1
|
Hsu KC, Huang YY, Chu JC, Huang YW, Hu JL, Lin TE, Yen SC, Weng JR, Huang WJ. Synthesis and biological evaluation of ortho-phenyl phenylhydroxamic acids containing phenothiazine with improved selectivity for class IIa histone deacetylases. J Enzyme Inhib Med Chem 2024; 39:2406025. [PMID: 39316378 PMCID: PMC11423540 DOI: 10.1080/14756366.2024.2406025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Class IIa histone deacetylases (HDACs) have been linked to tumorigenesis in various cancers. Previously, we designed phenylhydroxamic acid LH4f as a potent class IIa HDAC inhibitor. However, it also unselectively inhibited class I and class IIb HDACs. To enhance the compound's selectivity towards class IIa HDACs, the ortho-phenyl group from the selective HDAC7 inhibitor 1 is incorporated into ortho position of the phenylhydroxamic acid in LH4f. Compared to LH4f, most resulting compounds displayed substantially improved selectivity towards the class IIa HDACs. Notably, compound 7 g exhibited the strongest HDAC9 inhibition with an IC50 value of 40 nM. Molecular modelling further identified the key interactions of compound 7 g bound to HDAC9. Compound 7 g significantly inhibited several human cancer cells, induced apoptosis, modulated caspase-related proteins as well as p38, and caused DNA damage. These findings suggest the potential of class IIa HDAC inhibitors as lead compounds for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yun-Yi Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Lan Hu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
3
|
Sochacka K, Kotowska A, Lachowicz-Wiśniewska S. The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence. Nutrients 2024; 16:1039. [PMID: 38613071 PMCID: PMC11013804 DOI: 10.3390/nu16071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.
Collapse
Affiliation(s)
- Klaudia Sochacka
- Faculty of Medicine and Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Agata Kotowska
- Department of Social Policy, Institute of Sociological Sciences, College of Social Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | | |
Collapse
|
4
|
Cao X, Gong Y. Recent developments of hydroxamic acid hybrids as potential anti-breast cancer agents. Future Med Chem 2024; 16:469-492. [PMID: 38293775 DOI: 10.4155/fmc-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Histone deacetylase inhibitors not only possess favorable effects on modulating tumor microenvironment and host immune cells but also can reactivate the genes silenced due to deacetylation and chromatin condensation. Hydroxamic acid hybrids as promising histone deacetylase inhibitors have the potential to address drug resistance and reduce severe side effects associated with a single drug molecule due to their capacity to simultaneously modulate multiple targets in cancer cells. Accordingly, rational design of hydroxamic acid hybrids may provide valuable therapeutic interventions for the treatment of breast cancer. This review aimed to provide insights into the in vitro and in vivo anti-breast cancer therapeutic potential of hydroxamic acid hybrids, together with their mechanisms of action and structure-activity relationships, covering articles published from 2020 to the present.
Collapse
Affiliation(s)
- Xinran Cao
- School of Pharmacy, University College London (UCL), London, WC1E 6BT, UK
| | - Yufeng Gong
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
5
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
6
|
Abdelsalam M, Zmyslia M, Schmidtkunz K, Vecchio A, Hilscher S, Ibrahim HS, Schutkowski M, Jung M, Jessen-Trefzer C, Sippl W. Design and synthesis of bioreductive prodrugs of class I histone deacetylase inhibitors and their biological evaluation in virally transfected acute myeloid leukemia cells. Arch Pharm (Weinheim) 2024; 357:e2300536. [PMID: 37932028 DOI: 10.1002/ardp.202300536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Although histone deacetylase (HDAC) inhibitors show promise in treating various types of hematologic malignancies, they have some limitations, including poor pharmacokinetics and off-target side effects. Prodrug design has shown promise as an approach to improve pharmacokinetic properties and to improve target tissue specificity. In this work, several bioreductive prodrugs for class I HDACs were designed based on known selective HDAC inhibitors. The zinc-binding group of the HDAC inhibitors was masked with various nitroarylmethyl residues to make them substrates of nitroreductase (NTR). The developed prodrugs showed weak HDAC inhibitory activity compared to their parent inhibitors. The prodrugs were tested against wild-type and NTR-transfected THP1 cells. Cellular assays showed that both 2-nitroimidazole-based prodrugs 5 and 6 were best activated by the NTR and exhibited potent activity against NTR-THP1 cells. Compound 6 showed the highest cellular activity (GI50 = 77 nM) and exhibited moderate selectivity. Moreover, activation of prodrug 6 by NTR was confirmed by liquid chromatography-mass spectrometry analysis, which showed the release of the parent inhibitor after incubation with Escherichia coli NTR. Thus, compound 6 can be considered a novel prodrug selective for class I HDACs, which could be used as a good starting point for increasing selectivity and for further optimization.
Collapse
Affiliation(s)
- Mohamed Abdelsalam
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mariia Zmyslia
- Institute of Organic Chemistry, University of Freiburg, Freiburg i. Br., Germany
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg i. Br., Germany
| | - Anita Vecchio
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Sebastian Hilscher
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle/Saale, Germany
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg i. Br., Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg i. Br., Germany
| | | | - Wolfgang Sippl
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
7
|
Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:675-702. [PMID: 37615708 DOI: 10.1007/s00210-023-02674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India.
| | - Apurba Sinhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
8
|
Uba AI, Zengin G. In the quest for histone deacetylase inhibitors: current trends in the application of multilayered computational methods. Amino Acids 2023; 55:1709-1726. [PMID: 37367966 DOI: 10.1007/s00726-023-03297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
9
|
Zhong B, Liao Q, Wang X, Wang X, Zhang J. The roles of epigenetic regulation in cholangiocarcinogenesis. Biomed Pharmacother 2023; 166:115290. [PMID: 37557012 DOI: 10.1016/j.biopha.2023.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous malignancy of bile duct epithelial cells, is characterized by aggressiveness, difficult diagnosis, and poor prognosis due to limited understanding and lack of effective therapeutic strategies. Genetic and epigenetic alterations accumulated in CCA cells can cause the aberrant regulation of oncogenes and tumor suppressors. Epigenetic alterations with histone modification, DNA methylation, and noncoding RNA modulation are associated with the carcinogenesis of CCA. Mutation or silencing of genes by various mechanisms can be a frequent event during CCA development. Alterations in histone acetylation/deacetylation at the posttranslational level, DNA methylation at promoters, and noncoding RNA regulation contribute to the heterogeneity of CCA and drive tumor development. In this review article, we mainly focus on the roles of epigenetic regulation in cholangiocarcinogenesis. Alterations in epigenetic modification can be potential targets for the therapeutic management of CCA, and epigenetic targets may become diagnostic biomarkers of CCA.
Collapse
Affiliation(s)
- Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
10
|
Pant K, Venugopal SK, Lorenzo Pisarello MJ, Gradilone SA. The Role of Gut Microbiome-Derived Short-Chain Fatty Acid Butyrate in Hepatobiliary Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1455-1467. [PMID: 37422149 PMCID: PMC10548274 DOI: 10.1016/j.ajpath.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
The short-chain fatty acid butyrate, produced from fermentable carbohydrates by gut microbiota in the colon, has multiple beneficial effects on human health. At the intestinal level, butyrate regulates metabolism, helps in the transepithelial transport of fluids, inhibits inflammation, and induces the epithelial defense barrier. The liver receives a large amount of short-chain fatty acids via the blood flowing from the gut via the portal vein. Butyrate helps prevent nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, inflammation, cancer, and liver injuries. It ameliorates metabolic diseases, including insulin resistance and obesity, and plays a direct role in preventing fatty liver diseases. Butyrate has different mechanisms of action, including strong regulatory effects on the expression of many genes by inhibiting the histone deacetylases and modulating cellular metabolism. The present review highlights the wide range of beneficial therapeutic and unfavorable adverse effects of butyrate, with a high potential for clinically important uses in several liver diseases.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Senthil K Venugopal
- Laboratory of Molecular Medicine and Hepatology, Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Maria J Lorenzo Pisarello
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA), National Council of Scientific and Technological Research, San Miguel de Tucuman, Argentina; Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
11
|
Hou JY, Li N, Wang J, Gao LJ, Chang JS, Cao JM. Histone crotonylation of peripheral blood mononuclear cells is a potential biomarker for diagnosis of colorectal cancer. Epigenetics Chromatin 2023; 16:35. [PMID: 37749610 PMCID: PMC10521402 DOI: 10.1186/s13072-023-00509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Blood-based tests have public appeal in screening cancers due to their minimally invasive nature, ability to integrate with other routine blood tests, and high compliance. This study aimed to investigate whether certain epigenetic modulation of peripheral blood mononuclear cells (PBMCs) could be a biomarker of colorectal cancer (CRC). RESULTS Western blotting of histones in the PBMCs from 40 colorectal cancer patients and 40 healthy controls was performed to identify the crotonylation sites of proteins. The correlation of crotonylation with tumor staging and diagnostic efficacy were analyzed. Crotonylation of H2BK12 (H2BK12cr) was identified significantly upregulated in the PBMCs of CRC patients compared to healthy controls, and were closely related to distant metastasis (P = 0.0478) and late TNM stage (P = 0.0201). Receiver operator characteristic curve (ROC) analysis demonstrated that the area under curve (AUC) of H2BK12cr was 0.8488, the sensitivity was 70%, and the specificity was 92.5%. The H2BK12cr parameter significantly increased the diagnostic effectiveness of CRC compared with the commercial carcinoembryonic antigen assays. CONCLUSIONS The H2BK12cr level in PBMCs of CRC patients has a potential to be a biomarker for distinguishing CRC patients from healthy controls with the advantages of easy operation and high diagnostic efficacy.
