1
|
Li X, Ma Q, Wang X, Zhong Y, Zhang Y, Zhang P, Du Y, Luo H, Chen Y, Li X, Li Y, He R, Zhou Y, Li Y, Cheng M, He J, Rong T, Tang Q. A teosinte-derived allele of ZmSC improves salt tolerance in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1361422. [PMID: 38903442 PMCID: PMC11188391 DOI: 10.3389/fpls.2024.1361422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Maize, a salt-sensitive crop, frequently suffers severe yield losses due to soil salinization. Enhancing salt tolerance in maize is crucial for maintaining yield stability. To address this, we developed an introgression line (IL76) through introgressive hybridization between maize wild relatives Zea perennis, Tripsacum dactyloides, and inbred Zheng58, utilizing the tri-species hybrid MTP as a genetic bridge. Previously, genetic variation analysis identified a polymorphic marker on Zm00001eb244520 (designated as ZmSC), which encodes a vesicle-sorting protein described as a salt-tolerant protein in the NCBI database. To characterize the identified polymorphic marker, we employed gene cloning and homologous cloning techniques. Gene cloning analysis revealed a non-synonymous mutation at the 1847th base of ZmSCIL76 , where a guanine-to-cytosine substitution resulted in the mutation of serine to threonine at the 119th amino acid sequence (using ZmSCZ58 as the reference sequence). Moreover, homologous cloning demonstrated that the variation site derived from Z. perennis. Functional analyses showed that transgenic Arabidopsis lines overexpressing ZmSCZ58 exhibited significant reductions in leaf number, root length, and pod number, alongside suppression of the expression of genes in the SOS and CDPK pathways associated with Ca2+ signaling. Similarly, fission yeast strains expressing ZmSCZ58 displayed inhibited growth. In contrast, the ZmSCIL76 allele from Z. perennis alleviated these negative effects in both Arabidopsis and yeast, with the lines overexpressing ZmSCIL76 exhibiting significantly higher abscisic acid (ABA) content compared to those overexpressing ZmSCZ58 . Our findings suggest that ZmSC negatively regulates salt tolerance in maize by suppressing downstream gene expression associated with Ca2+ signaling in the CDPK and SOS pathways. The ZmSCIL76 allele from Z. perennis, however, can mitigate this negative regulatory effect. These results provide valuable insights and genetic resources for future maize salt tolerance breeding programs.
Collapse
Affiliation(s)
- Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiangqiang Ma
- Pingliang Academy of Agricultural Sciences, Pingliang, China
| | - Xingyu Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Zhong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yibo Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zhang
- Animal Feeding and Management Department, Research Base of Giant Panda Breeding, Chengdu, China
| | - Yiyang Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hanyu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangyuan Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ruyu He
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Li
- School of Urban and Rural Planning and Construction, Mianyang Teachers’ College, Mianyang, China
| | - Mingjun Cheng
- College of Grassland Resources, Southwest Minzu University, Chengdu, China
| | - Jianmei He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Nouraei S, Mia MS, Liu H, Turner NC, Yan G. Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. Mol Genet Genomics 2024; 299:22. [PMID: 38430317 PMCID: PMC10908643 DOI: 10.1007/s00438-024-02104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024]
Abstract
Drought stress poses a severe threat to global wheat production, necessitating an in-depth exploration of the genetic basis for drought tolerance associated traits. This study employed a 90 K SNP array to conduct a genome-wide association analysis, unravelling genetic determinants of key traits related to drought tolerance in wheat, namely plant height, root length, and root and shoot dry weight. Using the mixed linear model (MLM) method on 125 wheat accessions subjected to both well-watered and drought stress treatments, we identified 53 SNPs significantly associated with stress susceptibility (SSI) and tolerance indices (STI) for the targeted traits. Notably, chromosomes 2A and 3B stood out with ten and nine associated markers, respectively. Across 17 chromosomes, 44 unique candidate genes were pinpointed, predominantly located on the distal ends of 1A, 1B, 1D, 2A, 3A, 3B, 4A, 6A, 6B, 7A, 7B, and 7D chromosomes. These genes, implicated in diverse functions related to plant growth, development, and stress responses, offer a rich resource for future investigation. A clustering pattern emerged, notably with seven genes associated with SSI for plant height and four genes linked to both STI of plant height and shoot dry weight, converging on specific regions of chromosome arms of 2AS and 3BL. Additionally, shared genes encoding polygalacturonase, auxilin-related protein 1, peptide deformylase, and receptor-like kinase underscored the interconnectedness between plant height and shoot dry weight. In conclusion, our findings provide insights into the molecular mechanisms governing wheat drought tolerance, identifying promising genomic loci for further exploration and crop improvement strategies.
