1
|
Fang Z, Zhang W, Wang H, Zhang C, Li J, Chen W, Xu X, Wang L, Ma M, Zhang S, Li Y. Helicobacter pylori promotes gastric cancer progression by activating the TGF-β/Smad2/EMT pathway through HKDC1. Cell Mol Life Sci 2024; 81:453. [PMID: 39545942 PMCID: PMC11568101 DOI: 10.1007/s00018-024-05491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Helicobacter pylori (H. pylori) infection is widely acknowledged as the primary risk factor for gastric cancer, facilitating its progression via the Correa cascade. Concurrently, Hexokinase Domain Containing 1 (HKDC1) has been implicated in the mediation of aerobic glycolysis, contributing to tumorigenesis across various cancers. However, the precise role of HKDC1 in the inflammatory transformation associated with H. pylori-induced gastric cancer remains elusive. In this study, transcriptome sequencing revealed a significant correlation between HKDC1 and H. pylori-induced gastric cancer. Subsequent validation using qRT-PCR, immunohistochemistry, and Western blot analysis confirmed elevated HKDC1 expression in both human and murine gastritis and gastric tumors. Moreover, in vitro and in vivo experiments demonstrated that H. pylori infection up-regulates TGF-β1 and p-Smad2, thereby activating the epithelial-mesenchymal transition (EMT) pathway, with HKDC1 playing a pivotal role. Suppression of HKDC1 expression or pharmacological inhibition of TGF-β1 reversed EMT activation, consequently reducing gastric cancer cell proliferation and metastasis. These results underscore HKDC1's essential contribution to H. pylori-induced gastric cancer progression via EMT activation.
Collapse
Affiliation(s)
- Ziqing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Weitong Zhang
- Department of General Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Chaoyang Zhang
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University, Hangzhou, 310000, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Wanjing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Luyang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Shangxin Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.
| |
Collapse
|
2
|
Liu Y, Shang X, Du W, Shen W, Zhu Y. Helicobacter Pylori Infection as the Predominant High-Risk Factor for Gastric Cancer Recurrence Post-Gastrectomy: An 8-Year Multicenter Retrospective Study. Int J Gen Med 2024; 17:4999-5014. [PMID: 39494357 PMCID: PMC11531290 DOI: 10.2147/ijgm.s485347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose The reappearance of gastric cancer, a frequent postoperative complication following radical gastric cancer surgery, substantially impacts the near-term and far-reaching medical outlook of patients. The objective of this research was to create a machine learning algorithm that could recognize high-risk factors for gastric cancer recurrence and anticipate the correlation between gastric cancer recurrence and Helicobacter pylori (H. pylori) infection. Patients and Methods This investigation comprised 1234 patients diagnosed with gastric cancer, and 37 characteristic variables were obtained. Four machine learning algorithms, namely, extreme gradient boosting (XGBoost), random forest (RF), k-nearest neighbor algorithm (KNN), and multilayer perceptron (MLP), were implemented to develop the models. The k-fold cross-validation technique was utilized to perform internal validation of the four models, while independent datasets were employed for external validation of the models. Results In contrast to the other machine learning models, the XGBoost algorithm demonstrated superior predictive ability regarding high-risk factors for gastric cancer recurrence. The outcomes of Shapley additive explanation (SHAP) analysis revealed that tumor invasion depth, tumor lymph node metastasis, H. pylori infection, postoperative carcinoembryonic antigen (CEA), tumor size, and tumor number were risk elements for gastric cancer recurrence in patients, with H. pylori infection being the primary high-risk factor. Conclusion Out of the four machine learning models, the XGBoost algorithm exhibited superior performance in predicting the recurrence of gastric cancer. In addition, machine learning models can help clinicians identify key prognostic factors that are clinically meaningful for the application of personalized patient monitoring and immunotherapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
- Department of General Surgery, Tengzhou Central People’s Hospital, Jining Medical College, Shandong, People’s Republic of China
| | - Xingchen Shang
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wenyi Du
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wei Shen
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yanfei Zhu
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| |
Collapse
|
3
|
Chen H, Zheng Z, Yang C, Tan T, Jiang Y, Xue W. Machine learning based intratumor heterogeneity signature for predicting prognosis and immunotherapy benefit in stomach adenocarcinoma. Sci Rep 2024; 14:23328. [PMID: 39375438 PMCID: PMC11458769 DOI: 10.1038/s41598-024-74907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Stomach adenocarcinoma (STAD) is a prevalent malignancy that is highly aggressive and heterogeneous. Intratumor heterogeneity (ITH) showed strong link to tumor progression and metastasis. High ITH may promote tumor evolution. An ITH-related signature (IRS) was created using as integrative technique including 10 machine learning methods based on TCGA, GSE15459, GSE26253, GSE62254 and GSE84437 datasets. The relevance of IRS in predicting the advantages of immunotherapy was assessed using a number of prediction scores and three immunotherapy datasets (GSE78220, IMvigor210 and GSE91061). Vitro experiments were performed to verify the biological functions of AKR1B1. The RSF + Enet (alpha = 0.1) projected model was proposed as the ideal IRS because it had the highest average C-index. The IRS demonstrated a strong performance in serving as an independent risk factor for the clinical outcome of STAD patients. It performed exceptionally well in predicting the overall survival rate of STAD patients, as seen by the TCGA cohort's AUC of 1-, 3-, and 5-year ROC curves, which were 0.689, 0.683, and 0.669, respectively. A low IRS score demonstrated a superior response to immunotherapy, as seen by a lower TIDE score, lower immune escape score, greater TMB score, higher PD1&CTLA4 immunophenoscore, higher response rate, and improved prognosis. Common chemotherapeutic and targeted treatment regimens had lower IC50 values in the group with higher IRS scores. Vitro experiment showed that AKR1B1 was upregulated in STAD and knockdown of AKR1B1 obviously suppressed tumor cell proliferation and migration. The present investigation produced the best IRS for STAD, which may be applied to prognostication, risk stratification, and therapy planning for STAD patients.
Collapse
Affiliation(s)
- Hongcai Chen
- Department of Internal Medicine, Cancer Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Zhiwei Zheng
- Department of Internal Medicine, Cancer Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Cui Yang
- Department of Gynaecology and Obstetrics, Shantou Central Hospital, Shantou, 515000, China
| | - Tingting Tan
- Department of Internal Medicine, Jinping District People's Hospital of Shantou, Shantou, 515000, China
| | - Yi Jiang
- Department of Internal Medicine, Cancer Hospital of Shantou University Medical College, Shantou, 515000, China.
| | - Wenwu Xue
- Department of Internal Medicine, Cancer Hospital of Shantou University Medical College, Shantou, 515000, China.
| |
Collapse
|
4
|
Ahmad HM, Al-Fishawy HS, Shaltout I, Elnaeem EAA, Mohamed AS, Salem AE. A comparative study between current and past Helicobacter pylori infection in terms of microalbuminuria in patients with type 2 diabetes. BMC Infect Dis 2024; 24:1091. [PMID: 39354365 PMCID: PMC11446035 DOI: 10.1186/s12879-024-09918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The prevalence of Helicobacter pylori (H. pylori) infection and its potential relationship to various diseases is currently a focus of attention. The aim of this study is to investigate the association between current and past H. pylori infections and elevated levels of microalbuminuria in type 2 diabetic patients. METHODS Two hundred patients with type 2 diabetes mellitus were tested for the presence of H. pylori infection. They were divided into three groups: 52 had a current H. pylori infection, 38 had a past H. pylori infection, and 110 had no H. pylori infection. All study participants underwent assessments of plasma glucose levels, glycated hemoglobin (HbA1c), albuminuria levels, inflammatory markers such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), as well as other relevant investigations. RESULTS The prevalence of H. pylori infection (current and past) was detected in 90 out of 200 diabetic patients (45%). There was no statistically significant difference between the three groups in terms of age, diabetes duration, family history of DM, family history of hypertension, residence, or dyspeptic symptoms, indicating that current or past infection with H. pylori has no association with these variables. The current H. pylori infection group showed the highest levels of inflammatory markers, ESR and CRP, which were significantly different from those in the non-infected group (p = 0.013 and p < 0.001, respectively). The median (IQR) of albuminuria levels in the current H. pylori infection group, the past H. pylori infection group, and the non-infected group were 125 (4.8-290), 7.6 (2.4-271), and 5.1 (1.2-173), respectively. The current H. pylori infection group showed the highest albuminuria level, which was significantly different from that of the non-infected group (p = 0.001). CONCLUSION There might be an association between microalbuminuria levels, general inflammatory markers (ESR and CRP), and current H. pylori infection in type 2 diabetic patients.