Collapse
Affiliation(s)
- Jia-Yi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Ning Li
- Department of Gastrointestinal and Pancreatic Surgery and Hernia and Abdominal Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jie Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li-Juan Gao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Song Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
12
|
Tasneem S, Alam MM, Parvez S, Pinky, Khan F, Garg M, Amir M, Akhter M, Amin S, Khan MA, Shaquiquzzaman M. Synthesis and HDAC1 inhibitory activity of a novel series of coumarin-based amide derivatives for treatment of cancer. Future Med Chem 2023; 15:1669-1685. [PMID: 37732405 DOI: 10.4155/fmc-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Background: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of transcription and expression. HDAC1 overexpression is seen in many cancers. Methodology: The authors synthesized and evaluated 27 novel coumarin-based amide derivatives for HDAC1 inhibitory activity. The compounds were screened at the US National Cancer Institute, and 5k and 5u were selected for five-dose assays. Compound 5k showed GI50 values of 0.294 and 0.264 μM against MOLT-4 and LOX-IMVI, respectively; whereas 5u had GI50 values of 0.189 and 0.263 μM, respectively. Both derivatives showed better activity than entinostat and suberoylanilide hydroxamic acid. Compound 5k exhibited an IC50 value of 1.00 μM on ACHN cells. Conclusion: Coumarin derivatives exhibited promising HDAC1 inhibitory potential and warrant future development as anticancer agents.
Collapse
Affiliation(s)
- Sharba Tasneem
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Elementology & Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pinky
- Department of Elementology & Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Amir
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
13
|
Bankov K, Schulze F, Gretser S, Reis H, Abedin N, Finkelmeier F, Trojan J, Zeuzem S, Schnitzbauer AA, Walter D, Wild PJ, Kinzler MN. Active Autophagy Is Associated with Favorable Outcome in Patients with Surgically Resected Cholangiocarcinoma. Cancers (Basel) 2023; 15:4322. [PMID: 37686598 PMCID: PMC10486413 DOI: 10.3390/cancers15174322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Data on the impact of autophagy in primary cholangiocarcinoma (CCA) remain scarce. Here, we therefore investigated the role of active autophagy and its impact on survival in CCA patients. All CCA patients who underwent surgical resection with curative intent between 08/2005 and 12/2021 at University Hospital Frankfurt were evaluated. Autophagic key proteins were studied by immunohistochemistry. iCCA processed for gene expression profiling of immune-exhaustion gene sets was used for an autophagy approach in silico. Active autophagy was present in 23.3% of the 172 CCA patients. Kaplan-Meier curves revealed median OS of 68.4 months (95% CI = 46.9-89.9 months) and 32.7 months (95% CI = 23.6-41.8 months) for active and non-active autophagy, respectively (p ≤ 0.001). In multivariate analysis, absence of active autophagy (HR = 2, 95% CI = 1.1-3.5, p = 0.015) was an independent risk factor for OS. Differential-expression profiling revealed significantly upregulated histone deacetylases (HDAC) mRNA in patients showing non-active autophagy. In line with this, pan-acetylated lysine was significantly more prominent in CCA patients with ongoing autophagy (p = 0.005). Our findings strengthen the role of active autophagy as a prognostically relevant marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Falko Schulze
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Steffen Gretser
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Nada Abedin
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas A. Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Peter J. Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt am Main, Germany
| | - Maximilian N. Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Abdelaziz N, Therachiyil L, Sadida HQ, Ali AM, Khan OS, Singh M, Khan AQ, Akil ASAS, Bhat AA, Uddin S. Epigenetic inhibitors and their role in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:211-251. [PMID: 37657859 DOI: 10.1016/bs.ircmb.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epigenetic modifications to DNA are crucial for normal cellular and biological functioning. DNA methylation, histone modifications, and chromatin remodeling are the most common epigenetic mechanisms. These changes are heritable but still reversible. The aberrant epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation, play an essential role in developing various human diseases, including cancer. Recent studies show that synthetic and dietary epigenetic inhibitors attenuate the abnormal epigenetic modifications in cancer cells and therefore have strong potential for cancer treatment. In this chapter, we have highlighted various types of epigenetic modifications, their mechanism, and as drug targets for epigenetic therapy.
Collapse
Affiliation(s)
- Nouha Abdelaziz
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | | | - Omar S Khan
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Mayank Singh
- Department of Medical Oncology (Lab), BRAIRCH All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
15
|
Bülbül EF, Robaa D, Sun P, Mahmoudi F, Melesina J, Zessin M, Schutkowski M, Sippl W. Application of Ligand- and Structure-Based Prediction Models for the Design of Alkylhydrazide-Based HDAC3 Inhibitors as Novel Anti-Cancer Compounds. Pharmaceuticals (Basel) 2023; 16:968. [PMID: 37513880 PMCID: PMC10386743 DOI: 10.3390/ph16070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Histone deacetylases (HDAC) represent promising epigenetic targets for several diseases including different cancer types. The HDAC inhibitors approved to date are pan-HDAC inhibitors and most show a poor selectivity profile, side effects, and in particular hydroxamic-acid-based inhibitors lack good pharmacokinetic profiles. Therefore, the development of isoform-selective non-hydroxamic acid HDAC inhibitors is a highly regarded field in medicinal chemistry. In this study, we analyzed different ligand-based and structure-based drug design techniques to predict the binding mode and inhibitory activity of recently developed alkylhydrazide HDAC inhibitors. Alkylhydrazides have recently attracted more attention as they have shown promising effects in various cancer cell lines. In this work, pharmacophore models and atom-based quantitative structure-activity relationship (QSAR) models were generated and evaluated. The binding mode of the studied compounds was determined using molecular docking as well as molecular dynamics simulations and compared with known crystal structures. Calculated free energies of binding were also considered to generate QSAR models. The created models show a good explanation of in vitro data and were used to develop novel HDAC3 inhibitors.
Collapse
Affiliation(s)
- Emre F Bülbül
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ping Sun
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Fereshteh Mahmoudi
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Matthes Zessin
- Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Boos A, Gahr BM, Park DD, Braun V, Bühler A, Rottbauer W, Just S. Hdac1-deficiency affects the cell cycle axis Cdc25-Cdk1 causing impaired G2/M phase progression and reduced cardiomyocyte proliferation in zebrafish. Biochem Biophys Res Commun 2023; 665:98-106. [PMID: 37149988 DOI: 10.1016/j.bbrc.2023.04.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Zebrafish have the ability to fully regenerate their hearts after injury since cardiomyocytes subsequently dedifferentiate, re-enter cell cycle, and proliferate to replace damaged myocardial tissue. Recent research identified the reactivation of dormant developmental pathways during cardiac regeneration in adult zebrafish, suggesting pro-proliferative pathways important for developmental heart growth to be also critical for regenerative heart growth after injury. Histone deacetylase 1 (Hdac1) was recently shown to control both, embryonic as well as adult regenerative cardiomyocyte proliferation in the zebrafish model. Nevertheless, regulatory pathways controlled by Hdac1 are not defined yet. By analyzing RNA-seq-derived transcriptional profiles of the Hdac1-deficient zebrafish mutant baldrian, we here identified DNA damage response (DDR) pathways activated in baldrian mutant embryos. Surprisingly, although the DDR signaling pathway was transcriptionally activated, we found the complete loss of protein expression of the known DDR effector and cell cycle inhibitor p21. Consequently, we observed an upregulation of the p21-downstream target Cdk2, implying elevated G1/S phase transition in Hdac1-deficient zebrafish hearts. Remarkably, Cdk1, another p21-but also Cdc25-downstream target was downregulated. Here, we found the significant downregulation of Cdc25 protein expression, explaining reduced Cdk1 levels and suggesting impaired G2/M phase progression in Hdac1-deficient zebrafish embryos. To finally prove defective cell cycle progression due to Hdac1 loss, we conducted Cytometer-based cell cycle analyses in HDAC1-deficient murine HL-1 cardiomyocytes and indeed found impaired G2/M phase transition resulting in defective cardiomyocyte proliferation. In conclusion, our results suggest a critical role of Hdac1 in maintaining both, regular G1/S and G2/M phase transition in cardiomyocytes by controlling the expression of essential cell cycle regulators such as p21 and Cdc25.