Collapse
Affiliation(s)
- Sina Nouraei
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Md Sultan Mia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Neil C Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
3
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
4
|
Fu Y, Fan B, Li X, Bao H, Zhu C, Chen Z. Autophagy and multivesicular body pathways cooperate to protect sulfur assimilation and chloroplast functions. PLANT PHYSIOLOGY 2023; 192:886-909. [PMID: 36852939 PMCID: PMC10231471 DOI: 10.1093/plphys/kiad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Autophagy and multivesicular bodies (MVBs) represent 2 closely related lysosomal/vacuolar degradation pathways. In Arabidopsis (Arabidopsis thaliana), autophagy is stress-induced, with deficiency in autophagy causing strong defects in stress responses but limited effects on growth. LYST-INTERACTING PROTEIN 5 (LIP5) is a key regulator of stress-induced MVB biogenesis, and mutation of LIP5 also strongly compromises stress responses with little effect on growth in Arabidopsis. To determine the functional interactions of these 2 pathways in Arabidopsis, we generated mutations in both the LIP5 and AUTOPHAGY-RELATED PROTEIN (ATG) genes. atg5/lip5 and atg7/lip5 double mutants displayed strong synergistic phenotypes in fitness characterized by stunted growth, early senescence, reduced survival, and greatly diminished seed production under normal growth conditions. Transcriptome and metabolite analysis revealed that chloroplast sulfate assimilation was specifically downregulated at early seedling stages in the atg7/lip5 double mutant prior to the onset of visible phenotypes. Overexpression of adenosine 5'-phosphosulfate reductase 1, a key enzyme in sulfate assimilation, substantially improved the growth and fitness of the atg7/lip5 double mutant. Comparative multi-omic analysis further revealed that the atg7/lip5 double mutant was strongly compromised in other chloroplast functions including photosynthesis and primary carbon metabolism. Premature senescence and reduced survival of atg/lip5 double mutants were associated with increased accumulation of reactive oxygen species and overactivation of stress-associated programs. Blocking PHYTOALEXIN DEFICIENT 4 and salicylic acid signaling prevented early senescence and death of the atg7/lip5 double mutant. Thus, stress-responsive autophagy and MVB pathways play an important cooperative role in protecting essential chloroplast functions including sulfur assimilation under normal growth conditions to suppress salicylic-acid-dependent premature cell-death and promote plant growth and fitness.
Collapse
Affiliation(s)
- Yunting Fu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hexigeduleng Bao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
5
|
Gorshkov AP, Kusakin PG, Borisov YG, Tsyganova AV, Tsyganov VE. Effect of Triazole Fungicides Titul Duo and Vintage on the Development of Pea ( Pisum sativum L.) Symbiotic Nodules. Int J Mol Sci 2023; 24:8646. [PMID: 37240010 PMCID: PMC10217885 DOI: 10.3390/ijms24108646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation and, in particular, on nodule morphology, were studied. Both fungicides at the highest concentration decreased the nodule number and dry weight of the roots 20 days after inoculation. Transmission electron microscopy revealed the following ultrastructural changes in nodules: modifications in the cell walls (their clearing and thinning), thickening of the infection thread walls with the formation of outgrowths, accumulation of poly-β-hydroxybutyrates in bacteroids, expansion of the peribacteroid space, and fusion of symbiosomes. Fungicides Vintage and Titul Duo negatively affect the composition of cell walls, leading to a decrease in the activity of synthesis of cellulose microfibrils and an increase in the number of matrix polysaccharides of cell walls. The results obtained coincide well with the data of transcriptomic analysis, which revealed an increase in the expression levels of genes that control cell wall modification and defense reactions. The data obtained indicate the need for further research on the effects of pesticides on the legume-Rhizobium symbiosis in order to optimize their use.