Collapse
Affiliation(s)
- Hosam M Ahmad
- Internal medicine department, faculty of medicine, Cairo University, Cairo, Egypt
- Internal medicine department, Ministry of Health and population. Minia, Minia, Egypt
| | - Hussein S Al-Fishawy
- Internal medicine department, faculty of medicine, Cairo University, Cairo, Egypt
| | - Inass Shaltout
- Internal medicine department, faculty of medicine, Cairo University, Cairo, Egypt
| | - Emad A Abd Elnaeem
- Clinical Pathology department, Faculty of medicine, Minia University, Minia, Egypt
| | - Asmaa S Mohamed
- Clinical Pharmacy and pharmacy practice department, Faculty of Pharmacy, Port said University, Port said, Egypt.
| | - Amel E Salem
- Internal medicine department, faculty of medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Yuan Y, Yang X, Zhao Y, Flores JJ, Huang L, Gu L, Li R, Zhang X, Zhu S, Dong S, Kanamaru H, He Q, Tao Y, Yi K, Han M, Chen X, Wu L, Zhang JH, Xie Z, Tang J. Mitochondrial ferritin upregulation by deferiprone reduced neuronal ferroptosis and improved neurological deficits via NDRG1/Yap pathway in a neonatal rat model of germinal matrix hemorrhage. J Cereb Blood Flow Metab 2024:271678X241252110. [PMID: 39318194 PMCID: PMC11563512 DOI: 10.1177/0271678x241252110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 09/26/2024]
Abstract
Ferroptosis contributes to brain injury after germinal matrix hemorrhage (GMH). Mitochondrial ferritin (FTMT), a novel mitochondrial outer membrane protein, reduces oxidative stress in neurodegenerative diseases. In vitro, Deferiprone has been shown to upregulate FTMT. However, the effects of FTMT upregulation by Deferiprone on neuronal ferroptosis after GMH and its underlying mechanism has not been investigated. In our study, 389 Sprague-Dawley rat pups of postnatal day 7 were used to establish a collagenase-induced GMH model and an iron-overload model of intracerebral FeCl2 injection. The brain expressions of FTMT, N-myc downstream-regulated gene-1 (NDGR1), Yes-associated protein (YAP), ferroptosis-related molecules including transferrin receptor (TFR) and acyl-CoA synthase long-chain family member 4 (ACSL4) were increased after GMH. FTMT agonist Deferiprone improved neurological deficits and hydrocephalus after GMH. Deferiprone or Adenovirus-FTMT enhanced YAP phosphorylation at the Ser127 site and attenuated ferroptosis, which was reversed by NDRG1 CRISPR Knockout. Iron overload induced neuronal ferroptosis and neurological deficits, which were improved by YAP CRISPR Knockout. Collectively, FTMT upregulation by Deferiprone reduced neuronal ferroptosis and neurological deficits via the NDRG1/YAP signaling pathway after GMH. Deferiprone may serve as a potential non-invasive treatment for GMH patients.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xiao Yang
- Department of Obstetrics and Gynecology, University‐Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yutong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lingui Gu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kun Yi
- Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyang Han
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Wu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, USA
- Departments of Anesthesiology and Neurology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
6
|
Ou L, Liu H, Peng C, Zou Y, Jia J, Li H, Feng Z, Zhang G, Yao M. Helicobacter pylori infection facilitates cell migration and potentially impact clinical outcomes in gastric cancer. Heliyon 2024; 10:e37046. [PMID: 39286209 PMCID: PMC11402937 DOI: 10.1016/j.heliyon.2024.e37046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Gastric cancer is a significant health concern worldwide. Helicobacter pylori (HP) infection is associated with gastric cancer risk, but differences between HP-infected and HP-free gastric cancer have not been studied sufficiently. The objective of this study was to investigate the effects of HP infection on the viability and migration of gastric cancer cells and identify potential underlying genetic mechanisms as well as their clinical relevance. Cell counting kit-8, lactate dehydrogenase, wound healing, and transwell assay were applied in the infection model of multiple clones of HP and multiple gastric cancer cell lines. Genes related to HP infection were identified using bioinformatics analysis and subsequently validated using real-time quantitative PCR. The association of these genes with immunity and drug sensitivity of gastric cancer was analyzed. Results showed that HP has no significant impact on viability but increases the migration of gastric cancer cells. We identified 1405 HP-upregulated genes, with their enriched terms relating to cell migration, drug, and immunity. Among these genes, the 82 genes associated with survival showed a significant impact on gastric cancer in consensus clustering and LASSO prognostic model. The top 10 hub HP-associated genes were further identified, and 7 of them were validated in HP-infected cells using real-time quantitative PCR, including ERBB4, DNER, BRINP2, KCTD16, MAPK4, THPO, and VSTM2L. The overexpression experiment showed that KCTD16 medicated the effect of HP on gastric cancer migration. Our findings suggest that HP infection may enhance the migratory potential of gastric cancer cells and these genes might be associated with immunity and drug sensitivity of gastric cancer. In human subjects with gastric cancer, HP presence in tumors may affect migration, immunity, and drug sensitivity.
Collapse
Affiliation(s)
- Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hengrui Liu
- Cancer Institute, Jinan University, Guangzhou, China
- Tianjin Yinuo Biomedical Co., Ltd, Tianjin, China
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junwei Jia
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Hui Li
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
7
|
Mazurek M, Szewc M, Sitarz MZ, Dudzińska E, Sitarz R. Gastric Cancer: An Up-to-Date Review with New Insights into Early-Onset Gastric Cancer. Cancers (Basel) 2024; 16:3163. [PMID: 39335135 PMCID: PMC11430327 DOI: 10.3390/cancers16183163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the fifth most common cause of cancer death in the world. Regarding the age at which the diagnosis was made, GC is divided into early-onset gastric cancer (EOGC-up to 45 years of age) and conventional GC (older than 45). EOGC constitutes approximately 10% of all GCs. Numerous reports indicate that EOGC is more aggressive than conventional GC and is often discovered at an advanced tumor stage, which has an impact on the five-year survival rate. The median survival rate for advanced-stage GC is very poor, amounting to less than 12 months. Risk factors for GC include family history, alcohol consumption, smoking, Helicobacter pylori, and Epstein-Barr virus infection. It has been shown that a proper diet and lifestyle can play a preventive role in GC. However, research indicates that risk factors for conventional GC are less correlated with EOGC. In addition, the unclear etiology of EOGC and the late diagnosis of this disease limit the possibilities of effective treatment. Genetic factors are considered a likely cause of EOGC, as young patients are less exposed to environmental carcinogens. Research characterizing GC in young patients is scarce. This comprehensive study presents all aspects: epidemiology, risk factors, new treatment strategies, and future directions.
Collapse
Affiliation(s)
- Marek Mazurek
- Department of Surgical Oncology, Masovian Cancer Hospital, 05-135 Wieliszew, Poland;
| | - Monika Szewc
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Monika Z. Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Ewa Dudzińska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Robert Sitarz
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-950 Lublin, Poland;
- Department of Surgical Oncology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
8
|
Liu Y, Jin T, Chen R, Miao R, Zhou Y, Shao S. High expression of ABL2 promotes gastric cancer cells migration, invasion and proliferation via the TGF-β and YAP signaling pathways. J Cancer 2024; 15:5719-5728. [PMID: 39308677 PMCID: PMC11414612 DOI: 10.7150/jca.99307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background: The Abelson-Related Gene (ABL2) is expressed in various malignancies. However, its role in gastric cancer (GC) regarding tumor proliferation, metastasis, and invasion remains unclear. Methods: ABL2 expression in clinical specimens was assessed using quantitative real-time fluorescence PCR (qRT-PCR). Western blotting and immunofluorescence assay determined protein levels. Additionally, Transwell migration and invasion, cell counting kit-8 (CCK-8) and colony-formation assays analyzed the effect of ABL2 on GC cells. Protein levels related to GC cells were assessed through Western blotting. The effects of si-ABL2 combined with GA-017 that activated YAP on cell migration, invasion and proliferation were investigated. Results: ABL2 expression was upregulated in human GC tissues compared to paracancer tissues, and it was positively related to tumor node metastasis classification (TNM) stage. Furthermore, high ABL2 levels promoted the proliferation, metastasis, and invasion capacity in GC cells. Elevated ABL2 expression enhanced the expression of MMP2, MMP9, and PCNA while decreasing TIMP1 and TIMP2 expression. It also increased the p-SMAD2/3 expression and YAP expression, decreased the expression of p-YAP in GC cells. Furthermore, GA-017 increased ABL2 expression in MGC-803 cells and counteracted the effects of si-ABL2 on cell migration, invasion and proliferation. Conclusion: These findings indicated that heightened ABL2 expression could activate TGF-β/SMAD2/3 and YAP signaling pathway, promoting epithelial mesenchymal transformation (EMT), and enhancing multiplication, metastasis, and invasion in GC cells.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Jin
- Department of Gastroenterology, Yixing people's hospital, Yixing, Jiangsu, China
| | - Ruiyun Chen
- Department of gastrointestinal surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Renjie Miao
- Department of Clinical laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Yixing people's hospital, Yixing, Jiangsu, China
| |
Collapse
|
9
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
10
|
Zhao L, Kan Y, Wang L, Pan J, Li Y, Zhu H, Yang Z, Xiao L, Fu X, Peng F, Ren H. Roles of long non‑coding RNA SNHG16 in human digestive system cancer (Review). Oncol Rep 2024; 52:106. [PMID: 38940337 PMCID: PMC11234248 DOI: 10.3892/or.2024.8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
The incidence of tumors in the human digestive system is relatively high, including esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer. These malignancies arise from a complex interplay of environmental and genetic factors. Among them, long non‑coding RNAs (lncRNAs), which cannot be translated into proteins, serve an important role in the development, progression, migration and prognosis of tumors. Small nucleolar RNA host gene 16 (SNHG16) is a typical lncRNA, and its relationship with digestive system tumors has been widely explored. The prevailing hypothesis suggests that the principal molecular mechanism of SNHG16 in digestive system tumors involves it functioning as a competitive endogenous RNA that interacts with other proteins, regulates various genes and influences a downstream target molecule. The present review summarizes recent research on the relationship between SNHG16 and numerous types of digestive system cancer, encompassing its biological functions, underlying mechanisms and potential clinical implications. Furthermore, it outlines the association between SNHG16 expression and pertinent risk factors, such as smoking, infection and diet. The present review indicated the promise of SNHG16 as a potential biomarker and therapeutic target in human digestive system cancer.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuling Kan
- Central Laboratory of Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Lu Wang
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiquan Pan
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yun Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haiyan Zhu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinhua Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Weifang Key Laboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haipeng Ren
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
11
|
McClain MS, Boeglin WE, Algood HMS, Brash AR. Fatty acids of Helicobacter pylori lipoproteins CagT and Lpp20. Microbiol Spectr 2024; 12:e0047024. [PMID: 38501821 PMCID: PMC11064636 DOI: 10.1128/spectrum.00470-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.
Collapse
Affiliation(s)
- Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William E. Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Alan R. Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Tayyeb JZ, Mondal S, Anisur Rahman M, Kumar S, Bayıl I, Akash S, Hossain MS, Alqahtani T, Zaki MEA, Oliveira JIN. Identification of Helicobacter pylori-carcinogenic TNF-alpha-inducing protein inhibitors via daidzein derivatives through computational approaches. J Cell Mol Med 2024; 28:e18358. [PMID: 38693868 PMCID: PMC11063725 DOI: 10.1111/jcmm.18358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024] Open
Abstract
Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.