Collapse
Affiliation(s)
- Alena Boos
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Bernd Martin Gahr
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Deung-Dae Park
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Verena Braun
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | - Anja Bühler
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, Ulm, Germany.
| |
Collapse
|
17
|
Roldán-Peña JM, Puerta A, Dinić J, Jovanović Stojanov S, González-Bakker A, Hicke FJ, Mishra A, Piyasaengthong A, Maya I, Walton JW, Pešić M, Padrón JM, Fernández-Bolaños JG, López Ó. Biotinylated selenocyanates: Potent and selective cytostatic agents. Bioorg Chem 2023; 133:106410. [PMID: 36822000 DOI: 10.1016/j.bioorg.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.
Collapse
Affiliation(s)
- Jesús M Roldán-Peña
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Francisco J Hicke
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - Atreyee Mishra
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Akkharadet Piyasaengthong
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK; Bioscience Program, Faculty of Science, Kasetsart University, Bangkok 10900, Chatuchak, Thailand
| | - Inés Maya
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - James W Walton
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain.
| | - Óscar López
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain.
| |
Collapse
|
18
|
Pant K, Richard S, Peixoto E, Yin J, Seelig DM, Carotenuto P, Salati M, Franco B, Roberts LR, Gradilone SA. The NAMPT Inhibitor FK866 in Combination with Cisplatin Reduces Cholangiocarcinoma Cells Growth. Cells 2023; 12:cells12050775. [PMID: 36899911 PMCID: PMC10001024 DOI: 10.3390/cells12050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
It is well established that Cholangiocarcioma (CCA) drug resistance plays a crucial role in the spread and survival of cancer cells. The major enzyme in the nicotinamide-adenine dinucleotide (NAD+)-mediated pathways, nicotinamide phosphoribosyltransferase (NAMPT), is essential for cancer cell survival and metastasis. Previous research has shown that the targeted NAMPT inhibitor FK866 reduces cancer cell viability and triggers cancer cell death; however, whether FK866 affects CCA cell survival has not been addressed before. We show herein that NAMPT is expressed in CCA cells, and FK866 suppresses the capacity of CCA cells to grow in a dose-dependent manner. Furthermore, by preventing NAMPT activity, FK866 significantly reduced the amount of NAD+ and adenosine 5'-triphosphate (ATP) in HuCCT1, KMCH, and EGI cells. The present study's findings further show that FK866 causes changes in mitochondrial metabolism in CCA cells. Additionally, FK866 enhances the anticancer effects of cisplatin in vitro. Taken together, the results of the current study suggest that the NAMPT/NAD+ pathway may be a possible therapeutic target for CCA, and FK866 may be a useful medication targeting CCA in combination with cisplatin.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Pietro Carotenuto
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Massimiliano Salati
- Medical Oncology Unit, University Hospital of Modena, 41125 Modena, Italy
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 411250 Modena, Italy
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, School for Advanced Studies, 80131 Naples, Italy
| | - Lewis R. Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
19
|
Phenolic compounds as histone deacetylase inhibitors: binding propensity and interaction insights from molecular docking and dynamics simulations. Amino Acids 2023:10.1007/s00726-023-03249-6. [PMID: 36781452 DOI: 10.1007/s00726-023-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Histone deacetylases are well-established target enzymes involved in the pathology of different diseases including cancer and neurodegenerative disorders. The approved HDAC inhibitor drugs are associated with cellular toxicities. Different phenolic compounds have been shown to possess inhibitory activities against HDACs and are, therefore, considered safer alternatives to synthetic compounds. Here, we elucidated the binding mode and calculated the binding propensity of some of the top phenolic compounds against different isoforms representing different classes of Zn2+ ion-containing HDACs using the molecular docking approach. Our data reaffirmed the activity of the studied phenolic compounds against HDACs. Binding interaction analysis suggested that these compounds can block the activity of HDACs with or without binding to the active site zinc metal ion. Furthermore, molecular dynamics (MD) simulations were carried out on the selected crystal and docking complexes of each selected HDAC isoform. Analysis of root-mean-square displacement (RMSD) showed that the phenolic compounds demonstrated a stable binding mode over 50 ns in a way that is comparable to the cocrystal ligands. Together, these findings can aid future efforts in the search for natural inhibitors of HDACs.
Collapse
|
20
|
Yang Q, Falahati A, Khosh A, Mohammed H, Kang W, Corachán A, Bariani MV, Boyer TG, Al-Hendy A. Targeting Class I Histone Deacetylases in Human Uterine Leiomyosarcoma. Cells 2022; 11:cells11233801. [PMID: 36497061 PMCID: PMC9735512 DOI: 10.3390/cells11233801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is unknown. Class I histone deacetylases (including HDAC1, 2, 3, and 8) are one of the major classes of the HDAC family and catalyze the removal of acetyl groups from lysine residues in histones and cellular proteins. Class I HDACs exhibit distinct cellular and subcellular expression patterns and are involved in many biological processes and diseases through diverse signaling pathways. However, the link between class I HDACs and uLMS is still being determined. In this study, we assessed the expression panel of Class I HDACs in uLMS and characterized the role and mechanism of class I HDACs in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that HDAC1, 2, and 3 are aberrantly upregulated in uLMS tissues compared to adjacent myometrium. Immunoblot analysis demonstrated that the expression levels of HDAC 1, 2, and 3 exhibited a graded increase from normal and benign to malignant uterine tumor cells. Furthermore, inhibition of HDACs with Class I HDACs inhibitor (Tucidinostat) decreased the uLMS proliferation in a dose-dependent manner. Notably, gene set enrichment analysis of differentially expressed genes (DEGs) revealed that inhibition of HDACs with Tucidinostat altered several critical pathways. Moreover, multiple epigenetic analyses suggested that Tucidinostat may alter the transcriptome via reprogramming the oncogenic epigenome and inducing the changes in microRNA-target interaction in uLMS cells. In the parallel study, we also determined the effect of DL-sulforaphane on the uLMS. Our study demonstrated the relevance of class I HDACs proteins in the pathogenesis of malignant uLMS. Further understanding the role and mechanism of HDACs in uLMS may provide a promising and novel strategy for treating patients with this aggressive uterine cancer.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Ali Falahati
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Azad Khosh
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Hanaa Mohammed
- Anatomy Department, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Ana Corachán
- Department of Paediatrics, University of Valencia, Obstetrics and Gynecology, 46026 Valencia, Spain
| | | | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
N4-(2-Amino-4-fluorophenyl)-N1-(3-{2-[2-(3-{[2-(2,6-dioxo-3-piperidyl)-1,3-dioxoisoindolin-4-yl]amino}propoxy)ethoxy]ethoxy}propyl)terephthalamide. MOLBANK 2022. [DOI: 10.3390/m1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The design of proteolysis targeting chimeras (PROTACs) has become a promising technology for modifying a protein of interest (POI) through protein degradation. Herein, we describe the synthetic pathway to develop N4-(2-amino-4-fluorophenyl)-N1-(3-{2-[2-(3-{[2-(2,6-dioxo-3-piperidyl)-1,3-dioxoisoindolin-4-yl]amino}propoxy)ethoxy]ethoxy}propyl)terephthalamide, which was designed to work as a selective degrader of histone deacetylase-3 (HDAC3). The newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR and HRMS. The title compound was tested in vitro against human class-I HDACs isoforms and showed IC50 = 3.4 µM against HDAC3; however, it did not show degradation for the targeted HDACs.