Collapse
Affiliation(s)
- Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Pyotr G. Kusakin
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Yaroslav G. Borisov
- Research Resource Centre “Molecular and Cell Technologies”, Saint Petersburg State University, Saint Petersburg 199034, Russia;
| | - Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (A.P.G.); (P.G.K.); (A.V.T.)
- Saint Petersburg Scientific Center RAS, Universitetskaya Embankment 5, Saint Petersburg 199034, Russia
| |
Collapse
|
6
|
Jacopo M. Unconventional protein secretion (UPS): role in important diseases. MOLECULAR BIOMEDICINE 2023; 4:2. [PMID: 36622461 PMCID: PMC9827022 DOI: 10.1186/s43556-022-00113-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Unconventional protein secretion (UPS) is the new secretion process discovered in liquid form over three decades ago. More recently, UPS has been shown to operate also in solid forms generated from four types of organelles: fractions of lysosomes and autophagy (APh) undergoing exocytosis; exosomes and ectosomes, with their extracellular vesicles (EVs). Recently many mechanisms and proteins of these solid forms have been shown to depend on UPS. An additional function of UPS is the regulation of diseases, often investigated separately from each other. In the present review, upon short presentation of UPS in healthy cells and organs, interest is focused on the mechanisms and development of diseases. The first reported are neurodegenerations, characterized by distinct properties. Additional diseases, including inflammasomes, inflammatory responses, glial effects and other diseases of various origin, are governed by proteins generated, directly or alternatively, by UPS. The diseases most intensely affected by UPS are various types of cancer, activated in most important processes: growth, proliferation and invasion, relapse, metastatic colonization, vascular leakiness, immunomodulation, chemoresistence. The therapy role of UPS diseases depends largely on exosomes. In addition to affecting neurodegenerative diseases, its special aim is the increased protection against cancer. Its immense relevance is due to intrinsic features, including low immunogenicity, biocompatibility, stability, and crossing of biological barriers. Exosomes, loaded with factors for pharmacological actions and target cell sensitivity, induce protection against various specific cancers. Further expansion of disease therapies is expected in the near future.
Collapse
Affiliation(s)
- Meldolesi Jacopo
- grid.18887.3e0000000417581884San Raffaele Institute, Vita-Salute San Raffaele University, Milan, Italy ,CNR Institute of Neuroscience at the Milano-Bicocca University, Milan, Italy
| |
Collapse
|
7
|
Zhang L, Guo Y, Zhang Y, Li Y, Pei Y, Zhang M. Regulation of PIN-FORMED Protein Degradation. Int J Mol Sci 2023; 24:ijms24010843. [PMID: 36614276 PMCID: PMC9821320 DOI: 10.3390/ijms24010843] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Auxin action largely depends on the establishment of auxin concentration gradient within plant organs, where PIN-formed (PIN) auxin transporter-mediated directional auxin movement plays an important role. Accumulating studies have revealed the need of polar plasma membrane (PM) localization of PIN proteins as well as regulation of PIN polarity in response to developmental cues and environmental stimuli, amongst which a typical example is regulation of PIN phosphorylation by AGCVIII protein kinases and type A regulatory subunits of PP2A phosphatases. Recent findings, however, highlight the importance of PIN degradation in reestablishing auxin gradient. Although the underlying mechanism is poorly understood, these findings provide a novel aspect to broaden the current knowledge on regulation of polar auxin transport. In this review, we summarize the current understanding on controlling PIN degradation by endosome-mediated vacuolar targeting, autophagy, ubiquitin modification and the related E3 ubiquitin ligases, cytoskeletons, plant hormones, environmental stimuli, and other regulators, and discuss the possible mechanisms according to recent studies.
