042 controls; PDR: 8,383 cases/329,756 controls; NPDR: 3,446 cases/314,042 controls) and the IEU OpenGWAS (DR: 14,584 cases/176,010 controls; PDR: 8,681 cases/204,208 controls; NPDR: 2,026 cases/204,208 controls). The study also incorporated Functional Mapping and Annotation (FUMA) for an in-depth analysis of the GWAS results. Results The MR analyses revealed that genetic susceptibility to AD significantly increases the risk of DR, as evidenced by GWAS data from the FinnGen consortium (OR: 2.5090; 95% confidence interval (CI):1.2102-5.2018, false discovery rate P-value (PFDR)=0.0201; GSMR: bxy=0.8936, bxy_se=0.3759, P=0.0174), NPDR (OR: 2.7455; 95% CI: 1.3178-5.7197, PFDR=0.0166; GSMR: bxy=0.9682, bxy_se=0.3802, P=0.0126), and PDR (OR: 2.3098; 95% CI: 1.2411-4.2986, PFDR=0.0164; GSMR: bxy=0.7962, bxy_se=0.3205, P=0.0129) using DR GWAS from FinnGen consortium. These results were corroborated by DR GWAS datasets from IEU OpenGWAS. The MR-Steiger test confirmed a significant association of all identified instrumental variables (IVs) with AD. While a potential causal effect of DR and its subtypes on AD was identified, the robustness of these results was constrained by a low power value. FUMA analysis identified OARD1, NFYA, TREM1 as shared risk genes between DR and AD, suggesting a potential genetic overlap between these complex diseases. Discussion This study underscores the contribution of AD to an increased risk of DR, as well as NPDR and PDR subtypes, underscoring the necessity of a holistic approach in the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Fu Ouyang
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ping Yuan
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yaxin Ju
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Chen
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zijun Peng
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
19
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
20
|
Li P, Wang R, Dong WQ, Wang GY, Zhang AD, Chen HC, Tan C. Systemic neutrophils are triggered by respiratory Bacillus Calmette- Guérin and mediate pulmonary mycobacterial clearance in synergy with the triggering receptor expressed on myeloid cells 1. Microb Pathog 2024; 187:106535. [PMID: 38176463 DOI: 10.1016/j.micpath.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Tuberculosis remains a threat to public health. The only approved vaccine, Bacillus Calmette-Guérin (BCG), is administered intradermally and provides limited protection, and its effect on innate immunity via the respiratory route has not been fully elucidated. A mouse model with genetically depleted TREM1 and seven-color flow cytometry staining were used to characterize the comprehensive immune response induced by respiratory BCG, through evaluating organ bacterial loads, lung histopathology, and lung immunohistochemistry. During respiratory BCG infection, the murine lungs displayed effective bacterial clearance. Notably, marked differences in neutrophils were observed between thymus and bone marrow cells, characterized by a significant increase in the expression of the triggering receptor expressed on myeloid cells 1 (TREM1). Subsequently, upon depletion of TREM1, a reduction in pulmonary neutrophils was observed, which further exacerbated bacterial loads and resulted in worsened pathology following respiratory BCG infection. In summary, up-regulated expression of TREM1 in rapidly increasing circulating neutrophil by pulmonary BCG is required for an efficient host response to BCG infection, and suggests the important role of TREM1 in neutrophil-related pulmonary bacteria clearance and pathology.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Systematic Immunology of Tuberculosis, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Department of Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Qi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gao-Yan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - An-Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Honda M, Shimizu F, Sato R, Nakamori M. Contribution of Complement, Microangiopathy and Inflammation in Idiopathic Inflammatory Myopathies. J Neuromuscul Dis 2024; 11:5-16. [PMID: 38143369 PMCID: PMC10789353 DOI: 10.3233/jnd-230168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
PURPOSE OF REVIEW Idiopathic inflammatory myopathies (IIMs) are a heterogeneous group characterized by muscle weakness and skin symptoms and are categorized into six subtypes: dermatomyositis (DM), polymyositis (PM), anti-synthetase syndrome (ASS), immune-mediated myopathy (IMNM), inclusion body myopathy (IBM), and overlap myositis. Myositis-specific autoantibodies were detected for the diagnosis and classification of IIM. This review highlights the pathogenic contributions of the complement system, microangiopathy, and inflammation in IIM. RECENT FINDINGS Deposition of complement around capillaries and/or the sarcolemma was observed in muscle biopsy specimens from patients with DM, ASS, and IMNM, suggesting the pathomechanism of complement-dependent muscle and endothelial cell injury. A recent study using human muscle microvascular endothelial cells showed that Jo-1 antibodies from ASS induce complement-dependent cellular cytotoxicity in vitro. Based on both clinical and pathological observations, antibody- and complement-mediated microangiopathy may contribute to the development of DM and anti-Jo-1 ASS. Juvenile DM is characterized by the loss of capillaries, perivascular inflammation, and small-vessel angiopathies, which may be related to microinfarction and perifascicular atrophy. Several serum biomarkers that reflect the IFN1 signature and microangiopathy are elevated in patients with DM. The pathological observation of myxovirus resistance protein A (MxA), which suggests a type 1 interferon (IFN1) signature in DM, supports the diagnosis and further understanding of the pathomechanism of IIM. A recent report showed that an increase in triggering receptor expressed on myeloid cells (TREM-1) around perimysial blood vessels and muscles in patients with IIM plays a role in triggering inflammation and promoting the migration of inflammatory cells by secreting proinflammatory cytokines, such as tumor necrosis factor α. SUMMARY The deposition of complement in muscles and capillaries is a characteristic feature of DM, ASS, and IMNM. Microangiopathy plays a pathogenic role in DM, possibly resulting in perifascicular atrophy. Further understanding of the detailed pathomechanism regarding complement, microangiopathy, and inflammation may lead to novel therapeutic approaches for IIM.