Collapse
|
22
|
Karaj E, Sindi SH, Kuganesan N, Koranne RA, Knoff JR, James AW, Fu Y, Kotsull LN, Pflum MK, Shah Z, Taylor WR, Tillekeratne LMV. First-in-Class Dual Mechanism Ferroptosis-HDAC Inhibitor Hybrids. J Med Chem 2022; 65:14764-14791. [PMID: 36306372 PMCID: PMC10257520 DOI: 10.1021/acs.jmedchem.2c01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HDAC inhibitors are an attractive class of cytotoxic agents for the design of hybrid molecules. Several HDAC hybrids have emerged over the years, but none combines HDAC inhibition with ferroptosis, a combination which is being extensively studied because it leads to enhanced cytotoxicity and attenuated neuronal toxicity. We combined the pharmacophores of SAHA and CETZOLE molecules to design the first-in-class dual mechanism hybrid molecules, which induce ferroptosis and inhibit HDAC proteins. The involvement of both mechanisms in cytotoxicity was confirmed by a series of biological assays. The cytotoxic effects were evaluated in a series of cancer and neuronal cell lines. Analogue HY-1 demonstrated the best cytotoxic profile with GI50 values as low as 20 nM. Although the increase in activity of the hybrids over the combinations is modest in cellular systems, they have the potential advantage of homogeneous spatiotemporal distribution in in vivo systems.
Collapse
Affiliation(s)
- Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Shaimaa H Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Radhika A Koranne
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph R Knoff
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Yu Fu
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Lauren N Kotsull
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
23
|
Mutalub YB, Abdulwahab M, Mohammed A, Yahkub AM, AL-Mhanna SB, Yusof W, Tang SP, Rasool AHG, Mokhtar SS. Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods 2022; 11:2575. [PMID: 36076760 PMCID: PMC9455664 DOI: 10.3390/foods11172575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
The human gut harbors microbial ecology that is in a symbiotic relationship with its host and has a vital function in keeping host homeostasis. Inimical alterations in the composition of gut microbiota, known as gut dysbiosis, have been associated with cardiometabolic diseases. Studies have revealed the variation in gut microbiota composition in healthy individuals as compared to the composition of those with cardiometabolic diseases. Perturbation of host-microbial interaction attenuates physiological processes and may incite several cardiometabolic disease pathways. This imbalance contributes to cardiometabolic diseases via metabolism-independent and metabolite-dependent pathways. The aim of this review was to elucidate studies that have demonstrated the complex relationship between the intestinal microbiota as well as their metabolites and the development/progression of cardiometabolic diseases. Furthermore, we systematically itemized the potential therapeutic approaches for cardiometabolic diseases that target gut microbiota and/or their metabolites by following the pathophysiological pathways of disease development. These approaches include the use of diet, prebiotics, and probiotics. With the exposition of the link between gut microbiota and cardiometabolic diseases, the human gut microbiota therefore becomes a potential therapeutic target in the development of novel cardiometabolic agents.
Collapse
Affiliation(s)
- Yahkub Babatunde Mutalub
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
- Department of Clinical Pharmacology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Monsurat Abdulwahab
- Department of Midwifery, College of Nursing Sciences, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi 74027, Nigeria
| | - Alkali Mohammed
- Department of Medicine, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Aishat Mutalib Yahkub
- College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi 74027, Nigeria
| | - Sameer Badri AL-Mhanna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wardah Yusof
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Suk Peng Tang
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia or
| |
Collapse
|
24
|
Pramanik SD, Kumar Halder A, Mukherjee U, Kumar D, Dey YN, R M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 2022; 10:948217. [PMID: 36034650 PMCID: PMC9411967 DOI: 10.3389/fchem.2022.948217] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a role in chromatin remodeling and epigenetics. They belong to a specific category of enzymes that eliminate the acetyl part of the histones' -N-acetyl lysine, causing the histones to be wrapped compactly around DNA. Numerous biological processes rely on HDACs, including cell proliferation and differentiation, angiogenesis, metastasis, gene regulation, and transcription. Epigenetic changes, specifically increased expression and activity of HDACs, are commonly detected in cancer. As a result, HDACi could be used to develop anticancer drugs. Although preclinical outcomes with HDACs as monotherapy have been promising clinical trials have had mixed results and limited success. In both preclinical and clinical trials, however, combination therapy with different anticancer medicines has proved to have synergistic effects. Furthermore, these combinations improved efficacy, decreased tumor resistance to therapy, and decreased toxicity. In the present review, the detailed modes of action, classification of HDACs, and their correlation with different cancers like prostate, breast, and ovarian cancer were discussed. Further, the different cell signaling pathways and the structure-activity relationship and pharmaco-toxicological properties of the HDACi, and their synergistic effects with other anticancer drugs observed in recent preclinical and clinical studies used in combination therapy were discussed for prostate, breast, and ovarian cancer treatment.
Collapse
Affiliation(s)
- Siddhartha Das Pramanik
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi, Uttar Pradesh, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Ushmita Mukherjee
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | - Yadu Nandan Dey
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD., Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Alseksek RK, Ramadan WS, Saleh E, El-Awady R. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. Int J Mol Sci 2022; 23:8141. [PMID: 35897717 PMCID: PMC9331760 DOI: 10.3390/ijms23158141] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Throughout the process of carcinogenesis, cancer cells develop intricate networks to adapt to a variety of stressful conditions including DNA damage, nutrient deprivation, and hypoxia. These molecular networks encounter genomic instability and mutations coupled with changes in the gene expression programs due to genetic and epigenetic alterations. Histone deacetylases (HDACs) are important modulators of the epigenetic constitution of cancer cells. It has become increasingly known that HDACs have the capacity to regulate various cellular systems through the deacetylation of histone and bounteous nonhistone proteins that are rooted in complex pathways in cancer cells to evade death pathways and immune surveillance. Elucidation of the signaling pathways involved in the adaptive responses to cellular stress and the role of HDACs may lead to the development of novel therapeutic agents. In this article, we overview the dominant stress types including metabolic, oxidative, genotoxic, and proteotoxic stress imposed on cancer cells in the context of HDACs, which guide stress adaptation responses. Next, we expose a closer view on the therapeutic interventions and clinical trials that involve HDACs inhibitors, in addition to highlighting the impact of using HDAC inhibitors in combination with stress-inducing agents for the management of cancer and to overcome the resistance to current cancer therapy.
Collapse
Affiliation(s)
- Rahma K. Alseksek
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ekram Saleh
- Clinical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
26
|
McGinnis CD, Jennings EQ, Harris PS, Galligan JJ, Fritz KS. Biochemical Mechanisms of Sirtuin-Directed Protein Acylation in Hepatic Pathologies of Mitochondrial Dysfunction. Cells 2022; 11:cells11132045. [PMID: 35805129 PMCID: PMC9266223 DOI: 10.3390/cells11132045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial protein acetylation is associated with a host of diseases including cancer, Alzheimer’s, and metabolic syndrome. Deciphering the mechanisms regarding how protein acetylation contributes to disease pathologies remains difficult due to the complex diversity of pathways targeted by lysine acetylation. Specifically, protein acetylation is thought to direct feedback from metabolism, whereby nutritional status influences mitochondrial pathways including beta-oxidation, the citric acid cycle, and the electron transport chain. Acetylation provides a crucial connection between hepatic metabolism and mitochondrial function. Dysregulation of protein acetylation throughout the cell can alter mitochondrial function and is associated with numerous liver diseases, including non-alcoholic and alcoholic fatty liver disease, steatohepatitis, and hepatocellular carcinoma. This review introduces biochemical mechanisms of protein acetylation in the regulation of mitochondrial function and hepatic diseases and offers a viewpoint on the potential for targeted therapies.