Collapse
Affiliation(s)
- Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of MedicineUniversity of JeddahJeddahSaudi Arabia
| | - Shibam Mondal
- Pharmacy Discipline, School of Life SciencesKhulna UniversityKhulnaBangladesh
| | | | - Swapon Kumar
- Department of PharmacyJahangirnagar UniversitySavarBangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational BiologyGaziantep UniversityGaziantepTurkey
| | - Shopnil Akash
- Department of PharmacyDaffodil International UniversityDhakaBangladesh
| | | | - Taha Alqahtani
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of ScienceImam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalBrazil
| |
Collapse
|
13
|
Dong W, Li X, Cheng L, Yang J, Zhao Z, Qiang X, Li P, Wu J, Guo L. RAE1 promotes gastric carcinogenesis and epithelial-mesenchymal transition. Arch Biochem Biophys 2024; 754:109896. [PMID: 38417691 DOI: 10.1016/j.abb.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/01/2024]
Abstract
AIMS The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Wenhui Dong
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaofei Li
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lulu Cheng
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jing Yang
- Department of Pathology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ziyan Zhao
- Department of Hematology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xihui Qiang
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Pengmei Li
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ju Wu
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| | - Lianyi Guo
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
14
|
Shang R, Liao Y, Zheng X. Inhibition of Wnt Signaling by Atovaquone Inhibits Gastric Cancer and Enhances Chemotherapy Effectiveness Through Activation of Casein Kinase 1α. Nutr Cancer 2024; 76:452-462. [PMID: 38494910 DOI: 10.1080/01635581.2024.2328377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Abnormal activation of the Wnt/β-catenin signaling pathway is a driving force behind the progression of gastric cancer. Atovaquone, known as an antimalarial drug, has emerged as a potential candidate for anti-cancer therapy. This study investigated atovaquone's effects on gastric cancer and its underlying mechanisms. Using gastric cancer cell lines, we found that atovaquone, at concentrations relevant to clinical use, significantly reduced their viability. Notably, atovaquone exhibited a lower effectiveness in reducing the viability of normal gastric cells compared to gastric cancer cells. We further demonstrated that atovaquone inhibited gastric cancer growth and colony formation. Mechanism studies revealed that atovaquone inhibited mitochondrial respiration and induced oxidative stress. Experiments using ρ0 cells, deficient in mitochondrial respiration, indicated a slightly weaker effect of atovaquone on inducing apoptosis compared to wildtype cells. Atovaquone increased phosphorylated β-catenin at Ser45 and Ser33/37/Thr41, elevated Axin, and reduced β-catenin. The inhibitory effects of atovaquone on β-catenin were reversed upon depletion of CK1α. Furthermore, the combination of atovaquone with paclitaxel suppressed gastric cancer growth and improved overall survival in mice. Given that atovaquone is already approved for clinical use, these findings suggest its potential as a valuable addition to the drug arsenal available for treating gastric cancer.
Collapse
Affiliation(s)
- Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yingying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuejiao Zheng
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
15
|
Zhang F, Yan Y, Cao X, Guo C, Wang K, Lv S. TGF-β-driven LIF expression influences neutrophil extracellular traps (NETs) and contributes to peritoneal metastasis in gastric cancer. Cell Death Dis 2024; 15:218. [PMID: 38490994 PMCID: PMC10943116 DOI: 10.1038/s41419-024-06594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Gastric cancer (GC), notorious for its poor prognosis, often advances to peritoneal dissemination, a crucial determinant of detrimental outcomes. This study intricately explores the role of the TGFβ-Smad-LIF axis within the tumor microenvironment in propagating peritoneal metastasis, with a specific emphasis on its molecular mechanism in instigating Neutrophil Extracellular Traps (NETs) formation and encouraging GC cellular functions. Through a blend of bioinformatics analyses, utilizing TCGA and GEO databases, and meticulous in vivo and in vitro experiments, LIF was identified as pivotally associated with GC metastasis, notably, enhancing the NETs formation through neutrophil stimulation. Mechanistically, TGF-β was substantiated to elevate LIF expression via the activation of the Smad2/3 complex, culminating in NETs formation and consequently, propelling peritoneal metastasis of GC. This revelation uncovers a novel potential therapeutic target, promising a new avenue in managing GC and mitigating its metastatic propensities.
Collapse
Affiliation(s)
- Fangbin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yan Yan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xinguang Cao
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Changqing Guo
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ke Wang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shuai Lv
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
16
|
Li F, Feng Q, Tao R. Machine learning-based cell death signature for predicting the prognosis and immunotherapy benefit in stomach adenocarcinoma. Medicine (Baltimore) 2024; 103:e37314. [PMID: 38457593 PMCID: PMC10919539 DOI: 10.1097/md.0000000000037314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/10/2024] Open
Abstract
Stomach adenocarcinoma (STAD) is a one of most common malignancies with high mortality-to-incidence ratio. Programmed cell death (PCD) exerts vital functions in the progression of cancer. The role of PCD-related genes (PRGs) in STAD are not fully clarified. Using TCGA, GSE15459, GSE26253, GSE62254 and GSE84437 datasets, PCD-related signature (PRS) was constructed with an integrative procedure including 10 machine learning methods. The role of PRS in predicting the immunotherapy benefits was evaluated by several predicting score and 3 immunotherapy datasets (GSE91061, GSE78220, and IMvigor210). The model developed by Lasso + CoxBoost algorithm having a highest average C-index of 0.66 was considered as the optimal PRS. As an independent risk factor for STAD patients, PRS had a good performance in predicting the overall survival rate of patients, with an AUC of 1-, 3-, and 5-year ROC curve being 0.771, 0.751 and 0.827 in TCGA cohort. High PRS score demonstrated a lower gene set score of some immune-activated cells and immune-activated activities. Patient with high PRS score had a higher TIDE score, higher immune escape score, lower PD1&CTLA4 immunophenoscore, lower TMB score, lower response rate and poor prognosis, indicating a less immunotherapy response. The IC50 value of some drugs correlated with chemotherapy and targeted therapy was higher in high PRS score group. Our investigation developed an optimal PRS in STAD and it acted as an indicator for predicting the prognosis, stratifying risk and guiding treatment for STAD patients.
Collapse
Affiliation(s)
- Fan Li
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian Feng
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ran Tao
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Jia K, Chen Y, Xie Y, Wang X, Hu Y, Sun Y, Cao Y, Zhang L, Wang Y, Wang Z, Lu Z, Li J, Zhang X, Shen L. Helicobacter pylori and immunotherapy for gastrointestinal cancer. Innovation (N Y) 2024; 5:100561. [PMID: 38379784 PMCID: PMC10878118 DOI: 10.1016/j.xinn.2023.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024] Open
Abstract
Helicobacter pylori infection is associated with the risk of gastrointestinal (GI) cancers; however, its impact on immunotherapy for GI cancers remains uncertain. In this study, we included 10,122 patients who underwent 13C-urea breath tests. Among 636 patients with Epstein-Barr virus-negative microsatellite-stable gastric cancer (GC) who were treated with anti-PD-1/PD-L1 therapy, H. pylori-positive patients exhibited significantly longer immune-related progression-free survival (irPFS) compared with H. pylori-negative patients (6.97 months versus 5.03 months, p < 0.001, hazard ratio [HR] 0.76, 95% confidence interval [CI] 0.62-0.95, p = 0.015). Moreover, the H. pylori-positive group demonstrated a trend of 4 months longer median immune-related overall survival (irOS) than the H. pylori-negative group. H. pylori-positive GC displayed higher densities of PD-L1+ cells and nonexhausted CD8+ T cells, indicative of a "hot" tumor microenvironment. Transcriptomic analysis revealed that H. pylori-positive GC shared molecular characteristics similar to those of immunotherapy-sensitive GC. However, H. pylori-positive patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal adenocarcinoma and esophageal squamous cell carcinoma (ESCC) had shorter irPFS compared with H. pylori-negative patients (16.13 months versus not reached, p = 0.042, HR 2.26, 95% CI 1.13-4.50, p = 0.021 and 5.57 months versus 6.97 months, p = 0.029, HR 1.59, 95% CI 1.14-2.23, p = 0.006, respectively). The difference in irOS between H. pylori-positive and -negative patients had the same trend as that between dMMR/MSI-H colorectal adenocarcinoma and ESCC patients. We also identified a trend of shorter irPFS and irOS in H. pylori-positive liver cancer and pancreatic cancer patients. In summary, our findings supported that H. pylori infection is a beneficial factor for GC immunotherapy by shaping hot tumor microenvironments. However, in dMMR/MSI-H colorectal adenocarcinoma and ESCC patients, H. pylori adversely affects the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Keren Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yi Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yajie Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yu Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanshuo Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liyan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
18
|
Shi L, Shangguan J, Lu Y, Rong J, Yang Q, Yang Y, Xie C, Shu X. ROS-mediated up-regulation of SAE1 by Helicobacter pylori promotes human gastric tumor genesis and progression. J Transl Med 2024; 22:148. [PMID: 38351014 PMCID: PMC10863176 DOI: 10.1186/s12967-024-04913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan-Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.