Collapse
Affiliation(s)
- Masaya Honda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryota Sato
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Nakamori
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
22
|
Tang C, Liu D, Zhu Z. Research progress of microglial surface receptors in perioperative neurocognitive disorders. IBRAIN 2023; 10:450-461. [PMID: 39691417 PMCID: PMC11649389 DOI: 10.1002/ibra.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication in the perioperative period, which not only prolongs the hospitalization of patients, increases the cost of treatment, but even increases the postoperative mortality of patients, bringing a heavy burden to families and society. Mechanism exploration involves anesthesia and surgery that lead to microglial activation, promote the synthesis and secretion of inflammatory factors, cause an inflammatory cascade, aggravate nerve cell damage, and lead to cognitive dysfunction. It is believed that microglia-mediated neuroinflammatory responses play a vital role in the formation of PND. Microglia surface receptors are essential mediators for microglia to receive external stimuli, regulate microglial functional status, and carry out intercellular signal transmission. Various microglial surface receptors trigger neuroinflammation, damage neurons, and participate in the development and progression of PND by activating microglia. In this study, the roles of immunoglobulin receptors, chemokine receptors, purinergic receptors, and pattern recognition receptors in microglia surface receptors in PND were reviewed, to provide a reference for the mechanism research, prevention, and treatment of PND.
Collapse
Affiliation(s)
- Chun‐Chun Tang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Xing Liu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
23
|
Fan L, Liu Y, Wang Z, Mei X. Prognostic utility of sTREM-1 in predicting early neurological deterioration in patients with acute ischemic stroke treated without reperfusion therapy. J Stroke Cerebrovasc Dis 2023; 32:107381. [PMID: 37776727 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVE Serum triggering receptor expressed on myeloid cells type 1 (sTREM-1) is a new type of immunoglobulin superfamily receptor related to inflammation that aggravates brain injury. This study aimed to assess the clinical value of sTREM-1 in predicting early neurological deterioration in patients with acute ischemic stroke (AIS) treated without reperfusion therapy. METHODS This prospective cohort study enrolled 315 patients with acute ischemic stroke admitted to the Affiliated Taizhou People's Hospital of Nanjing Medical University between October 2020 and October 2022. The study excluded patients treated with reperfusion therapy. sTREM-1 levels were evaluated within 24 h of the acute ischemic stroke. Early neurological deterioration (END) was defined as an increase in the National Institutes of Health Stroke Scale (NIHSS) score ≥ 4 points within three days after admission. Multivariable analyses were used to investigate the relationship between sTREM-1 levels and END. RESULTS A total of 81 (25.7 %) patients had early neurological deterioration. Patients in the END group had a higher NIHSS score at admission (P =0.007), CRP levels (P =0.011), white blood cell count (P =0.002), fasting blood glucose levels (P =0.028), and sTREM-1 levels (P <0.001). After adjusting for confounders, higher sTREM-1 levels were significantly associated with an increased risk of early neurological deterioration (OR, 1.98; 95 % CI, 1.17-3.38, P=0.012). Moreover, sTREM-1 levels efficiently differentiated END (area under the curve: 0.779; 95 % CI: 0.731-0.822). Furthermore, the results showed significant differences between the high sTREM-1 group and the low sTREM-1 group in NIHSS scores (P=0.019), C-reactive protein (P=0.018), white blood cell count (P=0.013), and the incidence of early neurological deterioration (P<0.001). According to the multivariate logistic regression model, we discovered that the high sTREM-1 group was a significant independent predictor of early neurological deterioration incidence (OR, 4.19; 95 % CI, 1.46-9.84; P= 0.003). CONCLUSION sTREM-1 could be a potential biomarker for predicting early neurological deterioration in AIS patients not treated with reperfusion therapy.
Collapse
Affiliation(s)
- Lin Fan
- Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China; Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Ying Liu
- Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Zhengyang Wang
- Department of Neurology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Xiaoliang Mei
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| |
Collapse
|
24
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
25
|
Chaudhry TS, Senapati SG, Gadam S, Mannam HPSS, Voruganti HV, Abbasi Z, Abhinav T, Challa AB, Pallipamu N, Bheemisetty N, Arunachalam SP. The Impact of Microbiota on the Gut-Brain Axis: Examining the Complex Interplay and Implications. J Clin Med 2023; 12:5231. [PMID: 37629273 PMCID: PMC10455396 DOI: 10.3390/jcm12165231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The association and interaction between the central nervous system (CNS) and enteric nervous system (ENS) is well established. Essentially ENS is the second brain, as we call it. We tried to understand the structure and function, to throw light on the functional aspect of neurons, and address various disease manifestations. We summarized how various neurological disorders influence the gut via the enteric nervous system and/or bring anatomical or physiological changes in the enteric nervous system or the gut and vice versa. It is known that stress has an effect on Gastrointestinal (GI) motility and causes mucosal erosions. In our literature review, we found that stress can also affect sensory perception in the central nervous system. Interestingly, we found that mutations in the neurohormone, serotonin (5-HT), would result in dysfunctional organ development and further affect mood and behavior. We focused on the developmental aspects of neurons and cognition and their relation to nutritional absorption via the gastrointestinal tract, the development of neurodegenerative disorders in relation to the alteration in gut microbiota, and contrariwise associations between CNS disorders and ENS. This paper further summarizes the synergetic relation between gastrointestinal and neuropsychological manifestations and emphasizes the need to include behavioral therapies in management plans.
