1
|
Simsone Z, Feivalds T, Harju L, Miķelsone I, Blāķe I, Bērziņš J, Buiķis I. Morphological and Immunocytochemical Characterization of Paclitaxel-Induced Microcells in Sk-Mel-28 Melanoma Cells. Biomedicines 2024; 12:1576. [PMID: 39062149 PMCID: PMC11274385 DOI: 10.3390/biomedicines12071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Biomarkers, including proteins, nucleic acids, antibodies, and peptides, are essential for identifying diseases such as cancer and differentiating between healthy and abnormal cells in patients. To date, studies have shown that cancer stem cells have DNA repair mechanisms that deter the effects of medicinal treatment. Experiments with cell cultures and chemotherapy treatments of these cultures have revealed the presence of small cells, with a small amount of cytoplasm that can be intensively stained with azure eosin, called microcells. Microcells develop during sporosis from a damaged tumor macrocell. After anticancer therapy in tumor cells, a defective macrocell may produce one or more microcells. This study aims to characterize microcell morphology in melanoma cell lines. In this investigation, we characterized the population of cancer cell microcells after applying paclitaxel treatment to a Sk-Mel-28 melanoma cell line using immunocytochemical cell marker detection and fluorescent microscopy. Paclitaxel-treated cancer cells show stronger expression of stem-associated ALDH2, SOX2, and Nanog markers than untreated cells. The proliferation of nuclear antigens in cells and the synthesis of RNA in microcells indicate cell self-defense, promoting resistance to applied therapy. These findings improve our understanding of microcell behavior in melanoma, potentially informing future strategies to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Zane Simsone
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Tālivaldis Feivalds
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Līga Harju
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Indra Miķelsone
- Department of Human Physiology and Biochemistry, Rīga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Ilze Blāķe
- Faculty of Medicine and Life Science, The University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia;
| | - Juris Bērziņš
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Indulis Buiķis
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| |
Collapse
|
2
|
Panicker LR, Kummari S, Keerthanaa MR, Rao Bommi J, Koteshwara Reddy K, Yugender Goud K. Trends and challenges in electroanalytical biosensing methodologies for infectious viral diseases. Bioelectrochemistry 2024; 156:108594. [PMID: 37984310 DOI: 10.1016/j.bioelechem.2023.108594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Viral pandemic diseases have disruptive global consequences leading to millions of deaths and a severe impact on the global economy. Inadequate preventative protocols have led to an overwhelming demand for intensive care leading to uncontrollable burdens and even breakdown of healthcare sectors across many countries. The rapid detection of viral disease helps in the understanding of the relevant intricacies, helping to tackle infection with improved guidelines. Portable biosensor devices offer promising solutions by facilitating on-site detection of viral pathogens. This review summarizes the latest innovative strategies reported using electroanalytical methods for the screening of viral antigens. The structural components of viruses and their categories are presented followed by the various recognition elements and transduction techniques involved in biosensors. Core sections focus on biosensors reported for viral genomic detection(DNA and RNA) and antigenic capsid protein. Strategies for addressing the challenges of electroanalytical biosensing of viral components are also presented. The advantages, and disadvantages of biorecognition elements and nanozymes for the detection of viral disease are highlighted. Such technical insights will help researchers working in chemistry, and biochemistry as well as clinicians working in medical diagnostics.