Collapse
Affiliation(s)
- Courtney D. McGinnis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
| | - Erin Q. Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (E.Q.J.); (J.J.G.)
| | - Peter S. Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
| | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (E.Q.J.); (J.J.G.)
| | - Kristofer S. Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
- Correspondence:
| |
Collapse
|
27
|
Zuo Q, Park NH, Lee JK, Madak Erdogan Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022; 14:2376. [PMID: 35745105 PMCID: PMC9228756 DOI: 10.3390/nu14122376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
The median overall survival of patients with metastatic breast cancer is only 2-3 years, and for patients with untreated liver metastasis, it is as short as 4-8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via a dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Cheng CY, Chen CP, Wu CE. Precision Medicine in Cholangiocarcinoma: Past, Present, and Future. Life (Basel) 2022; 12:829. [PMID: 35743860 PMCID: PMC9225212 DOI: 10.3390/life12060829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), or biliary tract cancer, has a poor prognosis. The median survival time among patients with CCA is under 2 years from diagnosis, and the global 5-year survival rate is only 10%. First-line therapy with chemotherapeutic agents, gemcitabine plus cisplatin, has traditionally been used to treat unresectable advanced CCA. In recent years, precision medicine has become a mainstream cancer treatment due to innovative next-generation sequencing technology. Several genetic alterations, including mutations, gene fusions, and copy number variations, have been found in CCA. In this review, we summarized the current understanding of genetic profiling in CCA and targeted therapy in CCA. Owing to the high heterogeneity of CCA, tumor microenvironmental factors, and the complexity of tumor biology, only pemigatinib, infigratinib, ivosidenib, larotrbctinib, and entrectinib are currently approved for the treatment of CCA patients with fibroblast growth factor receptor 2 gene (FGFR2) fusion, isocitrate dehydrogenase gene (IDH1) mutation, and neurotrophin receptor tyrosine kinase gene (NRTK) fusion, respectively. Additional targeted therapies, including other FGFR2 inhibitors, PI3K/AKT/mTOR inhibitors, and BRAF-directed targeted therapy, have been discussed for the management of CCA, and immune checkpoint inhibitors, particularly pembrolizumab, can be administered to patients with high microsatellite instability tumors. There is a further need for improvement in precision medicine therapies in the treatment of CCA and discuss the approved and potential targeted therapies for CCA.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Department of Pharmacy, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Chiao-Ping Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| |
Collapse
|
29
|
Milan TM, Eskenazi APE, Bighetti-Trevisan RL, de Almeida LO. Epigenetic modifications control loss of adhesion and aggressiveness of cancer stem cells derived from head and neck squamous cell carcinoma with intrinsic resistance to cisplatin. Arch Oral Biol 2022; 141:105468. [DOI: 10.1016/j.archoralbio.2022.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
|
30
|
Chulkova SV, Loginov VI, Podluzhnyi DV, Egorova AV, Syskova AY, Semichev DG, Gladilina IA, Kudashkin NE. [The role of molecular genetic factors in the development of cholangiocellular carcinoma]. Arkh Patol 2022; 84:76-83. [PMID: 35639847 DOI: 10.17116/patol20228403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article lists the main inducers of cholangiocarcinogenesis. The main inflammatory mediators (IL-6, nitric oxide, COX2) have been considered. Data on the study of gene mutations in cholangiocarcinomas are presented. The spectrum of genetic mutations depends on the biliary cancer origin (FGFR2 with intrahepatic cholangiocarcinoma, PRKACA, PRKACB with extrahepatic cholangiocarcinoma). Mutations in the KRAS, TP53, ARIAD1A genes are common in extrahepatic bile duct cancer. The role of epigenetic changes such as DNA hypermethylation, histone modifications, chromatin remodeling, as well as disturbances in miRNA expression is presented. A number of epigenetic features, such as the presence of a TP53 mutations with hypermethylation of p14ARF, DAPK, and/or ASC, correlate with a more aggressive course of the disease. The role of the SOX17 gene in the development of drug resistance is highlighted. The study of the molecular genetic features of extrahepatic bile duct cancer can help to better understand the pathogenesis of this type of tumor, to establish new prognostic and diagnostic markers of the disease.
Collapse
Affiliation(s)
- S V Chulkova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - V I Loginov
- Scientific Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - D V Podluzhnyi
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A V Egorova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - A Yu Syskova
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - D G Semichev
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - I A Gladilina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - N E Kudashkin
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
31
|
Wegierska AE, Charitos IA, Topi S, Potenza MA, Montagnani M, Santacroce L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med 2022; 52:2355-2369. [PMID: 35596883 PMCID: PMC9474385 DOI: 10.1007/s40279-022-01696-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 12/16/2022]
Abstract
Gut microbiota refers to those microorganisms in the human digestive tract that display activities fundamental in human life. With at least 4 million different bacterial types, the gut microbiota is composed of bacteria that are present at levels sixfold greater than the total number of cells in the entire human body. Among its multiple functions, the microbiota helps promote the bioavailability of some nutrients and the metabolization of food, and protects the intestinal mucosa from the aggression of pathogenic microorganisms. Moreover, by stimulating the production of intestinal mediators able to reach the central nervous system (gut/brain axis), the gut microbiota participates in the modulation of human moods and behaviors. Several endogenous and exogenous factors can cause dysbiosis with important consequences on the composition and functions of the microbiota. Recent research underlines the importance of appropriate physical activity (such as sports), nutrition, and a healthy lifestyle to ensure the presence of a functional physiological microbiota working to maintain the health of the whole human organism. Indeed, in addition to bowel disturbances, variations in the qualitative and quantitative microbial composition of the gastrointestinal tract might have systemic negative effects. Here, we review recent studies on the effects of physical activity on gut microbiota with the aim of identifying potential mechanisms by which exercise could affect gut microbiota composition and function. Whether physical exercise of variable work intensity might reflect changes in intestinal health is analyzed.
Collapse
Affiliation(s)
- Angelika Elzbieta Wegierska
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.,Italian Athletics Federation (FIDAL), Rome, Italy
| | - Ioannis Alexandros Charitos
- Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, Foggia, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan "A. Xhuvani", Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
32
|
Rogalska-Taranta M, Andersen JB. Involvement of Epigenomic Factors in Bile Duct Cancer. Semin Liver Dis 2022; 42:202-211. [PMID: 35738258 DOI: 10.1055/s-0042-1748188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common type of primary liver cancer. Due to its often-silent manifestation, sporadic nature, and typically late clinical presentation, it remains difficult to diagnose and lacks effective nonsurgical therapeutic options. Extensive research aiming in understanding the mechanisms underlying this disease have provided strong evidence for the significance of epigenetics contributing to its onset, progression, and dissemination. This dysregulation in a myriad of signaling pathways, leading to malignancy, spans altered deoxyribonucleic acid and histone methylation, histone acetylation, and chromatin remodeling, as well as genetic modifications in essential genes controlling these epigenetic processes. An advantage to epigenetic modifications is that they, compared with mutations, are reversible and can partially be controlled by inhibiting the responsible enzymatic machinery. This opens novel possibilities for developing new treatment modalities with benefit for CCA patients.In this article, we have reviewed the current status of epigenome modifications described in CCA, including the role of posttranslational histone modifications and chromatin remodeling, as well as novel advances in treatment options.
Collapse
Affiliation(s)
- Magdalena Rogalska-Taranta
- Biotech Research & Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research & Innovation Center (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives. Cells 2022; 11:cells11091463. [PMID: 35563769 PMCID: PMC9101358 DOI: 10.3390/cells11091463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and its incidence is dramatically increasing. The lack of understanding of the biology of this tumor has slowed down the identification of novel targets and the development of effective treatments. Based on next generation sequencing profiling, alterations in DNA damage response (DDR)-related genes are paving the way for DDR-targeting strategies in CCA. Based on the notion of synthetic lethality, several DDR-inhibitors (DDRi) have been developed with the aim of accumulating enough DNA damage to induce cell death in tumor cells. Observing that DDRi alone could be insufficient for clinical use in CCA patients, the combination of DNA-damaging regimens with targeted approaches has started to be considered, as evidenced by many emerging clinical trials. Hence, novel therapeutic strategies combining DDRi with patient-specific targeted drugs could be the next level for treating cholangiocarcinoma.
Collapse
|
34
|
Abstract
It has been estimated that nearly 80% of anticancer drug-treated patients receive potentially nephrotoxic drugs, while the kidneys play a central role in the excretion of anticancer drugs. Nephrotoxicity has long been a serious complication that hampers the effectiveness of cancer treatment and continues to influence both mortality and length of hospitalization among cancer patients exposed to either conventional cytotoxic agents or targeted therapies. Kidney injury arising from anticancer drugs tends to be associated with preexisting comorbidities, advanced cancer stage, and the use of concomitant non-chemotherapeutic nephrotoxic drugs. Despite the prevalence and impact of kidney injury on therapeutic outcomes, the field is sorely lacking in an understanding of the mechanisms driving cancer drug-induced renal pathophysiology, resulting in quite limited and largely ineffective management of anticancer drug-induced nephrotoxicity. Consequently, there is a clear imperative for understanding the basis for nephrotoxic manifestations of anticancer agents for the successful management of kidney injury by these drugs. This article provides an overview of current preclinical research on the nephrotoxicity of cancer treatments and highlights prospective approaches to mitigate cancer therapy-related renal toxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
35
|
SAHA induce hippo pathway in CCA cells without increasing cell proliferation. Mol Biol Rep 2022; 49:3649-3656. [PMID: 35112301 DOI: 10.1007/s11033-022-07204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cholangiocarcinoma is a malignant tumor originating from bile duct epithelial cells. Since tumor metastasis is associated with poor prognosis and short-term survival of patients, there is an urgent need for alternative therapeutic approaches for CCA. Because of that reason, we aimed to investigate effect of SAHA which is known as HDAC inhibitor on extrahepatic cholangiocarcinoma cell line (TFK-1). METHODS Cell cycle was measured by Muse Cell Analyzer. YAP, TAZ, TGF-β protein levels were determined by western-blotting method. TEAD (1-3), TIMP2 and TIMP3 genes level were determined by real-time PCR analysis. RESULTS We have seen the positive effects of SAHA on the TFK-1 cell line as it reduces cell viability and arresting cells in the G0/G1 phase. We also observed the negative effects of SAHA, as it increases the expression levels of YAP, TAZ, TGF-β protein and TEAD (1-3) gene. We also found that SAHA reduced the expression levels of TIMP2 and TIMP3 in TFK-1 cells, but was not statistically significant. CONCLUSIONS Although observing its antiproliferative effects, these negative effects may be related to the cells being resistant to the drug or the remaining cells having a more aggressive phenotype. Therefore, we think that caution should be exercised in the use of this drug for CCA treatment.