Collapse
Affiliation(s)
| | | | - Srikanth Gadam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Hari Priya Sri Sai Mannam
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Hima Varsha Voruganti
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Zainab Abbasi
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Tushar Abhinav
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | | | - Namratha Pallipamu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Niharika Bheemisetty
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Honda M, Shimizu F, Sato R, Mizukami Y, Watanabe K, Takeshita Y, Maeda T, Koga M, Kanda T. Jo-1 Antibodies From Myositis Induce Complement-Dependent Cytotoxicity and TREM-1 Upregulation in Muscle Endothelial Cells. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/4/e200116. [PMID: 37147138 PMCID: PMC10162704 DOI: 10.1212/nxi.0000000000200116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Muscle microangiopathy due to dysfunction of endothelial cells because of inflammation is a critical hallmark of dermatomyositis (DM); however, its pathomechanism remains unclear. The aim of this study was to evaluate the effect of immunogloblin G (IgG) from patients with idiopathic inflammatory myopathies (IIM) on muscle endothelial cells in vitro. METHODS Using a high-content imaging system, we analyzed whether IgG purified from sera from patients with IIM (n = 15), disease controls (DCs: n = 7), and healthy controls (HCs: n = 7) can bind to muscle endothelial cells and induce complement-dependent cellular cytotoxicity. RESULTS IgGs from Jo-1 antibody myositis could bind to muscle endothelial cells and caused complement-dependent cell cytotoxicity. RNA-seq demonstrated the upregulation of genes associated with tumor necrosis factor (TNF)-α, triggering receptor expressed on myeloid cells-1 (TREM-1), CD25, and mitochondria pathways after exposure to IgG from the Jo-1, signal recognition particle (SRP), and polymyositis (PM) groups. The high-content imaging system showed that TREM-1 expression in the Jo-1, SRP, and PM groups was increased in comparison with DCs and HCs and that the TNF-α expression in the Jo-1 group was higher in comparison with the SRP, PM, DC, and HC groups. The expression of TREM-1 was observed in biopsied capillaries and the muscle membrane from patients with Jo-1 and in biopsied muscle fiber and capillaries from patients with DM and SRP. The depletion of Jo-1 antibodies by IgG of patients with Jo-1 antibody myositis reduced the Jo-1 antibody-induced complement-dependent cellular cytotoxicity in muscle endothelial cells. DISCUSSION Jo-1 antibodies from Jo-1 antibody myositis show complement-dependent cellular cytotoxicity in muscle endothelial cells. IgGs from patients with Jo-1, SRP, and DM increase the TREM-1 expression in endothelial cells and muscles.
Collapse
Affiliation(s)
- Masaya Honda
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| | - Fumitaka Shimizu
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan.
| | - Ryota Sato
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| | - Yoichi Mizukami
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| | - Kenji Watanabe
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| | - Yukio Takeshita
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| | - Toshihiko Maeda
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| | - Michiaki Koga
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- From the Department of Neurology and Clinical Neuroscience (M.H., F.S., R.S., Y.T., M.K., T.K.), Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; and Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan
| |
Collapse
|
27
|
Wu K, Liu YY, Shao S, Song W, Chen XH, Dong YT, Zhang YM. The microglial innate immune receptors TREM-1 and TREM-2 in the anterior cingulate cortex (ACC) drive visceral hypersensitivity and depressive-like behaviors following DSS-induced colitis. Brain Behav Immun 2023:S0889-1591(23)00141-1. [PMID: 37286175 DOI: 10.1016/j.bbi.2023.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Wei Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
28
|
Zhong WJ, Zhang J, Duan JX, Zhang CY, Ma SC, Li YS, Yang NSY, Yang HH, Xiong JB, Guan CX, Jiang ZX, You ZJ, Zhou Y. TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury. J Transl Med 2023; 21:179. [PMID: 36879273 PMCID: PMC9990355 DOI: 10.1186/s12967-023-04027-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Necroptosis of macrophages is a necessary element in reinforcing intrapulmonary inflammation during acute lung injury (ALI). However, the molecular mechanism that sparks macrophage necroptosis is still unclear. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor expressed broadly on monocytes/macrophages. The influence of TREM-1 on the destiny of macrophages in ALI requires further investigation. METHODS TREM-1 decoy receptor LR12 was used to evaluate whether the TREM-1 activation induced necroptosis of macrophages in lipopolysaccharide (LPS)-induced ALI in mice. Then we used an agonist anti-TREM-1 Ab (Mab1187) to activate TREM-1 in vitro. Macrophages were treated with GSK872 (a RIPK3 inhibitor), Mdivi-1 (a DRP1 inhibitor), or Rapamycin (an mTOR inhibitor) to investigate whether TREM-1 could induce necroptosis in macrophages, and the mechanism of this process. RESULTS We first observed that the blockade of TREM-1 attenuated alveolar macrophage (AlvMs) necroptosis in mice with LPS-induced ALI. In vitro, TREM-1 activation induced necroptosis of macrophages. mTOR has been previously linked to macrophage polarization and migration. We discovered that mTOR had a previously unrecognized function in modulating TREM-1-mediated mitochondrial fission, mitophagy, and necroptosis. Moreover, TREM-1 activation promoted DRP1Ser616 phosphorylation through mTOR signaling, which in turn caused surplus mitochondrial fission-mediated necroptosis of macrophages, consequently exacerbating ALI. CONCLUSION In this study, we reported that TREM-1 acted as a necroptotic stimulus of AlvMs, fueling inflammation and aggravating ALI. We also provided compelling evidence suggesting that mTOR-dependent mitochondrial fission is the underpinning of TREM-1-triggered necroptosis and inflammation. Therefore, regulation of necroptosis by targeting TREM-1 may provide a new therapeutic target for ALI in the future.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jun Zhang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Sheng-Chao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.,The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zhi-Xing Jiang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Zhi-Jian You