Collapse
Affiliation(s)
- Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yifan Guo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yujie Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yuxin Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel./Fax: +86-023-68251883
| |
Collapse
|
8
|
Pettinari G, Finello J, Plaza Rojas M, Liberatore F, Robert G, Otaiza-González S, Velez P, Theumer M, Agudelo-Romero P, Enet A, González C, Lascano R, Saavedra L. Autophagy modulates growth and development in the moss Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2022; 13:1052358. [PMID: 36600927 PMCID: PMC9807217 DOI: 10.3389/fpls.2022.1052358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Physcomitrium patens apical growing protonemal cells have the singularity that they continue to undergo cell divisions as the plant develops. This feature provides a valuable tool to study autophagy in the context of a multicellular apical growing tissue coupled to development. Herein, we showed that the core autophagy machinery is present in the moss P. patens, and characterized the 2D and 3D growth and development of atg5 and atg7 loss-of-function mutants under optimal and nutrient-deprived conditions. Our results showed that 2D growth of the different morphological and functional protonemata apical growing cells, chloronema and caulonema, is differentially modulated by this process. These differences depend on the protonema cell type and position along the protonemal filament, and growth condition. As a global plant response, the absence of autophagy favors the spread of the colony through protonemata growth at the expense of a reduction of the 3D growth, such as the buds and gametophore development, and thus the adult gametophytic and reproductive phases. Altogether this study provides valuable information suggesting that autophagy has roles during apical growth with differential responses within the cell types of the same tissue and contributes to life cycle progression and thus the growth and development of the 2D and 3D tissues of P. patens.
Collapse
Affiliation(s)
- Georgina Pettinari
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Finello
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macarena Plaza Rojas
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Franco Liberatore
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
| | - Germán Robert
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Pilar Velez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba-CONICET, Córdoba, Argentina
| | - Martin Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Universidad Nacional de Córdoba-CONICET, Córdoba, Argentina
| | | | - Alejandro Enet
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
| | - Claudio González
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ramiro Lascano
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Saavedra
- Unidad Ejecutora de Doble Dependencia INTA-CONICET (UDEA), Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
9
|
Hsieh C, Chen YH, Chang KC, Yang SY. Transcriptome analysis reveals the mechanisms for mycorrhiza-enhanced salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1072171. [PMID: 36600910 PMCID: PMC9806932 DOI: 10.3389/fpls.2022.1072171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
More than half of the global population relies on rice as a staple food, but salinization of soil presents a great threat to rice cultivation. Although previous studies have addressed the possible benefits of arbuscular mycorrhizal (AM) symbiosis for rice under salinity stress, the underlying molecular mechanisms are still unclear. In this study, we found that mycorrhizal rice had better shoot and reproductive growth and a significantly higher K+/Na+ ratio in the shoot. The reactive oxygen species (ROS) scavenging capacity in rice shoots was also improved by AM symbiosis. To elucidate the molecular mechanisms required for AM-improved salt tolerance, transcriptome analysis revealing the differentially expressed genes (DEGs) based on the response to AM symbiosis, salinity or specific tissue was performed. Thirteen percent of DEGs showed tissue-preferred responses to both AM symbiosis and salt stress and might be the key genes contributing to AM-enhanced salt tolerance. Gene Ontology (GO) enrichment analysis identified GO terms specifically appearing in this category, including cell wall, oxidoreductase activity, reproduction and ester-related terms. Interestingly, GO terms related to phosphate (Pi) homeostasis were also found, suggesting the possible role of the Pi-related signaling pathway involved in AM-enhanced salt tolerance. Intriguingly, under nonsaline conditions, AM symbiosis influenced the expression of these genes in a similar way as salinity, especially in the shoots. Overall, our results indicate that AM symbiosis may possibly use a multipronged approach to influence gene expression in a way similar to salinity, and this modification could help plants be prepared for salt stress.
