1
|
Goyal H, Parwani S, Kaur J. Deciphering the nexus between long non-coding RNAs and endoplasmic reticulum stress in hepatocellular carcinoma: biomarker discovery and therapeutic horizons. Cell Death Discov 2024; 10:451. [PMID: 39448589 PMCID: PMC11502918 DOI: 10.1038/s41420-024-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant global health challenge with few effective treatment options. The dysregulation of endoplasmic reticulum (ER) stress responses has emerged as a pivotal factor in HCC progression and therapy resistance. Long non-coding RNAs (lncRNAs) play a crucial role as key epigenetic modifiers in this process. Recent research has explored how lncRNAs influence ER stress which in turn affects lncRNAs activity in HCC. We systematically analyze the current literature to highlight the regulatory roles of lncRNAs in modulating ER stress and vice versa in HCC. Our scrutinization highlights how dysregulated lncRNAs contribute to various facets of HCC, including apoptosis resistance, enhanced proliferation, invasion, and metastasis, all driven by ER stress. Moreover, we delve into the emerging paradigm of the lncRNA-miRNA-mRNA axis, elucidating it as the promising avenue for developing novel biomarkers and paving the way for more personalized treatment options in HCC. Nevertheless, we acknowledge the challenges and future directions in translating these insights into clinical practice. In conclusion, our review provides insights into the complex regulatory mechanisms governing ER stress modulation by lncRNAs in HCC.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Parwani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
Sanjari-Pour M, Faridi N, Wang P, Bathaie SZ. Protective effect of saffron carotenoids against amyloid beta-induced neurotoxicity in differentiated PC12 cells via the unfolded protein response and autophagy. Phytother Res 2024; 38:4923-4939. [PMID: 36794286 DOI: 10.1002/ptr.7773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
The preventive effect of saffron against Alzheimer's disease (AD) has been reported. Herein, we studied the effect of Cro and Crt, saffron carotenoids, on the cellular model of AD. The MTT assay, flow cytometry, and elevated p-JNK, p-Bcl-2, and c-PARP indicated the AβOs-induced apoptosis in differentiated PC12 cells. Then, the protective effects of Cro/Crt on dPC12 cells against AβOs were investigated in preventive and therapeutic modalities. Starvation was used as a positive control. RT-PCR and Western blot results revealed the reduced eIF2α phosphorylation and increased spliced-XBP1, Beclin1, LC3II, and p62, which indicate the AβOs-induced autophagic flux defect, autophagosome accumulation, and apoptosis. Cro and Crt inhibited the JNK-Bcl-2-Beclin1 pathway. They altered Beclin1 and LC3II and decreased p62 expressions, leading cells to survival. Cro and Crt altered the autophagic flux by different mechanisms. So, Cro increased the rate of autophagosome degradation more than Crt, while Crt increased the rate of autophagosome formation more than Cro. The application of 4μ8C and chloroquine as the inhibitors of XBP1 and autophagy, respectively, confirmed these results. So, augmentation of the survival branches of UPR and autophagy is involved and may serve as an effective strategy to prevent the progression of AβOs toxicity.
Collapse
Affiliation(s)
- Mariam Sanjari-Pour
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - S Zahra Bathaie
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
- UCLA-DOE Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
3
|
Kong L, Zhao M, Zhu X, Liu J, Zhang D, Ye Y. A Novel ⋅OH-Monitor ER-Targeted Probe to Expose the Function of Sorafenib. Chem Asian J 2024:e202400980. [PMID: 39316060 DOI: 10.1002/asia.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
The hydroxyl radical (⋅OH), widely recognized as the most potent free radical, plays a crucial role in numerous physiological and pathological pathways due to its strong oxidizability.Ferroptosis, as a novel mode of cell death, is initiated by the accumulation of iron-dependent lipid peroxidation. Among them, ⋅OH as the original reactive oxygen species (ROSs)is mass-produced due to Fenton reaction in vivo and closely related to cancer treatment.Besides, endoplasmic reticulum (ER) as a membrane-rich structure organelle, is a crucial organelle in all eukaryotes where excessive expression of ROSs, including ⋅OH can triggerER stress which was reported thatwasclosely related toferroptosis. So developing a new probe for their interrelationship research is important. In this paper, we constructed a1,8-naphthalimide-based ER-targeted fluorescence probe named M-1 to monitor ⋅OH variation in vitro and vivo. What's more, we achieved the monitor of ⋅OH during ER stress andferroptosis processesin cancer cells, andfurther explored the important role of ER stress and ferroptosis processes in SF (sorafenib) involved cancer cells.