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, China. .,Liuzhou Key Laboratory of Anesthesia and Brain Health, Liuzhou People's Hospital, Liuzhou, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
29
|
de Oliveira Matos A, dos Santos Dantas PH, Colmenares MTC, Sartori GR, Silva-Sales M, Da Silva JHM, Neves BJ, Andrade CH, Sales-Campos H. The CDR3 region as the major driver of TREM-1 interaction with its ligands, an in silico characterization. Comput Struct Biotechnol J 2023; 21:2579-2590. [PMID: 37122631 PMCID: PMC10130352 DOI: 10.1016/j.csbj.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor heavily investigated in infectious and non-infectious diseases. Because of its role in amplifying inflammation, TREM-1 has been explored as a diagnostic/prognostic biomarker. Further, as the receptor has been implicated in the pathophysiology of several diseases, therapies aiming at modulating its activity represent a promising strategy to constrain uncontrolled inflammatory or infectious diseases. Despite this, several aspects concerning its interaction with ligands and activation process, remain unclear. Although many molecules have been suggested as TREM-1 ligands, only five have been confirmed to interact with the receptor: actin, eCIRP, HMGB1, Hsp70 and PGLYRP1. However, the domains involved in the interaction between the receptor and these proteins are not clarified yet. Therefore, here we used in silico approaches to investigate the putative binding domains in the receptor, using hot spots analysis, molecular docking and molecular dynamics simulations between TREM-1 and its five known ligands. Our results indicated the complementarity-determining regions (CDRs) of the receptor as the main mediators of antigen recognition, especially the CDR3 loop. We believe that our study could be used as structural basis for the elucidation of TREM-1's recognition process, and may be useful for prospective in silico and biological investigations exploring the receptor in different contexts.
Collapse
Affiliation(s)
| | | | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Bruno Junior Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
- Correspondence to: Universidade Federal de Goiás – UFG, Instituto de Patologia Tropical e Saúde Pública – IPTSP, Rua 235, S/N, sala 332, Setor Leste Universitário, Goiânia, Goiás 746050-05, Brazil.
| |
Collapse
|
30
|
Macrophage-Targeted Sodium Chlorite (NP001) Slows Progression of Amyotrophic Lateral Sclerosis (ALS) through Regulation of Microbial Translocation. Biomedicines 2022; 10:biomedicines10112907. [PMID: 36428474 PMCID: PMC9687998 DOI: 10.3390/biomedicines10112907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous, progressive, and universally fatal neurodegenerative disease. A subset of ALS patients has measurable plasma levels of lipopolysaccharide (LPS) and C-reactive protein (CRP) consistent with low-grade microbial translocation (MT). Unless interrupted, MT sets up a self-perpetuating loop of inflammation associated with systemic macrophage activation. To test whether MT contributed to ALS progression, blood specimens from a phase 2 study of NP001 in ALS patients were evaluated for changes in activity in treated patients as compared to controls over the 6-month study. In this post hoc analysis, plasma specimens from baseline and six-month timepoints were analyzed. Compared with baseline values, biomarkers related to MT were significantly decreased (LPS, LPS binding protein (LBP), IL-18, Hepatocyte growth factor (HGF), soluble CD163 (sCD163)) in NP001-treated patients as compared to controls, whereas wound healing and immunoregulatory factors were increased (IL-10, Epidermal growth factor (EGF), neopterin) by the end of study. These biomarker results linked to the positive clinical trial outcome confirm that regulation of macrophage activation may be an effective approach for the treatment of ALS and, potentially, other neuroinflammatory diseases related to MT.
Collapse
|
31
|
Lee D, Lee VMY, Hur SK. Manipulation of the diet-microbiota-brain axis in Alzheimer's disease. Front Neurosci 2022; 16:1042865. [PMID: 36408394 PMCID: PMC9672822 DOI: 10.3389/fnins.2022.1042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies investigating the pathogenesis of Alzheimer's disease have identified various interdependent constituents contributing to the exacerbation of the disease, including Aβ plaque formation, tau protein hyperphosphorylation, neurofibrillary tangle accumulation, glial inflammation, and the eventual loss of proper neural plasticity. Recently, using various models and human patients, another key factor has been established as an influential determinant in brain homeostasis: the gut-brain axis. The implications of a rapidly aging population and the absence of a definitive cure for Alzheimer's disease have prompted a search for non-pharmaceutical tools, of which gut-modulatory therapies targeting the gut-brain axis have shown promise. Yet multiple recent studies examining changes in human gut flora in response to various probiotics and environmental factors are limited and difficult to generalize; whether the state of the gut microbiota in Alzheimer's disease is a cause of the disease, a result of the disease, or both through numerous feedback loops in the gut-brain axis, remains unclear. However, preliminary findings of longitudinal studies conducted over the past decades have highlighted dietary interventions, especially Mediterranean diets, as preventative measures for Alzheimer's disease by reversing neuroinflammation, modifying the intestinal and blood-brain barrier (BBB), and addressing gut dysbiosis. Conversely, the consumption of Western diets intensifies the progression of Alzheimer's disease through genetic alterations, impaired barrier function, and chronic inflammation. This review aims to support the growing body of experimental and clinical data highlighting specific probiotic strains and particular dietary components in preventing Alzheimer's disease via the gut-brain axis.