Collapse
Affiliation(s)
- Chen Hsieh
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yun-Hsin Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Chieh Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
11
|
Bora MS, Sarma KP. Anatomical and ultrastructural alterations in Ceratopteris pteridoides under cadmium stress: A mechanism of cadmium tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112285. [PMID: 33957421 DOI: 10.1016/j.ecoenv.2021.112285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 05/08/2023]
Abstract
The present research is an appraisal of anatomical and ultrastructural alterations in aquatic fern, Ceratopteris pteridoides under cadmium (Cd) exposure. Plants were cultured hydroponically for 12 consecutive days in different Cd treatments: 10 µM L-1 (CDT1), 20 µM L-1 (CDT2), 40 µM L-1 (CDT3) and 60 µM L-1 (CDT4). Anatomical and ultrastructural changes of different vegetative tissues of C. pteridoides were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cd stress significantly (P < 0.05) decreased water content percentage (WC%), relative growth rate (RGR) and root activity in C. pteridoides, especially at highest Cd concentration (treatment CDT4). Significant (P < 0.05) drop of stress tolerance indices (STI) was noticed in C. pteridoides under treatment CDT4. Anatomical study of the Cd-treated C. pteridoides showed stomatal closure of leaves, reduction of diameter in xylem tracheids of stem and root, and decrease of intercellular spaces. Furthermore, ultrastructural alterations of leaf, stem, and root cells were evident with a damaged membrane system of chloroplast and mitochondria, disorganization of chloroplastic components, accumulation of large starch grains and plastoglobules, and formation of multivesicular bodies. The deposition of electron-dense material in the cell wall of root cells can be regarded as an important tolerance mechanism of C. pteridoides under Cd stress. Fourier transform infrared (FTIR) spectroscopy analysis of Cd-treated C. pteridoides biomass illustrated Cd-binding interaction with O-H, N-H, C-H, C≡C, C˭O, P˭O, -C-OH and CS functional groups of different metabolites.
Collapse
Affiliation(s)
- Monashree Sarma Bora
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, India
| | - Kali Prasad Sarma
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, India.
| |
Collapse
|
12
|
Jasieniecka-Gazarkiewicz K, Demski K, Gidda SK, Klińska S, Niedojadło J, Lager I, Carlsson AS, Minina EA, Mullen RT, Bozhkov PV, Stymne S, Banaś A. Subcellular Localization of Acyl-CoA: Lysophosphatidylethanolamine Acyltransferases (LPEATs) and the Effects of Knocking-Out and Overexpression of Their Genes on Autophagy Markers Level and Life Span of A. thaliana. Int J Mol Sci 2021; 22:ijms22063006. [PMID: 33809440 PMCID: PMC8000221 DOI: 10.3390/ijms22063006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Arabidopsis thaliana possesses two acyl-CoA:lysophosphatidylethanolamine acyltransferases, LPEAT1 and LPEAT2, which are encoded by At1g80950 and At2g45670 genes, respectively. Both single lpeat2 mutant and double lpeat1 lpeat2 mutant plants exhibit a variety of conspicuous phenotypes, including dwarfed growth. Confocal microscopic analysis of tobacco suspension-cultured cells transiently transformed with green fluorescent protein-tagged versions of LPEAT1 or LPEAT2 revealed that LPEAT1 is localized to the endoplasmic reticulum (ER), whereas LPEAT2 is localized to both Golgi and late endosomes. Considering that the primary product of the reaction catalyzed by LPEATs is phosphatidylethanolamine, which is known to be covalently conjugated with autophagy-related protein ATG8 during a key step of the formation of autophagosomes, we investigated the requirements for LPEATs to engage in autophagic activity in Arabidopsis. Knocking out of either or both LPEAT genes led to enhanced accumulation of the autophagic adaptor protein NBR1 and decreased levels of both ATG8a mRNA and total ATG8 protein. Moreover, we detected significantly fewer membrane objects in the vacuoles of lpeat1 lpeat2 double mutant mesophyll cells than in vacuoles of control plants. However, contrary to what has been reported on autophagy deficient plants, the lpeat mutants displayed a prolonged life span compared to wild type, including delayed senescence.