Collapse
|
36
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
37
|
Pant K, Richard S, Gradilone SA. Short-Chain Fatty Acid Butyrate Induces Cilia Formation and Potentiates the Effects of HDAC6 Inhibitors in Cholangiocarcinoma Cells. Front Cell Dev Biol 2022; 9:809382. [PMID: 35096835 PMCID: PMC8793355 DOI: 10.3389/fcell.2021.809382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly form of liver cancer with limited therapeutic approaches. The pathogenesis of CCA involves the loss of primary cilia in cholangiocytes, an important organelle that regulates several key cellular functions including the regulation of cell polarity, growth, and differentiation, by a mechanism involving increased expression of deacetylases like HDAC6 and SIRT1. Therefore, cilia restoration may represent an alternative and novel therapeutic approach against CCA. Butyrate is produced by bacterial fermentation of fibers in the intestine and has been shown to inhibit SIRT1, showing antitumor effects on various cancers. Herein, we investigated the role of butyrate on CCA cell proliferation, migration, and EMT and evaluated the synergistic effects with specific HDAC6 inhibition. When CCA cells, including HuCCT1 and KMCH, were treated with butyrate, the cilia formation and acetylated-tubulin levels were increased, while no significant effects were observed in normal human cholangiocytes. Butyrate treatment also depicted reduced cell proliferation in HuCCT1 and KMCH cells, but on the other hand, it affected cell growth of the normal cholangiocytes only at high concentrations. In HuCCT1 cells, spheroid formation and cell migration were also halted by butyrate treatment. Furthermore, we found that butyrate augmented the previously described effects of HDAC6 inhibitors on CCA cell proliferation and migration by reducing the expression of CD44, cyclin D1, PCNA, Zeb1, and Vimentin. In summary, butyrate targets cancer cell growth and migration and enhances the anti-cancer effects of HDAC6 inhibitors in CCA cells, suggesting that butyrate may have therapeutic effects in CCA and other ciliopathies.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
38
|
Pant K, Gradilone SA. Hepatobiliary Cancers: Progress in Diagnosis, Pathogenesis, and Treatment. Technol Cancer Res Treat 2022; 21:15330338221097203. [PMID: 35546130 PMCID: PMC9257325 DOI: 10.1177/15330338221097203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hepatobiliary cancers comprise a wide range of malignancies such as hepatocellular carcinoma and cholangiocarcinoma, and they are some of the most challenging to treat human neoplasms. Due to the rarity of the illnesses, the development of treatment measures for malignancies of the gastrointestinal system is far behind. The number of patients eligible for curative treatment is limited due to cancer's aggressive nature and the difficulties of early identification. Furthermore, surgery is frequently intrusive and linked with a significant level of risk. The therapy result of hepatobiliary cancers is unsatisfactory due to these complicated variables, leaving significant space for improvement.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, 5635University of Minnesota, Austin, MN, USA
| | - Sergio A Gradilone
- The Hormel Institute, 5635University of Minnesota, Austin, MN, USA.,Masonic Cancer Center, 5635University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
39
|
Ibrahim HS, Abdelsalam M, Zeyn Y, Zessin M, Mustafa AHM, Fischer MA, Zeyen P, Sun P, Bülbül EF, Vecchio A, Erdmann F, Schmidt M, Robaa D, Barinka C, Romier C, Schutkowski M, Krämer OH, Sippl W. Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity. Int J Mol Sci 2021; 23:ijms23010369. [PMID: 35008795 PMCID: PMC8745332 DOI: 10.3390/ijms23010369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Class I histone deacetylases (HDACs) are key regulators of cell proliferation and they are frequently dysregulated in cancer cells. We report here the synthesis of a novel series of class-I selective HDAC inhibitors (HDACi) containing a 2-aminobenzamide moiety as a zinc-binding group connected with a central (piperazin-1-yl)pyrazine or (piperazin-1-yl)pyrimidine moiety. Some of the compounds were additionally substituted with an aromatic capping group. Compounds were tested in vitro against human HDAC1, 2, 3, and 8 enzymes and compared to reference class I HDACi (Entinostat (MS-275), Mocetinostat, CI994 and RGFP-966). The most promising compounds were found to be highly selective against HDAC1, 2 and 3 over the remaining HDAC subtypes from other classes. Molecular docking studies and MD simulations were performed to rationalize the in vitro data and to deduce a complete structure activity relationship (SAR) analysis of this novel series of class-I HDACi. The most potent compounds, including 19f, which blocks HDAC1, HDAC2, and HDAC3, as well as the selective HDAC1/HDAC2 inhibitors 21a and 29b, were selected for further cellular testing against human acute myeloid leukemia (AML) and erythroleukemic cancer (HEL) cells, taking into consideration their low toxicity against human embryonic HEK293 cells. We found that 19f is superior to the clinically tested class-I HDACi Entinostat (MS-275). Thus, 19f is a new and specific HDACi with the potential to eliminate blood cancer cells of various origins.
Collapse
Affiliation(s)
- Hany S. Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Yanira Zeyn
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
| | - Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Al-Hassan M. Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
- Department of Zoology, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Marten A. Fischer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
| | - Patrik Zeyen
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Ping Sun
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Emre F. Bülbül
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Anita Vecchio
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic;
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, Université de Strasbourg, CEDEX, 67404 Illkirch, France;
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (A.-H.M.M.); (M.A.F.)
- Correspondence: (O.H.K.); (W.S.)
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.S.I.); (M.A.); (M.Z.); (P.Z.); (P.S.); (E.F.B.); (A.V.); (F.E.); (M.S.); (D.R.)
- Correspondence: (O.H.K.); (W.S.)
| |
Collapse
|
40
|
Sarantis P, Tzanetatou ED, Ioakeimidou E, Vallilas C, Androutsakos T, Damaskos C, Garmpis N, Garmpi A, Papavassiliou AG, Karamouzis MV. Cholangiocarcinoma: the role of genetic and epigenetic factors; current and prospective treatment with checkpoint inhibitors and immunotherapy. Am J Transl Res 2021; 13:13246-13260. [PMID: 35035673 PMCID: PMC8748131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cholangiocarcinoma (CCA) represents 3% of all gastrointestinal cancers worldwide and is the second most common primary liver tumor after hepatocellular carcinoma. CCA is an aggressive tumor that involves the intrahepatic, perihilar and distal biliary tree, with a poor prognosis and an increasing incidence worldwide. Various genetic and epigenetic factors have been implicated in CCA development. Gene mutations involving apoptosis control and cell cycle evolution, histone modifications, methylation dysregulation and abnormal expression of non-coding RNA are the most important of these factors. Regarding treatment, surgical resection, cisplatin and gemcitabine have long been the most common treatment options, but 5-year survival (7-20%) is disappointing. For that reason, inhibitors and small molecules related to specific mutations and molecular pathways have been introduced. Among them, immunotherapy seems to be a promising treatment in CCA, with multiple regimens being under clinical trial studies. The combinatorial therapy of traditional CCA treatment with tyrosine kinase inhibitors and/or immunotherapy seem to be the future, depending on the molecular profile of each patient's tumor.