Collapse
Affiliation(s)
- Daniel Lee
- Middleton High School, Middleton, WI, United States
| | - Virginia M-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Seong Kwon Hur
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
32
|
Miller RG, Zhang R, Bracci PM, Azhir A, Barohn R, Bedlack R, Benatar M, Berry JD, Cudkowicz M, Kasarskis EJ, Mitsumoto H, Walk D, Shefner J, McGrath MS. Phase
2B
randomized controlled trial of
NP001
in amyotrophic lateral sclerosis: pre‐specified and post‐hoc analyses. Muscle Nerve 2022; 66:39-49. [PMID: 35098554 PMCID: PMC9327716 DOI: 10.1002/mus.27511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/19/2022]
Abstract
Introduction/Aims ALS is a heterogeneous disease that may be complicated or in part driven by inflammation. NP001, a regulator of macrophage activation, was associated with slowing disease progression in those with higher levels of the plasma inflammatory marker C‐reactive protein (CRP) in phase 2A studies in ALS. Here, we evaluate the effects of NP001 in a phase 2B trial, and perform a post hoc analysis with combined data from the preceding phase 2A trial. Methods The phase 2B trial enrolled 138 participants within 3 y of symptom onset and with plasma hs‐CRP values >1.13 mg/L. They were randomized 1:1 to receive either placebo or NP001 for 6 mo. Change from baseline ALSFRS‐R scores was the primary efficacy endpoint. Secondary endpoints included vital capacity (VC) change from baseline and percentage of participants showing no decline of ALSFRS‐R score over 6 mo (non‐progressor). Results The phase 2B study did not show significant differences between placebo and active treatment with respect to change in ALSFRS‐R scores, or VC. The drug was safe and well tolerated. A post hoc analysis identified a 40‐ to 65‐y‐old subset in which NP001‐treated patients demonstrated slower declines in ALSFRS‐R score by 36% and VC loss by 51% compared with placebo. A greater number of non‐progressors were NP001‐treated compared with placebo (p = .004). Discussion Although the phase 2B trial failed to meet its primary endpoints, post hoc analyses identified a subgroup whose decline in ALSFRS‐R and VC scores were significantly slower than placebo. Further studies will be required to validate these findings.
Collapse
Affiliation(s)
| | - Rongzhen Zhang
- Department of Medicine University of California San Francisco San Francisco CA USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics University of California San Francisco San Francisco CA USA
| | | | | | | | | | | | | | | | | | - David Walk
- University of Minnesota Medical School Minneapolis MN USA
| | - Jeremy Shefner
- Barrow Neurological Institute, University of Arizona College of Medicine Phoenix Creighton University College of Medicine Phoenix Phoenix AZ USA
| | - Michael S. McGrath
- Department of Medicine University of California San Francisco San Francisco CA USA
- Neuvivo, Inc. Palo Alto CA USA
| |
Collapse
|
33
|
Li XX, Zhang F. Targeting TREM2 for Parkinson's Disease: Where to Go? Front Immunol 2022; 12:795036. [PMID: 35003116 PMCID: PMC8740229 DOI: 10.3389/fimmu.2021.795036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of most common neurodegenerative disorders caused by a combination of environmental and genetic risk factors. Currently, numerous population genetic studies have shown that polymorphisms in myeloid cell-triggered receptor II (TREM2) are associated with a variety of neurodegenerative disorders. Recently, TREM2 has been verified to represent a promising candidate gene for PD susceptibility and progression. For example, the expression of TREM2 was apparently increased in the prefrontal cortex of PD patients. Moreover, the rare missense mutations in TREM2 (rs75932628, p.R47H) was confirmed to be a risk factor of PD. In addition, overexpression of TREM2 reduced dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of PD. Due to the complex pathogenesis of PD, there is still no effective drug treatment. Thus, TREM2 has received increasing widespread attention as a potential therapeutic target. This review focused on the variation of TREM2 in PD and roles of TREM2 in PD pathogenesis, such as excessive-immune inflammatory response, α-Synuclein aggregation and oxidative stress, to further provide evidence for new immune-related biomarkers and therapies for PD.
Collapse
Affiliation(s)
- Xiao-Xian Li
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Sek AC, Percopo CM, Boddapati AK, Ma M, Geslewitz WE, Krumholz JO, Lack JB, Rosenberg HF. Differential expression of Triggering Receptor Expressed on Myeloid cells 2 (Trem2) in tissue eosinophils. J Leukoc Biol 2021; 110:679-691. [PMID: 33404075 DOI: 10.1002/jlb.3a0920-620r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
No longer regarded simply as end-stage cytotoxic effectors, eosinophils are now recognized as complex cells with unique phenotypes that develop in response stimuli in the local microenvironment. In our previous study, we documented eosinophil infiltration in damaged muscle characteristic of dystrophin-deficient (mdx) mice that model Duchenne muscular dystrophy. Specifically, we found that eosinophils did not promote the generation of muscle lesions, as these persisted in eosinophil-deficient mdx.PHIL mice. To obtain additional insight into these findings, we performed RNA sequencing of eosinophils isolated from muscle tissue of mdx, IL5tg, and mdx.IL5tg mice. We observed profound up-regulation of classical effector proteins (major basic protein-1, eosinophil peroxidase, and eosinophil-associated ribonucleases) in eosinophils isolated from lesion-free muscle from IL5tg mice. By contrast, we observed significant up-regulation of tissue remodeling genes, including proteases, extracellular matrix components, collagen, and skeletal muscle precursors, as well as the immunomodulatory receptor, Trem2, in eosinophils isolated from skeletal muscle tissue from the dystrophin-deficient mdx mice. Although the anti-inflammatory properties of Trem2 have been described in the monocyte/macrophage lineage, no previous studies have documented its expression in eosinophils. We found that Trem2 was critical for full growth and differentiation of bone marrow-derived eosinophil cultures and full expression of TLR4. Immunoreactive Trem2 was also detected on human peripheral blood eosinophils at levels that correlated with donor body mass index and total leukocyte count. Taken together, our findings provide important insight into the immunomodulatory and remodeling capacity of mouse eosinophils and the flexibility of their gene expression profiles in vivo.