Collapse
Affiliation(s)
- Liu Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, No.16, Meiguan Avenue, Ganzhou, 341000, Jiangxi, China
| | - Jianfang Shangguan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Ying Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Qinyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yihan Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, NO. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
19
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
20
|
Cheng J, Tang YC, Dong Y, Qin RL, Dong ZQ. Doublecortin-like kinase 3 (DCLK3) is associated with bad clinical outcome of patients with gastric cancer and regulates the ferroptosis and mitochondria function in vitro and in vivo. Ir J Med Sci 2024; 193:35-43. [PMID: 37340227 DOI: 10.1007/s11845-023-03430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Doublecortin-like kinase 3 (DCLK3), a member of tubulin superfamily, has been proved to be closely associated with the pathogenesis of numerous human tumors. However, the expression pattern and regulatory mechanisms of DCLK3 in gastric cancer (GC) remain unknown. MATERIALS AND METHODS DCLK3 expression in GC cells was assessed by RT-qPCR and western blotting. The correlation between DCLK3 levels and the overall survival of GC patients was assessed via TCGA, ACLBI, and Kaplan-Meier plotter databases. Additionally, key proteins (TCF4) involved in the regulation of DCLK3 on GC progression were screened by ACLBI database. Cell proliferation, ferroptotic cell death, and oxidative stress markers were measured by EdU staining, immunofluorescence, ELISA, and western blotting assays. RESULTS DCLK3 was upregulated in GC, and high DCLK3 expression was significantly associated with poor survival of GC patients. Here, DCLK3 knockdown reduced GC cell proliferation, induced ferroptotic cell death, and exacerbated oxidative stress level. Logistic regression analysis showed that TCF4 was an independent prognostic indicator of GC. Mechanistically, DCLK3 promoted TCF4 expression and subsequently upregulated the expression of TCF4 downstream target genes (c-Myc and Cyclin D1). Furthermore, DCLK3 overexpression enhanced GC cell proliferation, but mitigating ferroptotic cell death and oxidative stress. The regulatory mechanism may involve the upregulation of TCF4, c-Myc, and cyclin D1. CONCLUSIONS Our research suggests that DCLK3 modulates the levels of iron and reactive oxygen and may involve regulation of TCF4 pathway, thereby promoting the GC cell growth, indicating that DCLK3 may use as a prognostic marker and therapeutic target for GC patients.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Yu C Tang
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Yuan Dong
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China
| | - Rui L Qin
- Department of Cardiac Function, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, Baotou, Inner Mongolia, China
| | - Zhi Q Dong
- Department of Pharmacy, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia Scientific and Technological University, No. 41 Linyin Road, Kundulun District, Baotou, 014010, Inner Mongolia, China.
| |
Collapse
|
21
|
Wang X, Meng M, Sun J, Gao W, Lin C, Yu C. Klebsiella aerogenes exacerbates colon tumorigenesis in the AOM/DSS-induced C57BL/6J mouse. Biochem Biophys Res Commun 2024; 694:149410. [PMID: 38134478 DOI: 10.1016/j.bbrc.2023.149410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Klebsiella aerogenes (K. aerogenes, KA) is a gram-negative opportunistic pathogen from the Klebsiella species and the Enterobacteriaceae family. However, the impact of K. aerogenes on colorectal cancer (CRC) remains uncertain. A colitis-associated tumorigenesis animal model was established by administering azoxymethane (AOM) and dextran sulfate sodium (DSS) to C57BL/6J mice. The concentration of K. aerogenes gavage in mice was 109 cfu. The study measured the following parameters: tumor formation (number and size), intestinal permeability (MUC2, ZO-1, and Occludin), colonic inflammation (TNF-α, IL-1β, IL-6, and IL-10), proliferation and the fluctuation of the intestinal flora. Under the AOM/DSS-treated setting, K. aerogenes colonization worsened colitis by exacerbating intestinal inflammatory reaction and destroying the mucosal barrier. The intervention markedly augmented the quantity and dimensions of neoplasm in the AOM/DSS mice, stimulated cellular growth, and impeded cellular programmed cell death. In addition, K. aerogenes exacerbated the imbalance of the intestinal microbiota by elevating the abundance of Pseudomonas, Erysipelatoclostridium, Turicibacter, Rikenella, and Muribaculum and leading to a reduction in the abundance of Odoribacter, Alloprevotella, Roseburia, and Lachnospiraceae_NK4A136_group. The presence of K. aerogenes in AOM/DSS-treated mice promoted tumorigenesis, worsened intestinal inflammation, disrupted the intestinal barrier, and caused disturbance to the gut microbiota.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Minjie Meng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Jing Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Wenjie Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Chaoyu Lin
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, 210031, Nanjing, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, 211100, Nanjing, China.
| |
Collapse
|
22
|
Zhang Y, Guo S, Mao T, Guo J, Zhang Q, Tian Z, Li X. Tumor-Derived Exosomal LINC01480 Upregulates VCAM1 Expression by Acting as a Competitive Endogenous RNA of miR-204-5p to Promote Gastric Cancer Progression. ACS Biomater Sci Eng 2024; 10:550-562. [PMID: 38133901 DOI: 10.1021/acsbiomaterials.3c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Exosomes are a type of cell-derived vesicles that range in size from 30 to 100 nm. They are widely present in various organisms and participate in diverse biological processes, playing crucial roles in tumorigenesis and progression. This study aimed to investigate whether LINC01480 in tumor-derived exosomes is involved in the molecular mechanism of gastric cancer by competitively upregulating the VCAM1 expression through binding miR-204-5p. The study analyzed transcriptome data related to gastric cancer from the cancer genome atlas database and constructed a risk-scoring model for epithelial-mesenchymal transition (EMT)-related lncRNAs to identify eight EMT-related lncRNAs associated with prognosis. EMT-related mRNAs positively correlated with LINC01480 were screened in the ExoRBase database. In vitro cell experiments showed that exosomal LINC01480 can promote the proliferation, migration, invasion, and EMT of gastric cancer cells by upregulating VCAM1 expression through competitive binding with miR-204-5p. In vivo experiments on nude mice showed that exosomal LINC01480 promotes the development of gastric cancer. These results suggest that exosomal LINC01480 could be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Shan Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Jing Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| |
Collapse
|
23
|
Wang H, Min J, Ding Y, Yu Z, Zhou Y, Wang S, Gong A, Xu M. MBD3 promotes epithelial-mesenchymal transition in gastric cancer cells by upregulating ACTG1 via the PI3K/AKT pathway. Biol Proced Online 2024; 26:1. [PMID: 38178023 PMCID: PMC10768447 DOI: 10.1186/s12575-023-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy and a leading cause of cancer-related death with high morbidity and mortality. Methyl-CpG binding domain protein 3 (MBD3), a key epigenetic regulator, is abnormally expressed in several cancers, participating in progression and metastasis. However, the role of MBD3 in GC remains unknown. METHODS MBD3 expression was assessed via public databases and validated by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The prognosis of MBD3 was analysed via bioinformatics based on the TCGA dataset. The migration, invasion and proliferation of GC cells were examined by transwell, wound healing, cell counting kit (CCK)-8, colony-formation and xenograft mouse models. Epithelial-mesenchymal transition (EMT) and phosphatidylinositide 3-kinases/ protein Kinase B (PI3K/AKT) pathway markers were evaluated by Western blotting. RNA sequencing was used to identify the target of MBD3. RESULTS MBD3 expression was higher in GC tissues and cells than in normal tissues and cells. Additionally, high MBD3 levels were associated with poor prognosis in GC patients. Subsequently, we proved that MBD3 enhanced the migration, invasion and proliferation abilities of GC cells. Moreover, western blot results showed that MBD3 promoted EMT and activated the PI3K/AKT pathway. RNA sequencing analysis showed that MBD3 may increase actin γ1 (ACTG1) expression to promote migration and proliferation in GC cells. CONCLUSION MBD3 promoted migration, invasion, proliferation and EMT by upregulating ACTG1 via PI3K/AKT signaling activation in GC cells and may be a potential diagnostic and prognostic target.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Jingyu Min
- Department of Gastroenterology, Changshu No.2 People's Hospital, 68 Haiyu South Road, Changshu, 215500, China
| | - Yuntao Ding
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Zhengyue Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yujing Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shunyu Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
24
|
Tekin C, Ercelik M, Dunaev P, Galembikova A, Tezcan G, Aksoy SA, Budak F, Isık O, Ugras N, Boichuk S, Tunca B. Leaf Extract from European Olive (Olea europaea L.) Post-Transcriptionally Suppresses the Epithelial-Mesenchymal Transition and Sensitizes Gastric Cancer Cells to Chemotherapy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:97-115. [PMID: 38467548 DOI: 10.1134/s0006297924010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024]
Abstract
The overall survival of patients with the advanced and recurrent gastric cancer (GC) remains unfavorable. In particular, this is due to cancer spreading and resistance to chemotherapy associated with the epithelial-mesenchymal transition (EMT) of tumor cells. EMT can be identified by the transcriptome profiling of GC for EMT markers. Indeed, analysis of the TCGA and GTEx databases (n = 408) and a cohort of GC patients (n = 43) revealed that expression of the CDH2 gene was significantly decreased in the tumors vs. non-tumor tissues and correlated with the overall survival of GC patients. Expression of the EMT-promoting transcription factors SNAIL and ZEB1 was significantly increased in GC. These data suggest that targeting the EMT might be an attractive therapeutic approach for patients with GC. Previously, we demonstrated a potent anti-cancer activity of the olive leaf extract (OLE). However, its effect on the EMT regulation in GC remained unknown. Here, we showed that OLE efficiently potentiated the inhibitory effect of the chemotherapeutic agents 5-fluorouracil (5-FU) and cisplatin (Cis) on the EMT and their pro-apoptotic activity, as was demonstrated by changes in the expression of the EMT markers (E- and N-cadherins, vimentin, claudin-1) in GC cells treated with the aforementioned chemotherapeutic agents in the presence of OLE. Thus, culturing GC cells with 5-FU + OLE or Cis + OLE attenuated the invasive properties of cancer cells. Importantly, upregulation of expression of the apoptotic markers (PARP cleaved form) and increase in the number of cells undergoing apoptosis (annexin V-positive) were observed for GC cells treated with a combination of OLE and 5-FU or Cis. Collectively, our data illustrate that OLE efficiently interferes with the EMT in GC cells and potentiates the pro-apoptotic activity of certain chemotherapeutic agents used for GC therapy.