Collapse
Affiliation(s)
- Katarzyna Jasieniecka-Gazarkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
- Correspondence:
| | - Kamil Demski
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.K.G.); (R.T.M.)
| | - Sylwia Klińska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
| | - Janusz Niedojadło
- Department of Cell Biology, Department of Cellular and Molecular Biology, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230-53 Alnarp, Sweden; (I.L.); (A.S.C.); (S.S.)
| | - Anders S. Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230-53 Alnarp, Sweden; (I.L.); (A.S.C.); (S.S.)
| | - Elena A. Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (E.A.M.); (P.V.B.)
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.K.G.); (R.T.M.)
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (E.A.M.); (P.V.B.)
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230-53 Alnarp, Sweden; (I.L.); (A.S.C.); (S.S.)
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
| |
Collapse
|
13
|
|
14
|
Wolff H, Jakoby M, Stephan L, Koebke E, Hülskamp M. Heat Stress-Dependent Association of Membrane Trafficking Proteins With mRNPs Is Selective. FRONTIERS IN PLANT SCIENCE 2021; 12:670499. [PMID: 34249042 PMCID: PMC8264791 DOI: 10.3389/fpls.2021.670499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/27/2021] [Indexed: 05/03/2023]
Abstract
The Arabidopsis AAA ATPase SKD1 is essential for ESCRT-dependent endosomal sorting by mediating the disassembly of the ESCRTIII complex in an ATP-dependent manner. In this study, we show that SKD1 localizes to messenger ribonucleoprotein complexes upon heat stress. Consistent with this, the interactome of SKD1 revealed differential interactions under normal and stress conditions and included membrane transport proteins as well as proteins associated with RNA metabolism. Localization studies with selected interactome proteins revealed that not only RNA associated proteins but also several ESCRTIII and membrane trafficking proteins were recruited to messenger ribonucleoprotein granules after heat stress.
Collapse
Affiliation(s)
- Heike Wolff
- Cluster of Excellence on Plant Sciences (CEPLAS), Botanical Institute, Cologne University, Cologne, Germany
| | - Marc Jakoby
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Eva Koebke
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- *Correspondence: Martin Hülskamp
| |
Collapse
|
15
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
16
|
Cao JJ, Liu CX, Shao SJ, Zhou J. Molecular Mechanisms of Autophagy Regulation in Plants and Their Applications in Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:618944. [PMID: 33664753 PMCID: PMC7921839 DOI: 10.3389/fpls.2020.618944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
Autophagy is a highly conserved cellular process for the degradation and recycling of unnecessary cytoplasmic components in eukaryotes. Various studies have shown that autophagy plays a crucial role in plant growth, productivity, and survival. The extensive functions of plant autophagy have been revealed in numerous frontier studies, particularly those regarding growth adjustment, stress tolerance, the identification of related genes, and the involvement of metabolic pathways. However, elucidation of the molecular regulation of plant autophagy, particularly the upstream signaling elements, is still lagging. In this review, we summarize recent progress in research on the molecular mechanisms of autophagy regulation, including the roles of protein kinases, phytohormones, second messengers, and transcriptional and epigenetic control, as well as the relationship between autophagy and the 26S proteasome in model plants and crop species. We also discuss future research directions for the potential application of autophagy in agriculture.
Collapse
Affiliation(s)
- Jia-Jian Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chen-Xu Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Shu-Jun Shao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
- *Correspondence: Jie Zhou,
| |
Collapse
|