Collapse
Affiliation(s)
- Albert C Sek
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Research Technologies Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Merck Research Laboratories, South San Francisco, California, 94080, USA
| | - Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Research Technologies Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Twinbrook III, National Institutes of Health, Rockville, Maryland, 20851, USA
| | - Arun K Boddapati
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21701, USA
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Research Technologies Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Genetic Immunotherapy Section, Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Wendy E Geslewitz
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Research Technologies Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Department of Microbiology and Immunology, Driskill Graduate Program in the Life Sciences, Northwestern University, Chicago, Illinois, 60611, USA
| | - Julia O Krumholz
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Research Technologies Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21701, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
- Research Technologies Development Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
35
|
Günther C, Rothhammer V, Karow M, Neurath M, Winner B. The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int J Mol Sci 2021; 22:ijms22168870. [PMID: 34445575 PMCID: PMC8396333 DOI: 10.3390/ijms22168870] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The gut–brain axis is a bidirectional communication system driven by neural, hormonal, metabolic, immunological, and microbial signals. Signaling events from the gut can modulate brain function and recent evidence suggests that the gut–brain axis may play a pivotal role in linking gastrointestinal and neurological diseases. Accordingly, accumulating evidence has suggested a link between inflammatory bowel diseases (IBDs) and neurodegenerative, as well as neuroinflammatory diseases. In this context, clinical, epidemiological and experimental data have demonstrated that IBD predisposes a person to pathologies of the central nervous system (CNS). Likewise, a number of neurological disorders are associated with changes in the intestinal environment, which are indicative for disease-mediated gut–brain inter-organ communication. Although this axis was identified more than 20 years ago, the sequence of events and underlying molecular mechanisms are poorly defined. The emergence of precision medicine has uncovered the need to take into account non-intestinal symptoms in the context of IBD that could offer the opportunity to tailor therapies to individual patients. The aim of this review is to highlight recent findings supporting the clinical and biological link between the gut and brain, as well as its clinical significance for IBD as well as neurodegeneration and neuroinflammation. Finally, we focus on novel human-specific preclinical models that will help uncover disease mechanisms to better understand and modulate the function of this complex system.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| |
Collapse
|
36
|
Freitas RS, Roque CR, Matos GA, Belayev L, de Azevedo OGR, Alvarez-Leite JI, Guerrant RL, Oriá RB. Immunoinflammatory role of apolipoprotein E4 in malnutrition and enteric infections and the increased risk for chronic diseases under adverse environments. Nutr Rev 2021; 80:1001-1012. [PMID: 34406390 DOI: 10.1093/nutrit/nuab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apolipoprotein E plays a crucial role in cholesterol metabolism. The immunomodulatory functions of the human polymorphic APOE gene have gained particular interest because APOE4, a well-recognized risk factor for late-onset Alzheimer's disease, has also been recently linked to increased risk of COVID-19 infection severity in a large UK biobank study. Although much is known about apoE functions in the nervous system, much less is known about APOE polymorphism effects on malnutrition and enteric infections and the consequences for later development in underprivileged environments. In this review, recent findings are summarized of apoE's effects on intestinal function in health and disease and the role of APOE4 in protecting against infection and malnutrition in children living in unfavorable settings, where poor sanitation and hygiene prevail, is highlighted. The potential impact of APOE4 on later development also is discussed and gaps in knowledge are identified that need to be addressed to protect children's development under adverse environments.
Collapse
Affiliation(s)
- Raul S Freitas
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Cássia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Gabriella A Matos
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Health Sciences Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Orleâncio G R de Azevedo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| |
Collapse
|
37
|
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson's Disease. Life (Basel) 2021; 11:life11080732. [PMID: 34440476 PMCID: PMC8400095 DOI: 10.3390/life11080732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to identifying various neuronal cytotypes belonging to ENS in baseline conditions. The second part of the study provides evidence on how these very same neurons are altered during Parkinson’s disease. In fact, although being defined as a movement disorder, Parkinson’s disease features a number of degenerative alterations, which often anticipate motor symptoms. Among these, the GI tract is often involved, and for this reason, it is important to assess its normal and pathological structure. A deeper knowledge of the ENS is expected to improve the understanding of diagnosis and treatment of Parkinson’s disease.
Collapse
|
38
|
Shen L, Zhou Y, Wu X, Sun Y, Xiao T, Gao Y, Wang J. TREM1 Blockade Ameliorates Lipopolysaccharide-Induced Acute Intestinal Dysfunction through Inhibiting Intestinal Apoptosis and Inflammation Response. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6635452. [PMID: 33954188 PMCID: PMC8068534 DOI: 10.1155/2021/6635452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The lipopolysaccharide- (LPS-) induced acute intestinal dysfunction model has been widely applied in recent years. Here, our aim was to investigate the effect of triggering receptor expressed on myeloid cells-1 (TREM1) inhibitor in LPS-induced acute intestinal dysfunction. METHODS Male rats were randomly assigned into normal (saline injection), model (LPS and saline injection), and LP17 (LPS and LP17 (a synthetic TREM1 inhibitor) injection) groups. The levels of intestinal TREM1 expression were evaluated by immunohistochemistry and western blot. Intestinal permeability and apoptosis were separately assessed by the lactulose/mannitol (L/M) ratio and TUNEL assay. The levels of soluble TREM1 (sTREM1), TNF-α, IL-6, and IL-1β were measured in the plasma and intestinal tissues by ELISA. The expression levels of NF-κB, high-mobility group box 1 (HMGB1), and toll-like receptor 4 (TLR-4) were measured with RT-qPCR and western blot. After transfection with si-TREM1 in LPS-induced intestinal epithelium-6 (IEC-6) cells, p-p65 and p-IκBα levels were detected by western blot. RESULTS LP17-mediated TREM1 inhibition alleviated the intestine tissue damage in rats with LPS-induced acute intestinal dysfunction. LP17 attenuated the LPS-induced increase in sTREM1, TNF-α, IL-6, and IL-1β levels in the plasma and intestinal tissues. Furthermore, intestine permeability and epithelial cell apoptosis were ameliorated by LP17. LP17 attenuated the LPS-induced increase in the expression of TREM1, HMGB1, TLR-4, and NF-κB in the intestine tissues. In vitro, TREM1 knockdown inactivated the NF-κB signaling in LPS-induced IEC-6 cells. CONCLUSION LP17 could ameliorate LPS-induced acute intestinal dysfunction, which was associated with inhibition of intestinal apoptosis and inflammation response.