Collapse
Affiliation(s)
- Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Eleftheria Dikoglou Tzanetatou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Evangelia Ioakeimidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Theodoros Androutsakos
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
- Renal Transplantation Unit, Laiko General Hospital11527 Athens, Greece
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| |
Collapse
|
41
|
Pant K, Peixoto E, Richard S, Biswas A, O'Sullivan MG, Giama N, Ha Y, Yin J, Carotenuto P, Salati M, Ren Y, Yang R, Franco B, Roberts LR, Gradilone SA. Histone Deacetylase Sirtuin 1 Promotes Loss of Primary Cilia in Cholangiocarcinoma. Hepatology 2021; 74:3235-3248. [PMID: 34322899 DOI: 10.1002/hep.32080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, MN
| | - Nasra Giama
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Yeonjung Ha
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Massimiliano Salati
- Medical Oncology Unit, Modena Cancer Centre, PhD Program Clinical and Experimental Medicine, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
42
|
Wang S, Song M, Zhang B. Trichostatin A enhances radiosensitivity and radiation-induced DNA damage of esophageal cancer cells. J Gastrointest Oncol 2021; 12:1985-1995. [PMID: 34790366 DOI: 10.21037/jgo-21-560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Background Trichostatin A (TSA) is emerging as a potential component of anticancer therapy. In this study, we aimed to identify the radiosensitizing effects of TSA in esophageal squamous carcinoma cell lines and identify the genomic alteration of histone acetylation associated with TSA treatment. Methods EC109 and KYSE450 cells were pretreated with TSA (0.1 µM) for 12 hours prior to irradiation, and the cell viability, flow cytometry, and comet assays were performed to analyze cell growth, cell apoptosis, and DNA damage, respectively. Chromatin immunoprecipitation sequencing (ChIP-Seq) was performed to identify the acetylation sites of histone H3 lysine 9 (H3K9), which was altered by TSA. Results Our data showed that TSA could sensitize esophageal cancer cells to radiation by inducing cell cycle arrest and increasing cell apoptosis. DNA damage induced by radiation was enhanced by TSA treatment. In addition, a total of 105 differential peak-related genes were found to be associated with TSA treatment, which was identified using ChIP-Seq with specific antibodies against acetylated histone H3K9. Conclusions Our data suggest that pretreatment with TSA can enhance ionizing radiation-induced DNA damage of esophageal cancer cells, which was associated with the altered histone modification of whole genome. TSA has potential implications for clinical use in increasing the anticancer efficacy of radiation.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Song
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zhang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
43
|
Khorsandi SE, Dokal AD, Rajeeve V, Britton DJ, Illingworth MS, Heaton N, Cutillas PR. Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets. Cancer Res 2021; 81:5765-5776. [PMID: 34551960 PMCID: PMC9397618 DOI: 10.1158/0008-5472.can-21-0955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Cholangiocarcinoma is a form of hepatobiliary cancer with an abysmal prognosis. Despite advances in our understanding of cholangiocarcinoma pathophysiology and its genomic landscape, targeted therapies have not yet made a significant impact on its clinical management. The low response rates of targeted therapies in cholangiocarcinoma suggest that patient heterogeneity contributes to poor clinical outcome. Here we used mass spectrometry-based phosphoproteomics and computational methods to identify patient-specific drug targets in patient tumors and cholangiocarcinoma-derived cell lines. We analyzed 13 primary tumors of patients with cholangiocarcinoma with matched nonmalignant tissue and 7 different cholangiocarcinoma cell lines, leading to the identification and quantification of more than 13,000 phosphorylation sites. The phosphoproteomes of cholangiocarcinoma cell lines and patient tumors were significantly correlated. MEK1, KIT, ERK1/2, and several cyclin-dependent kinases were among the protein kinases most frequently showing increased activity in cholangiocarcinoma relative to nonmalignant tissue. Application of the Drug Ranking Using Machine Learning (DRUML) algorithm selected inhibitors of histone deacetylase (HDAC; belinostat and CAY10603) and PI3K pathway members as high-ranking therapies to use in primary cholangiocarcinoma. The accuracy of the computational drug rankings based on predicted responses was confirmed in cell-line models of cholangiocarcinoma. Together, this study uncovers frequently activated biochemical pathways in cholangiocarcinoma and provides a proof of concept for the application of computational methodology to rank drugs based on efficacy in individual patients. SIGNIFICANCE: Phosphoproteomic and computational analyses identify patient-specific drug targets in cholangiocarcinoma, supporting the potential of a machine learning method to predict personalized therapies.
Collapse
Affiliation(s)
- Shirin Elizabeth Khorsandi
- Institute of Liver Studies, Kings College Hospital, London, United Kingdom.,The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Corresponding Authors: Pedro R. Cutillas, Cell Signaling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom. Phone: 207-882-5555; E-mail: ; and Shirin Elizabeth Khorsandi, The Roger Williams Institute of Hepatology, 111 Coldharbor Lane, London SE5 9NT, United Kingdom. E-mail:
| | - Arran D. Dokal
- Cell Signaling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Mass Spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Kinomica Ltd, Cheshire, United Kingdom
| | - Vinothini Rajeeve
- Cell Signaling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Mass Spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - David J. Britton
- Cell Signaling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Mass Spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Kinomica Ltd, Cheshire, United Kingdom
| | - Megan S. Illingworth
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, Kings College Hospital, London, United Kingdom
| | - Pedro R. Cutillas
- Cell Signaling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Mass Spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Kinomica Ltd, Cheshire, United Kingdom.,The Alan Turing Institute, The British Library, London, United Kingdom.,Corresponding Authors: Pedro R. Cutillas, Cell Signaling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom. Phone: 207-882-5555; E-mail: ; and Shirin Elizabeth Khorsandi, The Roger Williams Institute of Hepatology, 111 Coldharbor Lane, London SE5 9NT, United Kingdom. E-mail:
| |
Collapse
|
44
|
β-Carboline tethered cinnamoyl 2-aminobenzamides as class I selective HDAC inhibitors: Design, synthesis, biological activities and modelling studies. Bioorg Chem 2021; 117:105461. [PMID: 34753060 DOI: 10.1016/j.bioorg.2021.105461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/09/2023]
Abstract
The effect of β-carboline motif as cap for HDAC inhibitors containing cinnamic acid as linker and benzamides as zinc binding group was examined in this study. A series of β-carboline-cinnamide conjugates have been synthesized and evaluated for their HDAC inhibitory activity and in vitro cytotoxicity against different human cancer cell lines. Almost all the compounds exhibited superior HDAC inhibitory activity than the standard drug Entinostat for in vitro enzymatic assay. Among the tested compounds, 7h displayed a noteworthy potency with an IC50 value of 0.70 ± 0.15 µM against HCT-15 cell line when compared to the standard drug Entinostat (IC50 of 3.87 ± 0.62 µM). The traditional apoptosis assays such as nuclear morphological alterations, AO/EB, DAPI, and Annexin-V/PI staining revealed the antiproliferative activity of 7h while depolarization of mitochondrial membrane potential by JC-1 was observed in dose-dependent manner. Cell cycle analysis also unveiled the typical accumulation of cells in G2M phase and sub-G1/S phase arrest. In addition, immunoblot analysis for compound 7h on HCT-15 indicated selective inhibition of the protein expression of class I HDAC 2 and 3 isoforms. Molecular docking analysis of compound 7h revealed that it can prominent binding with the active pocket of the HDAC 2. These finding suggest that the compound 7h can be a promising lead candidate for further investigation in the development of novel anti-cancer drug potentially inhibiting HDACs.