Collapse
Affiliation(s)
- Lingyu Kong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Manfen Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofei Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Henan Key Laboratory of Grain Quality and Safety Testing, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Tan S, Chi H, Wang P, Zhao R, Zhang Q, Gao Z, Xue H, Tang Q, Li G. Protein tyrosine phosphatase receptor type O serves as a key regulator of insulin resistance-induced α-synuclein aggregation in Parkinson's disease. Cell Mol Life Sci 2024; 81:403. [PMID: 39276174 PMCID: PMC11401831 DOI: 10.1007/s00018-024-05436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Insulin resistance (IR) was found to be a critical element in the pathogenesis of Parkinson's disease (PD), facilitating abnormal α-synuclein (α-Syn) aggregation in neurons and thus promoting PD development. However, how IR contributes to abnormal α-Syn aggregation remains ill-defined. Here, we analyzed six PD postmortem brain transcriptome datasets to reveal module genes implicated in IR-mediated α-Syn aggregation. In addition, we induced IR in cultured dopaminergic (DA) neurons overexpressing α-Syn to identify IR-modulated differentially expressed genes (DEGs). Integrated analysis of data from PD patients and cultured neurons revealed 226 genes involved in α-Syn aggregation under IR conditions, of which 53 exhibited differential expression between PD patients and controls. Subsequently, we conducted an integrated analysis of the 53 IR-modulated genes employing transcriptome data from PD patients with different Braak stages and DA neuron subclasses with varying α-Syn aggregation scores. Protein tyrosine phosphatase receptor type O (PTPRO) was identified to be closely associated with PD progression and α-Syn aggregation. Experimental validation in a cultured PD cell model confirmed that both mRNA and protein of PTPRO were reduced under IR conditions, and the downregulation of PTPRO significantly facilitated α-Syn aggregation and cell death. Collectively, our findings identified PTPRO as a key regulator in IR-mediated α-Syn aggregation and uncovered its prospective utility as a therapeutic target in PD patients with IR.
Collapse
Affiliation(s)
- Shichuan Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qinran Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qilin Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| |
Collapse
|
5
|
Siwecka N, Galita G, Granek Z, Wiese W, Majsterek I, Rozpędek-Kamińska W. IRE1/JNK Is the Leading UPR Pathway in 6-OHDA-Induced Degeneration of Differentiated SH-SY5Y Cells. Int J Mol Sci 2024; 25:7679. [PMID: 39062922 PMCID: PMC11276943 DOI: 10.3390/ijms25147679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which affects dopaminergic neurons of the midbrain. Accumulation of α-synuclein or exposure to neurotoxins like 6-hydroxydopamine (6-OHDA) induces endoplasmic reticulum (ER) stress along with the unfolded protein response (UPR), which executes apoptosis via activation of PERK/CHOP or IRE1/JNK signaling. The present study aimed to determine which of these pathways is a major contributor to neurodegeneration in an 6-OHDA-induced in vitro model of PD. For this purpose, we have applied pharmacological PERK and JNK inhibitors (AMG44 and JNK V) in differentiated SH-SY5Y cells exposed to 6-OHDA. Inhibition of PERK and JNK significantly decreased genotoxicity and improved mitochondrial respiration, but only JNK inhibition significantly increased cell viability. Gene expression analysis revealed that the effect of JNK inhibition was dependent on a decrease in MAPK10 and XBP1 mRNA levels, whereas inhibition of either PERK or JNK significantly reduced the expression of DDIT3 mRNA. Western blot has shown that JNK inhibition strongly induced the XBP1s protein, and inhibition of each pathway attenuated the phosphorylation of eIF2α and JNK, as well as the expression of CHOP. Collectively, our data suggests that targeting the IRE1/JNK pathway of the UPR is a more effective option for PD treatment as it simultaneously affects more than one pro-apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (N.S.); (G.G.); (Z.G.); (W.W.); (I.M.)