Collapse
Affiliation(s)
- Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan, Russia
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
- Experimental Animal Breeding and Research Unit, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ferah Budak
- Department of Immunology, Medical Faculty, Bursa Uludag University Bursa, Turkey
| | - Ozgen Isık
- Department of General Surgery, Medical Faculty, Bursa Uludag University Bursa, Turkey
| | - Nesrin Ugras
- Department of Pathology, Medical Faculty, Bursa Uludag University, Bursa, Turkey
| | - Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan, Russia.
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
25
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
26
|
Wang Y, Tu Z, Zhao W, Wang L, Jiang J, Gu L, Li M, Jiang L, Wang Y, Bi Y. PLCB1 Enhances Cell Migration and Invasion in Gastric Cancer Via Regulating Actin Cytoskeletal Remodeling and Epithelial-Mesenchymal Transition. Biochem Genet 2023; 61:2618-2632. [PMID: 37208557 DOI: 10.1007/s10528-023-10396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Phospholipase C Beta 1 (PLCB1) regulates the abundance of PI(4,5)P2 in the plasma membrane and is implicated in various kinds of cancers. This study aimed to investigate the role and underlying mechanisms of PLCB1 in gastric cancer. Herein, it was found that PLCB1 mRNA and protein were highly expressed in gastric cancer, and high levels of PLCB1 were correlated with poor outcomes of patients with gastric cancer via the GEPIA database. Moreover, our results revealed that PLCB1 depletion inhibited gastric cancer cell proliferation, migration, and invasion. Meanwhile, PLCB1 overexpression resulted in an inverse result. Furthermore, PLCB1 mediated actin cytoskeleton rearrangement and activated the RhoA/LIMK/Cofilin pathway. Besides, PLCB1 promoted the Epithelial-Mesenchymal transition process via activating ATK signaling. In conclusion, PLCB1 promoted gastric cancer cell migratory and invasive abilities via regulating actin cytoskeleton rearrangement and Epithelial-Mesenchymal transition process. These findings imply that targeting PLCB1 may be a potential strategy to improve the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Yulin Wang
- Digestion Medicine Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, North Road, Hongqiao District, Tianjin, 300120, China.
| | - Zhiyue Tu
- Department of Endoscopy, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Wei Zhao
- Department of Digestive Endoscopy Center, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Liping Wang
- Digestion Medicine Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, North Road, Hongqiao District, Tianjin, 300120, China
| | - Jing Jiang
- Digestion Medicine Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, North Road, Hongqiao District, Tianjin, 300120, China
| | - Lili Gu
- Department of Digestive Endoscopy Center, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Meng Li
- Digestion Medicine Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, North Road, Hongqiao District, Tianjin, 300120, China
| | - Lujian Jiang
- Digestion Medicine Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, North Road, Hongqiao District, Tianjin, 300120, China
| | - Yibin Wang
- Digestion Medicine Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, North Road, Hongqiao District, Tianjin, 300120, China
| | - Yinglu Bi
- Digestion Medicine Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354, North Road, Hongqiao District, Tianjin, 300120, China
| |
Collapse
|
27
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
28
|
Li Q. Bacterial infection and microbiota in carcinogenesis and tumor development. Front Cell Infect Microbiol 2023; 13:1294082. [PMID: 38035341 PMCID: PMC10684967 DOI: 10.3389/fcimb.2023.1294082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Microbiota colonize exposed body tissues (e.g., gastrointestinal tract, skin, lungs, female genital tract, and urogenital tracts) and unexposed sites (e.g., breast). Persistent bacterial infection in the host lead to the development of multiple disease. They are implicated in the pathogenesis of various complex diseases, including diabetes, atherosclerosis, autoimmune diseases, Alzheimer's disease, and malignant diseases. Amounting studies have demonstrated the role of bacterial infection in carcinogenesis. The study of microbiota in tumorigenesis is primarily focused on lung cancer, colorectal cancer (CRC), breast cancer, gastric cancer, and gynecologic tumors, and so on. Infection of Helicobacter pylori in gastric cancer carcinogenesis is recognized as class I carcinogen by the World Health Organization (WHO) decades ago. The role of Fusobacterium nucleatum in the development of colorectal cancer is extensively investigated. Variable bacteria have been cultured from the tumor tissues. The identification of microbiota in multiple tumor tissues reveal that bacterial infection and microbiota are associated with tumor development. The microbiota affects multiple aspects of carcinogenesis and tumor development, including favoring epithelial cells proliferation, establishing inflammatory microenvironment, promoting metastasis, and causing resistance to therapy. On the other hand, microbiota can shape a tumor surveillance environment by enhancing cell activity, and sensitize the tumor cells to immune therapy. In the present review, the roles of microbiota in multiple malignancies are summarized, and unraveling the mechanisms of host-microbiota interactions can contribute to a better understanding of the interaction between microbiota and host cells, also the development of potential anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
Luo L, Wu A, Shu X, Liu L, Feng Z, Zeng Q, Wang Z, Hu T, Cao Y, Tu Y, Li Z. Hub gene identification and molecular subtype construction for Helicobacter pylori in gastric cancer via machine learning methods and NMF algorithm. Aging (Albany NY) 2023; 15:11782-11810. [PMID: 37768204 PMCID: PMC10683617 DOI: 10.18632/aging.205053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 09/29/2023]
Abstract
Helicobacter pylori (HP) is a gram-negative and spiral-shaped bacterium colonizing the human stomach and has been recognized as the risk factor of gastritis, peptic ulcer disease, and gastric cancer (GC). Moreover, it was recently identified as a class I carcinogen, which affects the occurrence and progression of GC via inducing various oncogenic pathways. Therefore, identifying the HP-related key genes is crucial for understanding the oncogenic mechanisms and improving the outcomes of GC patients. We retrieved the list of HP-related gene sets from the Molecular Signatures Database. Based on the HP-related genes, unsupervised non-negative matrix factorization (NMF) clustering method was conducted to stratify TCGA-STAD, GSE15459, GSE84433 samples into two clusters with distinct clinical outcomes and immune infiltration characterization. Subsequently, two machine learning (ML) strategies, including support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF), were employed to determine twelve hub HP-related genes. Beyond that, receiver operating characteristic and Kaplan-Meier curves further confirmed the diagnostic value and prognostic significance of hub genes. Finally, expression of HP-related hub genes was tested by qRT-PCR array and immunohistochemical images. Additionally, functional pathway enrichment analysis indicated that these hub genes were implicated in the genesis and progression of GC by activating or inhibiting the classical cancer-associated pathways, such as epithelial-mesenchymal transition, cell cycle, apoptosis, RAS/MAPK, etc. In the present study, we constructed a novel HP-related tumor classification in different datasets, and screened out twelve hub genes via performing the ML algorithms, which may contribute to the molecular diagnosis and personalized therapy of GC.
Collapse
Affiliation(s)
- Lianghua Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ahao Wu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xufeng Shu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zongfeng Feng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingwen Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tengcheng Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Ma J, Da M. High-Mobility Group Box 1 Overexpression Predicts a Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Gastric Cancer by Activating TLR4/NF-κB Signaling. Oncology 2023; 101:786-798. [PMID: 37666221 DOI: 10.1159/000533927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION The molecular mechanism of high-mobility group box 1 (HMGB1) promoting the epithelial-mesenchymal transition (EMT) of gastric cancer (GC) has not been known well. This study aimed to explore the clinical effects of HMGB1 expression levels on the clinicopathological characteristics of patients with GC and to uncover the potential molecular mechanism which promotes tumor progression. METHODS The expression levels of HMGB1 in 125 patients with GC were detected by immunohistochemistry and Western blotting. Univariate and multivariate analyses were performed to evaluate the relationship between HMGB1 expression and clinical characteristics of patients with GC. Stable overexpression (over-HMGB1) and knockdown (sh-HMGB1) GC cell lines (AGS and MKN-45) were used to determine the effects of HMGB1 on the activation of TLR4/NF-κB signaling. Differences were considered statistically significant at p < 0.05 in two sides. RESULTS HMGB1 is highly expressed in GC tissues and cell lines. High HMGB1 expression (HR = 1.89, 95% CI: 1.44-2.39, p = 0.001) was an independent risk factor for overall survival in patients with GC. Downregulation of HMGB1 resulted in downregulation of TLR4 and NF-κB subunit (p-p65 and p-IκBα) expression, whereas the upregulated expression of HMGB1 led to increased expression of TLR4 and NF-κB subunits. Overexpression of HMGB1 promotes the upregulation of EMT-TF expression, which enhances the proliferation and migration abilities of GC cell lines. CONCLUSION HMGB1 is highly expressed in GC tissues and is associated with a poorer prognosis in patients with GC. HMGB1 activates the TLR4/NF-κB signaling pathway to promote EMT progression in GC cell lines. HMGB1 may be a critical molecule in prognosis prediction and a therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Jichun Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China,
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
31
|
Cheng S, Li H, Chi J, Zhao W, Lin J, Liu X, Xu C. FTO-mediated m 6A modification promotes malignant transformation of gastric mucosal epithelial cells in chronic Cag A + Helicobacter pylori infection. J Cancer Res Clin Oncol 2023; 149:7327-7340. [PMID: 36918410 PMCID: PMC10374804 DOI: 10.1007/s00432-023-04684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Cag A+ Helicobacter pylori chronic infection cause malignant transformation of the human gastric mucosa. N6-methyladenosine (m6A) modifications are the most common and abundant mRNA modifications and one of the pathways affecting tumorigenicity and tumor progression. However, the role of m6A modification in the process of chronic H. pylori infection leading to malignant transformation of gastric mucosa is unclear. METHODS In this study, we used Cag A- and Cag A+H. pylori chronic infection to establish cellular models in GES-1 cells and analyzed the cellular morphology, proliferation, apoptosis, invasiveness and tumorigenicity of gastric mucosal epithelial cells. The m6A expression levels of GES-1 cells after chronic infection with Cag A- and Cag A+H. pylori were examined, and modifying effect of FTO (the fat mass and obesity-associated protein) on CD44 was verified by MeRIP-qPCR. Finally, the FTO expression changes and m6A expression levels were further validated in clinical gastric cancer tissues. RESULTS Chronic Cag A+H. pylori-infected GES-1 cells exhibit altered cell morphology, apoptosis inhibition, abnormal proliferation, enhanced migration, colony formation, and increased stem cell-like properties. Meanwhile, FTO and CD44 expression was enhanced, and FTO may induce malignant transformation of gastric mucosa by regulating CD44 mRNA m6A methylation modifications. CONCLUSIONS We verified the effect of chronic stimulation of Cag A+H. pylori on malignant transformation of gastric mucosal epithelium. revealing the possibility of FTO in promoting malignant transformation of gastric mucosa by modifying CD44 mRNA methylation, suggesting that FTO expression is a potential molecule for malignant transformation of gastric mucosal epithelial cells.