Collapse
|
45
|
Koustas E, Trifylli EM, Sarantis P, Papavassiliou AG, Karamouzis MV. Role of autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World J Gastrointest Oncol 2021; 13:1229-1243. [PMID: 34721764 PMCID: PMC8529918 DOI: 10.4251/wjgo.v13.i10.1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the intrahepatic, perihilar and distal parts of the biliary tree. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis and strategy for clinical management. However, many cholangiocarcinoma tumor-cells appear to be resistant to current chemotherapeutic agents. The role of autophagy and the therapeutic value of autophagy-based therapy are largely unknown in CCA. The multistep nature of autophagy offers a plethora of regulation points, which are prone to be deregulated and cause different human diseases, including cancer. However, it offers multiple targetable points for designing novel therapeutic strategies. Tumor cells have evolved to use autophagy as an adaptive mechanism for survival under stressful conditions such as energy imbalance and hypoxic region of tumors within the tumor microenvironment, but also to increase invasiveness and resistance to chemotherapy. The purpose of this review is to summarize the current knowledge regarding the interplay between autophagy and cholangiocarcinogenesis, together with some preclinical studies with agents that modulate autophagy in order to induce tumor cell death. Altogether, a combinatorial strategy, which comprises the current anti-cancer agents and autophagy modulators, would represent a positive CCA patient approach.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
46
|
Gupta S, Ahmed MM. Targeting radiation-induced upstream stimulatory factor-1 by histone deacetylase inhibitors to reverse radioresistance in prostate cancer. Cancer Rep (Hoboken) 2021; 5:e1553. [PMID: 34533293 PMCID: PMC9780427 DOI: 10.1002/cnr2.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Ionizing radiation (IR) is a standard modality for the management of solid tumors. Apart from its killing effects, IR can induce pro-survival factors leading to radioresistance of cancer. Mechanistic understanding of radiation resistance is warranted to overcome the pro-survival effects of IR. AIM The aim of this study was to investigate the role of upstream stimulatory factor-1 (USF-1) in the induction of radioresistance in prostate cancer and its targeting by histone deacetylase (HDAC) inhibitors to reverse resistance. METHODS AND RESULTS This study reports here that USF-1 is a marker for radioresistance in PC-3 cells. Using protein-DNA array analysis, it was documented that DNA binding activity of USF-1 was elevated following IR in PC-3 cells. Novel HDAC inhibitors downregulated USF-1 binding either alone or in combination with IR. A 5 Gy dose of IR induced the expression of target genes of USF-1 (human telomerase reverse transcriptase [hTERT], IGF2R, CyclinB1, and Cdk1), however, HDAC inhibitors alone or in combination with IR reduced their expression as measured by real time RT PCR analysis. Furthermore, immunofluorescence analysis revealed that while USF-1 localized primarily in the nucleus following IR, it localized in the cytoplasm when treated with HDAC inhibitors/combination. Maximum effects of modulation of USF-1 expression (overexpression or suppression) were observed on hTERT activity as determined by dual-luciferase reporter assay. To further confirm the role of USF-1 in radioresistance, cell growth was analyzed using the real-time cell electronic sensing (RT-CES) system. This study found that USF-1-transfected cells proliferated faster than the vector-transfected cells with or without treatments with HDAC inhibitors/IR/combination. Colony forming assay also confirmed that USF-1 overexpression led to increased survival following IR. Importantly, colony-forming assay demonstrated that HDAC inhibitors reversed the radioresistance in both PC-3 and DU-145 cells. CONCLUSION These studies demonstrate that HDAC inhibitors reverse the radioresistance in prostate cancer through down-modulation of USF-1-mediated transactivation of target genes involved in cell proliferation and cell cycle.
Collapse
Affiliation(s)
- Seema Gupta
- Department of Radiation OncologyUniversity of MiamiMiamiFloridaUSA,Present address:
The Loop Immuno‐Oncology Laboratory, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashington, DCUSA
| | - Mansoor M. Ahmed
- Department of Radiation OncologyUniversity of MiamiMiamiFloridaUSA,Present address:
Radiation Research Program (RRP), Division of Cancer Treatment and Diagnosis (DCTD)National Cancer Institute/National Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
47
|
Pojani E, Barlocco D. Selective Inhibitors of Histone Deacetylase 10 (HDAC-10). Curr Med Chem 2021; 29:2306-2321. [PMID: 34468295 DOI: 10.2174/0929867328666210901144658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Histone acetylation balance is one epigenetic mechanism controlling gene expression associated with disease progression. It has been observed that histone deacetylase 10 (HDAC-10) isozyme contributes to the chemotherapy resistance; in addition, the poor clinical outcome observed in patients with aggressive solid tumors, such as neuroblastoma, has been associated with its overexpression. Moreover, HDAC-10 selective inhibition suppresses the autophagic response, thus providing an improved risk-benefit profile compared to cytotoxic cancer chemotherapy drugs. On these bases, HDAC-10 is becoming an emerging target for drug design. Due to the rapid progress in the development of next-generation HDAC inhibitors, this review article aims to provide an overview on novel selective or dual HDAC-8/10 inhibitors, as new leads for cancer chemotherapy, able to avoid the severe side-effects of several actual approved "pan" HDAC inhibitors. A literature search was conducted in MedLine, PubMed, Caplus, SciFinder Scholar databases from 2015 to the present. Since the disclosure that the HDAC-6 inhibitor Tubastatin A was able to bind HDAC-10 efficiently, several related analogues were synthesized and tested. Both tricyclic (25-30) and bicyclic (31-42) derivatives were considered. The best pharmacological profile was shown by 36 (HDAC-10 pIC50 = 8.4 and pIC50 towards Class I HDACs from 5.2-6.4). In parallel, based on the evidence that high levels of HDAC-8 are a marker of poor prognosis in neuroblastoma treatment, dual HDAC-8/10 inhibitors were designed. The hydroxamic acid TH34 (HDAC-8 and 10 IC50 = 1.9 µM and 7.7 µM, respectively) and the hybrid derivatives 46d, 46e and 46g were the most promising both in terms of potency and selectivity. Literature surveys indicate several structural requirements for inhibitory potency and selectivity towards HDAC-10, e.g., electrostatic and/or hydrogen bond interactions with E274 and complementarity to the P(E,A) CE motif helix.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25 - 20133 Milan, Italy
| |
Collapse
|
48
|
Hou JY, Zhou L, Li JL, Wang DP, Cao JM. Emerging roles of non-histone protein crotonylation in biomedicine. Cell Biosci 2021; 11:101. [PMID: 34059135 PMCID: PMC8166067 DOI: 10.1186/s13578-021-00616-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/22/2021] [Indexed: 12/25/2022] Open
Abstract
Crotonylation of proteins is a newly found type of post-translational modifications (PTMs) which occurs leadingly on the lysine residue, namely, lysine crotonylation (Kcr). Kcr is conserved and is regulated by a series of enzymes and co-enzymes including lysine crotonyltransferase (writer), lysine decrotonylase (eraser), certain YEATS proteins (reader), and crotonyl-coenzyme A (donor). Histone Kcr has been substantially studied since 2011, but the Kcr of non-histone proteins is just an emerging field since its finding in 2017. Recent advances in the identification and quantification of non-histone protein Kcr by mass spectrometry have increased our understanding of Kcr. In this review, we summarized the main proteomic characteristics of non-histone protein Kcr and discussed its biological functions, including gene transcription, DNA damage response, enzymes regulation, metabolic pathways, cell cycle, and localization of heterochromatin in cells. We further proposed the performance of non-histone protein Kcr in diseases and the prospect of Kcr manipulators as potential therapeutic candidates in the diseases.
Collapse
Affiliation(s)
- Jia-Yi Hou
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.,Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
49
|
Cigliano A, Chen X, Calvisi DF. Current challenges to underpinning the genetic basis for cholangiocarcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:511-526. [PMID: 33888034 PMCID: PMC8173760 DOI: 10.1080/17474124.2021.1915128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
AREAS COVERED This review provides an overview regarding the current scenario and knowledge of the CCA genomic landscape and the potentially actionable molecular aberrations in each CCA subtype. EXPERT OPINION The establishment and advances of high-throughput methodologies applied to genetic and epigenetic profiling are changing many cancer types' therapeutic landscape , including CCA.The large body of data generated must be interpreted appropriately and eventually implemented in clinical practice. The following advancements toward precision medicine in CCA management will require designing better clinical trials with improved methods to stratify biliary tumor patients.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Italy
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
50
|
Rahmani G, Sameri S, Abbasi N, Abdi M, Najafi R. The clinical significance of histone deacetylase-8 in human breast cancer. Pathol Res Pract 2021; 220:153396. [PMID: 33691240 DOI: 10.1016/j.prp.2021.153396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/17/2023]
Abstract
Recent studies have shown that the histone deacetylase-8 (HDAC8), as one of the HDACs, regulates the expression and activity of various genes involved in cancer initiation and progression. The HDAC8 plays an epigenetic role to dysregulate expressions or to interact with transcription factors. Most researchers had focused on the HDAC 1-3 and 6, but today the HDAC8 isotype is a promising target in cancer therapy. Different studies, on breast cancer (BC) cells, have recently shown the HDAC8 overexpression and suggested its oncogenic potential. It seems that the HDAC8 could be a novel and promising target in breast cancer treatment. Some studies on BC demonstrated therapeutic properties of the inhibitors of HDAC8 such as suberoylanilide hydroxamic acid (SAHA), Trichostatin A, valproic acid, sodium butyrate, 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl) methyl) propanamide (10b)], N-(2-Hydroxyphenyl)-2propylpentanamide (compound 2) and PCI-34051. In this review, we highlight the role and existing inhibitors of HDAC8 in BC pathogenesis and therapy.
Collapse
Affiliation(s)
- Golebagh Rahmani
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Sameri
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Abbasi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neurosciences- DNS, University of Padua, Padua, Italy
| | - Mohammad Abdi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Rezvan Najafi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|