Collapse
Affiliation(s)
- Lijuan Shen
- Wuxi Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Affiliated Wuxi Hospital, Wuxi, 214071 Jiangsu, China
| | - Yonghua Zhou
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Jiangsu Provincial Key Laboratory on Molecular Biology of Parasites, Jiangsu Provincial Key Subject on Parasitic Diseases, Wuxi 214064, China
| | - Xiping Wu
- Wuxi Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Affiliated Wuxi Hospital, Wuxi, 214071 Jiangsu, China
| | - Yuewen Sun
- Wuxi Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Affiliated Wuxi Hospital, Wuxi, 214071 Jiangsu, China
| | - Tao Xiao
- Wuxi Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Affiliated Wuxi Hospital, Wuxi, 214071 Jiangsu, China
| | - Yin Gao
- Wuxi Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Affiliated Wuxi Hospital, Wuxi, 214071 Jiangsu, China
| | - Jingui Wang
- Wuxi Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine Affiliated Wuxi Hospital, Wuxi, 214071 Jiangsu, China
| |
Collapse
|
39
|
Maurya SK, Bhattacharya N, Mishra S, Bhattacharya A, Banerjee P, Senapati S, Mishra R. Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration. Front Pharmacol 2021; 12:654489. [PMID: 33927630 PMCID: PMC8076853 DOI: 10.3389/fphar.2021.654489] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia, a type of innate immune cell of the brain, regulates neurogenesis, immunological surveillance, redox imbalance, cognitive and behavioral changes under normal and pathological conditions like Alzheimer's, Parkinson's, Multiple sclerosis and traumatic brain injury. Microglia produces a wide variety of cytokines to maintain homeostasis. It also participates in synaptic pruning and regulation of neurons overproduction by phagocytosis of neural precursor cells. The phenotypes of microglia are regulated by the local microenvironment of neurons and astrocytes via interaction with both soluble and membrane-bound mediators. In case of neuron degeneration as observed in acute or chronic neurodegenerative diseases, microglia gets released from the inhibitory effect of neurons and astrocytes, showing activated phenotype either of its dual function. Microglia shows neuroprotective effect by secreting growths factors to heal neurons and clears cell debris through phagocytosis in case of a moderate stimulus. But the same microglia starts releasing pro-inflammatory cytokines like TNF-α, IFN-γ, reactive oxygen species (ROS), and nitric oxide (NO), increasing neuroinflammation and redox imbalance in the brain under chronic signals. Therefore, pharmacological targeting of microglia would be a promising strategy in the regulation of neuroinflammation, redox imbalance and oxidative stress in neurodegenerative diseases. Some studies present potentials of natural products like curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane to suppress activation of microglia. These natural products have also been proposed as effective therapeutics to regulate the progression of neurodegenerative diseases. The present review article intends to explain the molecular mechanisms and functions of microglia and molecular dynamics of microglia specific genes and proteins like Iba1 and Tmem119 in neurodegeneration. The possible interventions by curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane on microglia specific protein Iba1 suggest possibility of natural products mediated regulation of microglia phenotypes and its functions to control redox imbalance and neuroinflammation in management of Alzheimer's, Parkinson's and Multiple Sclerosis for microglia-mediated therapeutics.