Collapse
Affiliation(s)
- Sha Cheng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Huan Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Jingshu Chi
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wenfang Zhao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Jiahui Lin
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
32
|
Huang XJ, Wang Y, Wang HT, Liang ZF, Ji C, Li XX, Zhang LL, Ji RB, Xu WR, Jin JH, Qian H. Exosomal hsa_circ_000200 as a potential biomarker and metastasis enhancer of gastric cancer via miR-4659a/b-3p/HBEGF axis. Cancer Cell Int 2023; 23:151. [PMID: 37525152 PMCID: PMC10391853 DOI: 10.1186/s12935-023-02976-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Exosome, a component of liquid biopsy, loaded protein, DNA, RNA and lipid gradually emerges as biomarker in tumors. However, exosomal circRNAs as biomarker and function mechanism in gastric cancer (GC) are not well understood. METHODS Differentially expressed circRNAs in GC and healthy people were screened by database. The identification of hsa_circ_000200 was verified by RNase R and sequencing, and the expression of hsa_circ_000200 was evaluated using qRT-PCR. The biological function of hsa_circ_000200 in GC was verified in vitro. Western blot, RIP, RNA fluorescence in situ hybridization, and double luciferase assay were utilized to explore the potential mechanism of hsa_circ_000200. RESULTS Hsa_circ_000200 up-regulated in GC tissue, serum and serum exosomes. Hsa_circ_000200 in serum exosomes showed better diagnostic ability than that of tissues and serum. Combined with clinicopathological parameters, its level was related to invasion depth, TNM staging, and distal metastasis. Functionally, knockdown of hsa_circ_000200 inhibited GC cells proliferation, migration and invasion in vitro, while its overexpression played the opposite role. Importantly, exosomes with up-regulated hsa_circ_000200 promoted the proliferation and migration of co-cultured GC cells. Mechanistically, hsa_circ_000200 acted as a "ceRNA" for miR-4659a/b-3p to increase HBEGF and TGF-β/Smad expression, then promoted the development of GC. CONCLUSIONS Our findings suggest that hsa_circ_000200 promotes the progression of GC through hsa_circ_000200/miR-4659a/b-3p/HBEGF axis and affecting the expression of TGF-β/Smad. Serum exosomal hsa_circ_000200 may serve as a potential biomarker for GC.
Collapse
Affiliation(s)
- Xiao-Juan Huang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, 2 Yong Ning North Road, Chang Zhou, 213017, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yan Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Kunshan Hospital Affiliated with Jiangsu University, 91 Qianjin West Road, Kunshan, 215300, Jiangsu, China
| | - Hui-Ting Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Zhao-Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, 2 Yong Ning North Road, Chang Zhou, 213017, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, 2 Yong Ning North Road, Chang Zhou, 213017, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiao-Xi Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Lei-Lei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Run-Bi Ji
- The Laboratory Department, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Wen-Rong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jian-Hua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, 2 Yong Ning North Road, Chang Zhou, 213017, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, 2 Yong Ning North Road, Chang Zhou, 213017, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
33
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
34
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Liu P, Li L, Wang W, He C, Xu C. MST4 promotes proliferation, invasion, and metastasis of gastric cancer by enhancing autophagy. Heliyon 2023; 9:e16735. [PMID: 37313160 PMCID: PMC10258413 DOI: 10.1016/j.heliyon.2023.e16735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Background Mammalian infertile-20-like kinase 4 (MST4) plays major roles in the progression of malignant tumor types, but its function in gastric cancer (GC) remains poorly understood. Objective To investigate the regulatory mechanism of MST4 in GC. Methods Immunohistochemistry was used to detect MST4 protein in GC tissue. Additionally, the correlation between MST4 expression and the clinicopathological characteristics and prognosis of GC was evaluated. The MST4 expression level in GC cells was measured by western blotting and quantitative real-time polymerase chain reaction. Moreover, the regulatory mechanism of MST4 was investigated in vitro and in vivo. Results Overexpression of MST4 was found in GC tissue and cell lines, which correlated to the tumor size, histological type, invasion depth, ulcer, lymph node metastasis, lymphovascular invasion, perineural invasion and TNM stage (all P < 0.01). In terms of MST4 functions in vitro, its upregulation facilitated the proliferation, migration, and invasion of GC cells. Furthermore, MST4 promoted these processes by facilitating autophagy, whereas downregulation of MST4 significantly attenuated these processes. Downregulation of MST4 also attenuated tumor growth in vivo. Conclusion High expression of MST4 indicates a poor prognosis and promotes GC cell proliferation, invasion, and metastasis by enhancing autophagy.
Collapse
Affiliation(s)
- Pengwei Liu
- Departments of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Departments of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Lin Li
- Departments of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Wei Wang
- Departments of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chiyi He
- Departments of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chunfang Xu
- Departments of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
36
|
Liu Y, Wang L, Du W, Huang Y, Guo Y, Song C, Tian Z, Niu S, Xie J, Liu J, Cheng C, Shen W. Identification of high-risk factors associated with mortality at 1-, 3-, and 5-year intervals in gastric cancer patients undergoing radical surgery and immunotherapy: an 8-year multicenter retrospective analysis. Front Cell Infect Microbiol 2023; 13:1207235. [PMID: 37325512 PMCID: PMC10264693 DOI: 10.3389/fcimb.2023.1207235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background Combining immunotherapy with surgical intervention is a prevailing and radical therapeutic strategy for individuals afflicted with gastric carcinoma; nonetheless, certain patients exhibit unfavorable prognoses even subsequent to this treatment regimen. This research endeavors to devise a machine learning algorithm to recognize risk factors with a high probability of inducing mortality among patients diagnosed with gastric cancer, both prior to and during their course of treatment. Methods Within the purview of this investigation, a cohort of 1015 individuals with gastric cancer were incorporated, and 39 variables encompassing diverse features were recorded. To construct the models, we employed three distinct machine learning algorithms, specifically extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor algorithm (KNN). The models were subjected to internal validation through employment of the k-fold cross-validation technique, and subsequently, an external dataset was utilized to externally validate the models. Results In comparison to other machine learning algorithms employed, the XGBoost algorithm demonstrated superior predictive capacity regarding the risk factors that affect mortality after combination therapy in gastric cancer patients for a duration of one year, three years, and five years posttreatment. The common risk factors that significantly impacted patient survival during the aforementioned time intervals were identified as advanced age, tumor invasion, tumor lymph node metastasis, tumor peripheral nerve invasion (PNI), multiple tumors, tumor size, carcinoembryonic antigen (CEA) level, carbohydrate antigen 125 (CA125) level, carbohydrate antigen 72-4 (CA72-4) level, and H. pylori infection. Conclusion The XGBoost algorithm can assist clinicians in identifying pivotal prognostic factors that are of clinical significance and can contribute toward individualized patient monitoring and management.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Lanyu Wang
- Department of Urology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenyi Du
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yukang Huang
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yi Guo
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chen Song
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhiqiang Tian
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Sen Niu
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wei Shen
- Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
37
|
Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and Cervical Microbiota Composition in Patients with Endometrial Cancer. Int J Mol Sci 2023; 24:ijms24098266. [PMID: 37175971 PMCID: PMC10179515 DOI: 10.3390/ijms24098266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
According to recent data, changes in the vaginal microbiota could affect the risk of gynaecological cancers. Women suffering from endometrial cancer present significant changes in cervicovaginal microbiota composition. The objective of our study was to characterize the cervicovaginal microbiota of women undergoing hysterectomy due to benign disease, atypical hyperplasia, and endometrial cancer; The study included 96 patients, who undergone surgical treatment due to benign uterine disease, precancerous endometrial lesion, and endometrial cancer. Quantitative and qualitative real-time PCR analysis of DNA isolated from vaginal fornix and endocervical canal samples was performed to detect the 19 most commonly identified microorganisms, including different Lactobacillus spp., Atopobium, Bifidobacterium, Chlamydia, and Gardnerella; At least one of the tested microorganisms was identified in 88.5% of vaginal and 83.3% of cervical samples. Lactobacillus iners was significantly more frequent in patients with benign condition, whereas Dialister pneumosintes and Mobiluncus curtisii was more frequent in cancer patients; Mobiluncus curtisi and Dialister pneumosintes, which were identified as significantly more common in endometrial cancer vaginal samples, may be considered as potential endometrial cancer co-factors which promote/stimulate carcinogenesis. However, the exact mechanism of such activity remains unexplained and requires further investigations.