Collapse
Affiliation(s)
- Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - M R Keerthanaa
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | | | - K Koteshwara Reddy
- School of Material Science and Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - K Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
| |
Collapse
|
3
|
Korosec CS, Wahl LM, Heffernan JM. Within-host evolution of SARS-CoV-2: how often are de novo mutations transmitted from symptomatic infections? Virus Evol 2024; 10:veae006. [PMID: 38425472 PMCID: PMC10904108 DOI: 10.1093/ve/veae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
Despite a relatively low mutation rate, the large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has allowed for substantial genetic change, leading to a multitude of emerging variants. Using a recently determined mutation rate (per site replication), as well as within-host parameter estimates for symptomatic SARS-CoV-2 infection, we apply a stochastic transmission-bottleneck model to describe the survival probability of de novo SARS-CoV-2 mutations as a function of bottleneck size and selection coefficient. For narrow bottlenecks, we find that mutations affecting per-target-cell attachment rate (with phenotypes associated with fusogenicity and ACE2 binding) have similar transmission probabilities to mutations affecting viral load clearance (with phenotypes associated with humoral evasion). We further find that mutations affecting the eclipse rate (with phenotypes associated with reorganization of cellular metabolic processes and synthesis of viral budding precursor material) are highly favoured relative to all other traits examined. We find that mutations leading to reduced removal rates of infected cells (with phenotypes associated with innate immune evasion) have limited transmission advantage relative to mutations leading to humoral evasion. Predicted transmission probabilities, however, for mutations affecting innate immune evasion are more consistent with the range of clinically estimated household transmission probabilities for de novo mutations. This result suggests that although mutations affecting humoral evasion are more easily transmitted when they occur, mutations affecting innate immune evasion may occur more readily. We examine our predictions in the context of a number of previously characterized mutations in circulating strains of SARS-CoV-2. Our work offers both a null model for SARS-CoV-2 mutation rates and predicts which aspects of viral life history are most likely to successfully evolve, despite low mutation rates and repeated transmission bottlenecks.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Lindi M Wahl
- Applied Mathematics, Western University, 1151 Richmond St, London, ON N6A 5B7, Canada
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Lagos KJ, García D, Cuadrado CF, de Souza LM, Mezzacappo NF, da Silva AP, Inada N, Bagnato V, Romero MP. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1887. [PMID: 37100045 DOI: 10.1002/wnan.1887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
Carbon dots (CDs) correspond to carbon-based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by "top-down" or "bottom-up" approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad-spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large-scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina J Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | - David García
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | | | | | | | - Ana Paula da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Natalia Inada
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Vanderlei Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | | |
Collapse
|
5
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Kuk MU, Ga YJ, Kim YJ, Park JY, Song ES, Lee H, Lee YH, Ko G, Kim JK, Yeh JY, Kwon HW, Byun Y, Park JT. Metabolic reprogramming as a novel therapeutic target for Coxsackievirus B3. Anim Cells Syst (Seoul) 2022; 26:275-282. [PMID: 36605593 PMCID: PMC9809346 DOI: 10.1080/19768354.2022.2141318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a single-stranded RNA virus that belongs to the Enterovirus genus. CVB3 is a human pathogen associated with serious conditions such as myocarditis, dilated cardiomyopathy, and pancreatitis. However, there are no therapeutic interventions to treat CVB3 infections. In this study, we found that CVB3 induced metabolic alteration in host cells through increasing glycolysis level, as indicated by an increase in the extracellular acidification rate (ECAR). CVB3-mediated metabolic alteration was confirmed by metabolite change analysis using gas chromatography-mass spectrometry (GC-MS). Based on findings, a strategy to inhibit glycolysis has been proposed to treat CVB3 infection. Indeed, glycolysis inhibitors (2-Deoxy-D-glucose, sodium oxide) significantly reduced CVB3 titers after CVB3 infection, indicating that glycolysis inhibitors can be used as effective antiviral agents. Taken together, our results reveal a novel mechanism by which CVB3 infection is controlled by regulation of host cell metabolism.