| |
Collapse
|
6
|
Chiu CC, Chen YL, Weng YH, Liu SY, Li HL, Yeh TH, Wang HL. Downregulation of Protease Cathepsin D and Upregulation of Pathologic α-Synuclein Mediate Paucity of DNAJC6-Induced Degeneration of Dopaminergic Neurons. Int J Mol Sci 2024; 25:6711. [PMID: 38928416 PMCID: PMC11204255 DOI: 10.3390/ijms25126711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shu-Yu Liu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan 33302, Taiwan;
| | - Hon-Lun Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan 33302, Taiwan;
| |
Collapse
|
7
|
Umapathy S, Pan I, Issac PK, Kumar MSK, Giri J, Guru A, Arockiaraj J. Selenium Nanoparticles as Neuroprotective Agents: Insights into Molecular Mechanisms for Parkinson's Disease Treatment. Mol Neurobiol 2024:10.1007/s12035-024-04253-x. [PMID: 38837103 DOI: 10.1007/s12035-024-04253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aβ, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, Tamil Nadu, 600077, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
8
|
Ekundayo BE, Obafemi TO, Adewale OB, Obafemi BA, Oyinloye BE, Ekundayo SK. Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis in the Pathology of Alzheimer's Disease. Cell Biochem Biophys 2024; 82:457-477. [PMID: 38472715 DOI: 10.1007/s12013-024-01248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Alzheimer's disease (AD) accounts for a major statistic among the class of neurodegenerative diseases. A number of mechanisms have been identified in its pathogenesis and progression which include the amyloid beta (Aβ) aggregation, hyperphosphorylation of tau protein, oxidative stress, endoplasmic reticulum (ER) stress and apoptosis. These processes are interconnected and contribute significantly to the loss of neurons, brain mass and consequential memory loss and other cognitive difficulties. Oxidative stress in AD appears to be caused by excess of oxygen free radicals and extracellular Aβ deposits that cause local inflammatory processes and activate microglia, another possible source of reactive oxygen species (ROS). ER Stress describes the accumulation of misfolded and unfolded proteins as a result of physiological and pathological stimuli including high protein demand, toxins, inflammatory cytokines, and mutant protein expression that disturbs ER homeostasis. When compared to age-matched controls, postmortem brain tissues from AD patients showed elevated levels of ER stress markers, such as PERK, eIF2α, IRE1α, the chaperone Grp78, and the downstream mediator of cell death CHOP. Apoptosis is in charge of eliminating unnecessary and undesired cells to maintain good health. However, it has been demonstrated that a malfunctioning apoptotic pathway is a major factor in the development of certain neurological and immunological problems and diseases in people, including neurodegenerative diseases. This article highlights and discussed some of the experimentally established mechanisms through which these processes lead to the development as well as the exacerbation of AD.