Collapse
Affiliation(s)
- Bartłomiej Barczyński
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Karolina Frąszczak
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
38
|
Liu S, Liu X, Lin X, Chen H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023; 12:cells12091314. [PMID: 37174714 PMCID: PMC10177130 DOI: 10.3390/cells12091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xingzhu Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xin Lin
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
39
|
Saliem SS, Bede SY, Abdulkareem AA, Abdullah BH, Milward MR, Cooper PR. Gingival tissue samples from periodontitis patients demonstrate epithelial-mesenchymal transition phenotype. J Periodontal Res 2023; 58:247-255. [PMID: 36575609 DOI: 10.1111/jre.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine the expression of key epithelial-mesenchymal transition (EMT) markers in gingival tissue samples collected from patients with periodontitis. BACKGROUND Epithelial-mesenchymal transition is a process responsible for shifting epithelial-phenotype to mesenchymal-phenotype leading to loss of epithelial-barrier function. Thus, EMT could be involved as a pathogenic mechanism in periodontitis as both conditions share common promoters and signalling pathways. MATERIALS AND METHODS Gingival tissue samples were collected from patients with periodontitis (case) and healthy periodontium (control). Periodontal parameters including bleeding on probing, probing pocket depth (PPD), and clinical attachment loss were recorded. Paraffinized tissue samples were processed and immunohistochemically stained to determine the expression of key EMT markers which included E-cadherin, β-catenin, Snail1 and vimentin. RESULTS The majority of cases (n = 65, 72.2%) were diagnosed with periodontitis stage 3 or 4, grade b or c vs 25 (27.8%) subjects with intact healthy periodontium. Discontinuity of epithelium was detected in up to 80.9% of periodontitis cases associated with reduced number of epithelial layers as compared to controls. Immunohistochemical expression of epithelial markers (E-cadherin and β-catenin) was significantly downregulated in periodontitis patients as compared with controls. Periodontitis cases exhibited significant upregulation of Snail1 expression. Furthermore, cytoplasmic vimentin (66.2%) and nuclear β-catenin (27.7%) were solely expressed in periodontally diseased tissues compared with control. Epithelial markers, E-cadherin and β-catenin, were significantly negatively correlated with increasing PPD, while vimentin showed positive correlation with this parameter. CONCLUSION There were marked downregulation of epithelial molecules and upregulation of mesenchymal markers in gingival tissues derived from periodontitis patients, suggesting expression of the EMT phenotype in the pathological epithelial lining of periodontal pockets.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | | | | | | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
41
|
Huang X, Ma Z, Qin W. Screening and Bioinformatics Analyses of Key miRNAs Associated with Toll-like Receptor Activation in Gastric Cancer Cells. Medicina (B Aires) 2023; 59:medicina59030511. [PMID: 36984512 PMCID: PMC10053384 DOI: 10.3390/medicina59030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background and Objectives: To screen key miRNAs and their target genes related to Toll-like receptor (TLR) activation in gastric cancer (GC) cells and analyze them bioinformatically. Materials and Methods: Venn diagrams were obtained to screen miRNAs that were upregulated/downregulated in both GSE54129 and GSE164174. The miRTarBase database was used to predict the target genes of upregulated miRNAs. The differentially expressed genes in the regulatory network were analyzed. miR-16-5p expression in different tissue samples and the variations in the methylation states of four hub genes were measured. Results: We found that GSE54129 included 21 normal gastric tissues and 111 gastric cancer tissues, GSE164174 included 1417 normal gastric tissues and 1423 gastric cancer tissues. Venn diagram analysis results showed that compared with the control group, a total of 68 DEmiRNAs were upregulated in the GSE54129 and GSE164174 datasets, and no common downregulated DEmiRNAs were found. On further analysis of the GSE108345 dataset, we obtained the competing endogenous RNA (ceRNA) network associated with the activation of TLRs, and listed the top 10 lncRNA–miRNA–mRNA networks, including 10 miRNAs, 86 mRNA and 134 lncRNAs. Cytological HuBBA scores yielded a total of 1 miRNA, 16 mRNAs and 45 lncRNAs, of which miR-16-5p scored the highest as it was considered a key miRNA for TLR activation in GC cells, which are important in response against microorganisms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that endocytosis, microRNAs in cancer and the PI3K-Akt signaling pathway are related to TLR signaling. The results of in vivo experiments indicated that miR-16-5p was highly expressed in gastric cancer cells and tissues. Conclusions: Hsa-miR-16-5p’s target genes mainly play a role by regulating the expression of four genes—MCL1, AP2B1, LAMB1, and RAB11FIP2. The findings provide a scientific basis for the development of immunotherapy for GC.
Collapse
Affiliation(s)
- Xiong Huang
- Department of General Surgery, The Eighth People’s Hospital of Shanghai, Shanghai 200233, China
- Correspondence: ; Tel.: +86-021-34284588
| | - Zhen Ma
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
42
|
Xie Y, Zhang Y, Liu X, Cao L, Han M, Wang C, Chen J, Zhang X. miR‑151a‑5p promotes the proliferation and metastasis of colorectal carcinoma cells by targeting AGMAT. Oncol Rep 2023; 49:50. [PMID: 36704851 PMCID: PMC9887461 DOI: 10.3892/or.2023.8487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common types of digestive cancer. It has been reported that the ectopic expression of microRNAs (miRs) plays a critical role in the occurrence and progression of CRC. In addition, it has also been suggested that miR‑151a‑5p may serve as a useful biomarker for the early detection and treatment of different types of cancer and particularly CRC. However, the specific effects and underlying mechanisms of miR‑151a‑5p in CRC remain elusive. The results of the current study demonstrated that miR‑151a‑5p was upregulated in CRC cell lines and clinical tissues derived from patients with CRC. Functionally, the results showed that miR‑151a‑5p significantly promoted CRC cell proliferation, migration and invasion. Additionally, dual luciferase reporter assays verified that agmatinase (AGMAT) was a direct target of miR‑151a‑5p and it was positively associated with miR‑151a‑5p expression. Mechanistically, miR‑151a‑5p could enhance the epithelial‑mesenchymal transition of CRC cells. Taken together, the results of the current study revealed a novel molecular mechanism indicating that the miR‑151a‑5p/AGMAT axis could serve a crucial role in the regulation of CRC and could therefore be considered as a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yaya Xie
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Fengxian, Shanghai 201499, P.R. China
- School of Medical, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yue Zhang
- School of Medical, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
- Hanzhong Central Hospital of Shaanxi, Hanzhong, Shaanxi 723000, P.R. China
| | - Xianju Liu
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Fengxian, Shanghai 201499, P.R. China
- School of Medical, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Lijun Cao
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Fengxian, Shanghai 201499, P.R. China
- School of Medical, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Mengting Han
- School of Medical, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Chunmei Wang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Fengxian, Shanghai 201499, P.R. China
| | - Jinlian Chen
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Fengxian, Shanghai 201499, P.R. China
| | - Xingxing Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
43
|
Liao W, Wen Y, Wang J, Zhao M, Lv S, Chen N, Li Y, Wan L, Zheng Q, Mou Y, Zhao Z, Tang J, Zeng J. Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115885. [PMID: 36328204 DOI: 10.1016/j.jep.2022.115885] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gallic acid (GA) is a natural polyphenolic compound derived from Rhus chinensis Mill. with a variety of biological activities such as astringent sweat, cough, dysentery, hemostasis, and detoxification, and is widely used in China as a treatment for cough, bleeding, and gastrointestinal disorders. In recent years, the anticancer activity of GA has been demonstrated in a variety of cancers, affecting multiple cellular pathways associated with cancer onset, development and progression. AIM OF THE STUDY To investigate the role and potential mechanism of GA on gastric precancerous lesions (GPL), the key turning point of gastritis to gastric cancer, with the aim of delaying, blocking or reversing the dynamic overall process of "inflammation-cancer transformation" and thus blocking GPL to prevent the development of gastric cancer. MATERIALS AND METHODS In this study, we established N-Nitroso-N-methylurea (MNU)-induced GPL mice model and induced precancerous lesions of gastric cancer cells (MC), i.e. epithelial mesenchymal transition (EMT), in human gastric mucosal epithelial cells (GES-1) with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We used conventional pathology, immunohistochemistry, RNA sequencing, Western blot and other techniques to study the therapeutic effect of GA on GPL and its possiblemechanism in vitro and in vivo. RESULTS The results showed that compared with normal GES-1 cells, MC cells had the characteristics of malignant cells such as abnormal proliferation, invasion and metastasis, accompanied by decreased expression of EMT-related protein E-cadherin and increased expression of N-cadherin and Vimentin. GA can inhibit the malignant behavior of MC cell proliferation and induce its G0/G1 phase arrest, which is achieved by downregulating the Wnt/β-catenin signaling pathway and thereby inhibiting the EMT process. However, when we incubated with the Wnt pathway activator (Wnt agonist 1), the effect of GA was reversed. Furthermore, analysis of human gastric specimens showed that activation of the Wnt/β-catenin pathway was significantly associated with GPL pathological changes. Meanwhile, GA reversed MNU-induced intestinal metaplasia and partial dysplasia in GPL mice. CONCLUSION Taken together, these results indicate that GA prevents the occurrence and development of GPL by inhibiting the Wnt/β-catenin signaling pathway and then inhibiting the EMT process, which may become potential candidates for the treatment of GPL.
Collapse
Affiliation(s)
- Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Wang
- Department of Obstetrics and Gynecology, Bishan District Hospital of Traditional Chinese Medicine, Chongqing, China.