Collapse
Affiliation(s)
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Suman Mishra
- Department of Molecular Medicine and Biotechnology, SGPGI, Lucknow, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
40
|
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front Neurosci 2021; 15:639140. [PMID: 33633540 PMCID: PMC7900543 DOI: 10.3389/fnins.2021.639140] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The classic concept of the absence of lymphatic vessels in the central nervous system (CNS), suggesting the immune privilege of the brain in spite of its high metabolic rate, was predominant until recent times. On the other hand, this idea left questioned how cerebral interstitial fluid is cleared of waste products. It was generally thought that clearance depends on cerebrospinal fluid (CSF). Not long ago, an anatomically and functionally discrete paravascular space was revised to provide a pathway for the clearance of molecules drained within the interstitial space. According to this model, CSF enters the brain parenchyma along arterial paravascular spaces. Once mixed with interstitial fluid and solutes in a process mediated by aquaporin-4, CSF exits through the extracellular space along venous paravascular spaces, thus being removed from the brain. This process includes the participation of perivascular glial cells due to a sieving effect of their end-feet. Such draining space resembles the peripheral lymphatic system, therefore, the term "glymphatic" (glial-lymphatic) pathway has been coined. Specific studies focused on the potential role of the glymphatic pathway in healthy and pathological conditions, including neurodegenerative diseases. This mainly concerns Alzheimer's disease (AD), as well as hemorrhagic and ischemic neurovascular disorders; other acute degenerative processes, such as normal pressure hydrocephalus or traumatic brain injury are involved as well. Novel morphological and functional investigations also suggested alternative models to drain molecules through perivascular pathways, which enriched our insight of homeostatic processes within neural microenvironment. Under the light of these considerations, the present article aims to discuss recent findings and concepts on nervous lymphatic drainage and blood-brain barrier (BBB) in an attempt to understand how peripheral pathological conditions may be detrimental to the CNS, paving the way to neurodegeneration.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
41
|
Matos ADO, Dantas PHDS, Silva-Sales M, Sales-Campos H. TREM-1 isoforms in bacterial infections: to immune modulation and beyond. Crit Rev Microbiol 2021; 47:290-306. [PMID: 33522328 DOI: 10.1080/1040841x.2021.1878106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) is an innate immunity receptor associated with the amplification of inflammation in sterile and non-sterile inflammatory disorders. Since its first description, the two isoforms of the receptor, membrane and soluble (mTREM-1 and sTREM-1, respectively) have been largely explored in the immunopathogenesis of several bacterial diseases and sepsis. The role of the receptor in these scenarios seems to be at least partly dependent on the source/type of bacteria, host and context. As uncontrolled inflammation is a result of several bacterial infections, the inhibition of the receptor has been considered as a promising approach to treat such conditions. Further, sTREM-1 has been explored as a biomarker for diagnosis and/or prognosis of several bacterial diseases. Therefore, this review aims to provide an updated insight into how the receptor influences and is influenced by bacterial infections, highlighting the advances regarding the use/manipulation of TREM-1 isoforms in biomedical research and clinical practice.
Collapse
Affiliation(s)
| | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | |
Collapse
|
42
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
43
|
Mei B, Li J, Zuo Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor. Brain Behav Immun 2021; 91:296-314. [PMID: 33039659 PMCID: PMC7749843 DOI: 10.1016/j.bbi.2020.10.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a significant clinical issue that is associated with increased mortality and cost of health care. Dexmedetomidine, an α2 adrenoceptor agonist that is used to provide sedation, has been shown to induce neuroprotection under various conditions. This study was designed to determine whether dexmedetomidine protects against SAE and whether α2 adrenoceptor plays a role in this protection. Six- to eight-week old CD-1 male mice were subjected to cecal ligation and puncture (CLP). They were treated with intraperitoneal injection of dexmedetomidine in the presence or absence of α2 adrenoceptor antagonists, atipamezole or yohimbine, or an α2A adrenoceptor antagonist, BRL-44408. Hippocampus and blood were harvested for measuring cytokines. Mice were subjected to Barnes maze and fear conditioning 14 days after CLP to evaluate their learning and memory. CLP significantly increased the proinflammatory cytokines including tumor necrosis factor α, interleukin (IL)-6 and IL-1β in the blood and hippocampus. CLP also increased the permeability of blood-brain barrier (BBB) and impaired learning and memory. These CLP detrimental effects were attenuated by dexmedetomidine. Intracerebroventricular application of atipamezole, yohimbine or BRL-44408 blocked the protection of dexmedetomidine on the brain but not on the systemic inflammation. Astrocytes but not microglia expressed α2A adrenoceptors. Microglial depletion did not abolish the protective effects of dexmedetomidine. These results suggest that dexmedetomidine reduces systemic inflammation, neuroinflammation, injury of BBB and cognitive dysfunction in septic mice. The protective effects of dexmedetomidine on the brain may be mediated by α2A adrenoceptors in the astrocytes.
Collapse
Affiliation(s)
- Bin Mei
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, PR China.
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA.
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA.
| |
Collapse
|
44
|
Serum Levels of Soluble Triggering Receptor Expressed on Myeloid Cells-1 Associated with the Severity and Outcome of Acute Ischemic Stroke. J Clin Med 2020; 10:jcm10010061. [PMID: 33375339 PMCID: PMC7795761 DOI: 10.3390/jcm10010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke is a neurological emergency, where the mechanism of the blood supply to the brain is impaired, resulting in brain cell ischemia and death. Neuroinflammation is a key component in the ischemic cascade that results in cell damage and death after cerebral ischemia. The triggering receptor expressed on myeloid cells-1 (TREM-1) modulates neuroinflammation after acute ischemic stroke. In the present study, 60 patients with acute ischemic stroke, who had been subjected to neurological examinations and National Institutes of Health Stroke Scale (NIHSS) and brain magnetic resonance imaging studies, were enrolled in the emergency room of Kaohsiung Chang Gung Memorial Hospital. Twenty-four healthy volunteers were recruited as controls. The serum levels of soluble TREM-1 (sTREM-1), human S100 calcium-binding protein B (S100B), and proinflammatory cytokines and chemokines, including tumor necrosis α (TNF-α), interleukin 1β, interleukin 6 (IL-6), interleukin 8, and interferon-γ were measured immediately after acute ischemic stroke. The serum levels of sTREM-1, TNFα, IL-6, and S100B were correlated with the stroke volume and NIHSS, after acute ischemic stroke. Additionally, the serum levels of sTREM-1 were significantly positively correlated with S100B. The functional outcomes were evaluated 6 months after ischemic stroke by the Barthel index, which was correlated with the age and levels of sTREM-1 and S100B. We suggest that acute ischemic stroke induces neuroinflammation by the activation of the TREM-1 signaling pathway and the downstream inflammatory machinery that modulates the inflammatory response and ischemic neuronal cell death. From a translational perspective, our results may allow for the development of a new therapeutic strategy for acute ischemic stroke by targeting the TREM-1 signaling pathway.
Collapse
|
45
|
|