Collapse
Affiliation(s)
- Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Yun Ji Ga
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Gahyun Ko
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Jung-Yong Yeh
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea,Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Korea, Hyung Wook Kwon Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Korea; Youngjoo Byun College of Pharmacy, Korea University, Sejong30019, Republic of Korea; Joon Tae Park Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea, Hyung Wook Kwon Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Korea; Youngjoo Byun College of Pharmacy, Korea University, Sejong30019, Republic of Korea; Joon Tae Park Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea,Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Korea, Hyung Wook Kwon Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Korea; Youngjoo Byun College of Pharmacy, Korea University, Sejong30019, Republic of Korea; Joon Tae Park Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon22012, Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon22012, Korea
| |
Collapse
|
7
|
Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics (Basel) 2022; 11:antibiotics11081106. [PMID: 36009975 PMCID: PMC9404966 DOI: 10.3390/antibiotics11081106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Surface-active compounds (SACs), biomolecules produced by bacteria, yeasts, and filamentous fungi, have interesting properties, such as the ability to interact with surfaces as well as hydrophobic or hydrophilic interfaces. Because of their advantages over other compounds, such as biodegradability, low toxicity, antimicrobial, and healing properties, SACs are attractive targets for research in various applications in medicine. As a result, a growing number of properties related to SAC production have been the subject of scientific research during the past decade, searching for potential future applications in biomedical, pharmaceutical, and therapeutic fields. This review aims to provide a comprehensive understanding of the potential of biosurfactants and emulsifiers as antimicrobials, modulators of virulence factors, anticancer agents, and wound healing agents in the field of biotechnology and biomedicine, to meet the increasing demand for safer medical and pharmacological therapies.
Collapse
|
8
|
Ramoji A, Pahlow S, Pistiki A, Rueger J, Shaik TA, Shen H, Wichmann C, Krafft C, Popp J. Understanding Viruses and Viral Infections by Biophotonic Methods. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
| | - Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Jan Rueger
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Haodong Shen
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christina Wichmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| |
Collapse
|
9
|
Zaga-Clavellina V, Diaz L, Olmos-Ortiz A, Godínez-Rubí M, Rojas-Mayorquín AE, Ortuño-Sahagún D. Central role of the placenta during viral infection: Immuno-competences and miRNA defensive responses. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166182. [PMID: 34058350 DOI: 10.1016/j.bbadis.2021.166182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Pregnancy is a unique immunological condition in which an "immune-diplomatic" dialogue between trophoblasts and maternal immune cells is established to protect the fetus from rejection, to create a privileged environment in the uterus and to simultaneously be alert to any infectious challenge. The maternal-placental-fetal interface (MPFI) performs an essential role in this immunological defense. In this review, we will address the MPFI as an active immuno-mechanical barrier that protects against viral infections. We will describe the main viral infections affecting the placenta and trophoblasts and present their structure, mechanisms of immunocompetence and defensive responses to viral infections in pregnancy. In particular, we will analyze infection routes in the placenta and trophoblasts and the maternal-fetal outcomes in both. Finally, we will focus on the cellular targets of the antiviral microRNAs from the C19MC cluster, and their effects at both the intra- and extracellular level.
Collapse
Affiliation(s)
- Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México C.P. 11000, Mexico
| | - Lorenza Diaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México C.P. 14080, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, INPer, Ciudad de México C.P. 11000, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Investigación en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico.
| |
Collapse
|
10
|
de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021; 9:602. [PMID: 34073231 PMCID: PMC8226796 DOI: 10.3390/biomedicines9060602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, emerging viruses have become a worldwide concern. The fast and extensive spread of the disease caused by SARS-CoV-2 (COVID-19) has impacted the economy and human activity worldwide, highlighting the human vulnerability to infectious diseases and the need to develop and optimize technologies to tackle them. The three-dimensional (3D) cell culture models emulate major tissue characteristics such as the in vivo virus-host interactions. These systems may help to generate a quick response to confront new viruses, establish a reliable evaluation of the pathophysiology, and contribute to therapeutic drug evaluation in pandemic situations such as the one that humanity is living through today. This review describes different types of 3D cell culture models, such as spheroids, scaffolds, organoids, and organs-on-a-chip, that are used in virus research, including those used to understand the new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Guadalupe Tonantzin de Dios-Figueroa
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Janette del Rocío Aguilera-Marquez
- Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico; (G.T.d.D.-F.); (J.d.R.A.-M.)
| | - Tanya A. Camacho-Villegas
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| | - Pavel H. Lugo-Fabres
- CONACYT-Department of Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas 800, Colinas de las Normal, Guadalajara, Jalisco 44270, Mexico;
| |
Collapse
|