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shangbin Lv
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| | - Yuchen Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
44
|
Correlation between Chemical Profile of Georgian Propolis Extracts and Their Activity against Helicobacter pylori. Molecules 2023; 28:molecules28031374. [PMID: 36771040 PMCID: PMC9921474 DOI: 10.3390/molecules28031374] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori (H. pylori) is considered the most common bacterial pathogen colonizing stomach mucosa of almost half the world's population and is associated with various gastrointestinal diseases (from digestive problems and ulcers to gastric cancer). A lack of new drugs and a growing number of H. pylori antibiotic-resistant strains is a serious therapeutic problem.As a mixture of natural compounds, propolis has antimicrobial activity based on high concentrations of bioactive polyphenols (mainly flavonoids and phenolic acid derivates). The chemical composition of tested Georgian propolis is characterized by the presence of flavonoids aglycones, and phenolic acid monoesters, e.g., pinobanksin-5-methyl ether, pinobanksin, chrysin, pinocembrin, galangin, pinobanksin-3-O-acetate, pinostrobin and pinobanksin-3-O-butanoate, or isobutanoate and methoxycinnamic acid cinnamyl ester. The anti-H. pylori activity of 70% ethanol water extracts of 10 Georgian propolis samples was evaluated in vitro by MIC (minimal inhibitory concentration) against the reference strain (H. pylori ATCC 43504) and 10 clinical strains with different antibiotic-resistance patterns. The strongest anti-Helicobacter activity (MIC and MBC = 31.3 µg/mL) was observed for propolis from Orgora, Ota, and Vardzia and two from Khaheti. Lower levels of activity (MIC = 62.5 µg/mL) were found in propolis obtained from Qvakhreli and Pasanauri, while the lowest effect was observed for Norio and Mestia (MIC = 125.0 µg/mL). However, despite differences in MIC, all evaluated samples exhibited bactericidal activity. We selected the most active propolis samples for assessment of urease inhibition property. Enzyme activity was inhibited by propolis extracts, with IC50 ranging from 4.01 to 1484.8 µg/mL. Principal component analysis (PCA) and hierarchical fuzzy clustering (dendrograms) coupled with matrix correlation analysis exhibited that the strongest anti-Helicobacter activity was connected with black poplar origin and high flavonoid content of propolis. Samples with lower activity contained higher presence of aspen markers and/or dominance of non-flavonoid polyphenols over flavonoids. In summary, Georgian propolis can be regarded as a source bioactive compounds that can be used as adjuvant in therapy of H. pylori infection.
Collapse
|
45
|
Elbehiry A, Marzouk E, Aldubaib M, Abalkhail A, Anagreyyah S, Anajirih N, Almuzaini AM, Rawway M, Alfadhel A, Draz A, Abu-Okail A. Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges. Antibiotics (Basel) 2023; 12:191. [PMID: 36830102 PMCID: PMC9952126 DOI: 10.3390/antibiotics12020191] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection, which affects approximately half of the world's population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt
| | - Abdulmajeed Alfadhel
- Performance Excellence and Quality, Qassim Health Cluster, Buraydah 52367, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
46
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
47
|
Epithelial-Mesenchymal Transition Induced in Cancer Cells by Adhesion to Type I Collagen. Int J Mol Sci 2022; 24:ijms24010198. [PMID: 36613638 PMCID: PMC9820580 DOI: 10.3390/ijms24010198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an important biological process that is physiologically observed during development, wound healing, and cancer invasion. During EMT induction, cancer cells lose their epithelial properties owing to various tumor microenvironmental factors and begin to exhibit mesenchymal properties, such as loss of apical-basal polarity, weakened intercellular adhesion, and promotion of single cell migration. Several factors, including growth factor stimulation and adhesion to type I collagen (Col-I), induce EMT in cancer cells. Cells adhere to Col-I via specific receptors and induce EMT by activating outside-in signals. In vivo, Col-I molecules often form fibrils, which then assemble into supramolecular structures (gel form). Col-I also self-assembles in vitro under physiological conditions. Notably, Col-I can be used as a culture substrate in both gel and non-gel forms, and the gel formation state of Col-I affects cell fate. Although EMT can be induced in both forms of Col-I, the effects of gel formation on EMT induction remain unclear and somewhat inconsistent. Therefore, this study reviews the relationship between Col-I gel-forming states and EMT induction in cancer cells.
Collapse
|
48
|
Long X, Wang D, Wu Z, Liao Z, Xu J. Circular RNA hsa_circ_0004689 (circSWT1) promotes NSCLC progression via the miR‐370‐3p/SNAIL axis by inducing cell epithelial‐mesenchymal transition (EMT). Cancer Med 2022; 12:8289-8305. [PMID: 36530171 PMCID: PMC10134258 DOI: 10.1002/cam4.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies have reported the role of circular RNAs (circRNAs) in the progression of non-small-cell lung cancer (NSCLC). SWT1-derived circRNAs were confirmed to affect the apoptosis of cardiomyocytes; however, the biological functions of SWT1-derived circRNAs in cancers are still unknown. Here, we investigated the potential role of SWT1-derived circRNAs in NSCLC. METHODS We used quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression of circSWT1 in NSCLC tissues and paired normal tissues. The potential functions of circSWT1 in tumor progression were assessed by CCK-8, colony formation, wound healing, and matrigel transwell assays in vitro and by xenograft tumor models in vivo. Next, epithelial-mesenchymal transition (EMT) was evaluated by western blotting, immunofluorescence, and immunohistochemistry (IHC). Moreover, circRIP, RNA pulldown assays, luciferase reporter gene assays, and FISH were conducted to illuminate the molecular mechanisms of circSWT1 via the miR-370-3p/SNAIL signal pathway. Then, we knocked out SNAIL in A549 and H1299 cells to identify the roles of circSWT1 in the progression and EMT of NSCLC through SNAIL. Finally, circSWT1 functions were confirmed in vivo using xenograft tumor models. RESULTS CircSWT1 expression was significantly upregulated in NSCLC tissues, and high expression of circSWT1 predicted poor prognosis in NSCLC via survival analysis. In addition, overexpression of circSWT1 promoted the invasion and migration of NSCLC cells. Subsequently, we found that overexpression of circSWT1 induced EMT and that knockdown of circSWT1 inhibited EMT in NSCLC cells. Mechanistically, circSWT1 relieved the inhibition of downstream SNAIL by sponging miR-370-3p. Moreover, we found that these effects could be reversed by knocking out SNAIL. Finally, we verified that circSWT1 promoted NSCLC progression and EMT in xenograft tumor models. CONCLUSION CircSWT1 promoted the invasion, migration, and EMT of NSCLC. CircSWT1 could serve as a potential biomarker and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiang Long
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Ding‐Guo Wang
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhi‐Bo Wu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhong‐Min Liao
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Jian‐Jun Xu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| |
Collapse
|
49
|
Liang Z, Song J, Xu Y, Zhang X, Zhang Y, Qian H. Hesperidin Reversed Long-Term N-methyl- N-nitro- N-Nitroguanidine Exposure Induced EMT and Cell Proliferation by Activating Autophagy in Gastric Tissues of Rats. Nutrients 2022; 14:nu14245281. [PMID: 36558440 PMCID: PMC9781858 DOI: 10.3390/nu14245281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common malignant tumor worldwide. N-methyl-N-nitro-N-nitroguanidine (MNNG) is one of the most important inducing factors of gastric cancer. Autophagy can affect the occurrence and development of gastric cancer, but the mechanism is not clear. Chemoprevention has been shown to be a rational and very promising approach to the prevention of gastric cancer. Hesperidin is a citrus flavone, an abundant polyphenol in citrus fruits and traditional Chinese medicine. It has an excellent phytochemistry that plays an intervention role in gastric cancer. However, it is unclear whether long-term exposure to MNNG will affect the occurrence of gastric cancer by regulating autophagy and whether hesperidin can play an intervention role in this process. In the present study, we demonstrated that long-term MNNG exposure inhibits autophagy in stomach tissues of rats, promotes the epithelial-mesenchymal transition (EMT) process and cell proliferation and suppresses the activity of the PI3K/AKT pathway. We further found that after rapamycin-activated autophagy, long-term MNNG exposure promoted cell proliferation and EMT were inhibited. In addition, hesperidin promotes autophagy and the activity of the PI3K/AKT pathway, as well as the suppression of proliferation and EMT in the stomach tissues of rats. Our findings indicate that hesperidin reverses MNNG-induced gastric cancer by activating autophagy and the PI3K/AKT pathway, which may provide a new basis for the early prevention and treatment of MNNG-induced gastric cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated of Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| | - Jiajia Song
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yumeng Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xinyi Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yue Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated of Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
50
|
Shi Y, Ning J, Norbu K, Hou X, Zheng H, Zhang H, Yu W, Zhou F, Li Y, Ding S, Zhang Q. The tibetan medicine Zuozhu-Daxi can prevent Helicobacter pylori induced-gastric mucosa inflammation by inhibiting lipid metabolism. Chin Med 2022; 17:126. [PMID: 36348469 PMCID: PMC9641849 DOI: 10.1186/s13020-022-00682-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Tibetan medicine has been used in clinical practice for more than 3800 years. Zuozhu-Daxi (ZZDX), a classic traditional Tibetan medicine, has been proved to be effective in the treatment of digestive diseases, such as chronic gastritis, gastric ulcer, etc. Helicobacter pylori (H. pylori), one of the most common pathogenic microbes, is regarded as the most common cause of gastritis. Researching on the effects of ZZDX on H. pylori-induced gastric mucosa inflammation could provide more evidences on H. pylori treatment and promote the development of Tibetan medicine. This study aimed to explore whether ZZDX could rescue H. pylori-induced gastric mucosa inflammation and its mechanism. Methods Male C57BL/6 mice were infected with H. pylori, and orally treated with ZZDX to rescue gastric mucosa inflammation induced by H. pylori infection. Pathology of gastric mucosa inflammation was evaluated under microscopy by hematoxylin–eosin (HE) staining. The infection status of H. pylori was evaluated by immunohistochemical (IHC) staining. The reactive oxygen species (ROS) level in serum was evaluated using a detection kit. IL-1α, IL-6, and PGE2 expression levels in serum were measured using ELISA. IL-1α, IL-8, TNF-α, and NOD1 expression levels in gastric tissues were measured using real-time PCR. RNA sequencing and gene certification of interest were performed to explore the mechanisms in vivo and in vitro. Results The results showed that ZZDX could significantly inhibit H. pylori-induced gastric mucosa inflammation using HE staining. IL-1α, IL-6, and PGE2 expression levels in serum were significantly decreased after treatment with ZZDX. ZZDX treatment significantly decreased the mRNA expression of IL-8 induced by H. pylori infection in gastric tissues. Elovl4, Acot1 and Scd1 might be involved in the mechanisms of ZZDX treatment. However, the H. pylori infection status in the gastric mucosa was not reduced after ZZDX treatment. Conclusions ZZDX reversed gastric mucosal injury and alleviated gastric mucosa inflammation induced by H. pylori infection.
Collapse
|