Collapse
Affiliation(s)
| | | | | | - Blessing Ariyo Obafemi
- Department of Medical Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Department of Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | | |
Collapse
|
9
|
Sarawi WS, Attia HA, Alomar HA, Alhaidar R, Rihan E, Aldurgham N, Ali RA. The protective role of sesame oil against Parkinson's-like disease induced by manganese in rats. Behav Brain Res 2024; 465:114969. [PMID: 38548024 DOI: 10.1016/j.bbr.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Chronic exposure to manganese (Mn) results in motor dysfunction, biochemical and pathological alterations in the brain. Oxidative stress, inflammation, and dysfunction of dopaminergic and GABAergic systems stimulate activating transcription factor-6 (ATF-6) and protein kinase RNA-like ER kinase (PERK) leading to apoptosis. This study aimed to investigate the protective effect of sesame oil (SO) against Mn-induced neurotoxicity. Rats received 25 mg/kg MnCl2 and were concomitantly treated with 2.5, 5, or 8 ml/kg of SO for 5 weeks. Mn-induced motor dysfunction was indicated by significant decreases in the time taken by rats to fall during the rotarod test and in the number of movements observed during the open field test. Also, Mn resulted in neuronal degeneration as observed by histological staining. The striatal levels of lipid peroxides and reduced glutathione (oxidative stress markers), interleukin-6 and tumor necrosis factor-α (inflammatory markers) were significantly elevated. Mn significantly reduced the levels of dopamine and Bcl-2, while GABA, PERK, ATF-6, Bax, and caspase-3 were increased. Interestingly, all SO doses, especially at 8 ml/kg, significantly improved locomotor activity, biochemical deviations and reduced neuronal degeneration. In conclusion, SO may provide potential therapeutic benefits in enhancing motor performance and promoting neuronal survival in individuals highly exposed to Mn.
Collapse
Affiliation(s)
- Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rawan Alhaidar
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Esraa Rihan
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nora Aldurgham
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
10
|
Pazi MB, Belan DV, Komarova EY, Ekimova IV. Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:3951. [PMID: 38612761 PMCID: PMC11011682 DOI: 10.3390/ijms25073951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Maria B Pazi
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Daria V Belan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Elena Y Komarova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky pr., St. Petersburg 194064, Russia
| | - Irina V Ekimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
11
|
Wang Z, Kou M, Deng Q, Yu H, Mei J, Gao J, Fu W, Ning B. Acupuncture activates IRE1/XBP1 endoplasmic reticulum stress pathway in Parkinson's disease model rats. Behav Brain Res 2024; 462:114871. [PMID: 38266778 DOI: 10.1016/j.bbr.2024.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Acupuncture has demonstrated its efficacy as a treatment for Parkinson's disease (PD). Thus, the objective of this study was to investigate the potential mechanisms underlying acupuncture's effects on PD treatment. Our approach involved several steps. Firstly, we assessed the behavioral changes in PD rats, the modulation of dopamine (DA) and 5-hydroxytryptamine (5-HT) levels in the striatum, as well as the alteration in α-synuclein (α-syn) levels in the midbrain, aiming to evaluate the efficacy of acupuncture in PD treatment. Secondly, we selected endoplasmic reticulum (ER) stress inhibitors and activators to assess the impact of ER stress on PD rats. Lastly, we utilized an IRE1 inhibitor to observe the influence of acupuncture on the IRE1/XBP1 pathway in PD rats. The findings of this study revealed that acupuncture improved the autonomous motor function, balance ability, coordination, and sensory motor integration function in the PD model rats. Additionally, it increased the levels of DA and 5-HT in the striatum while decreasing the levels of α-syn in the midbrain. Acupuncture also activated the expression of ER stress in the midbrain and upregulated the expression of IRE1/XBP1 in the striatum of PD model rats. Based on these results, we concluded that acupuncture may enhance the behavior of PD rats by activating the IRE1/XBP1 ER stress pathway, associated with the reduction of midbrain α-syn expression and the increase in striatal DA and 5-HT levels in unilateral 6-OHDA lesioned rats.
Collapse
Affiliation(s)
- Zhifang Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Menglin Kou
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyue Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haotian Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jilin Mei
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wen Fu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Baile Ning
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Belfiori LF, Dueñas Rey A, Ralbovszki DM, Jimenez-Ferrer I, Fredlund F, Balikai SS, Ahrén D, Brolin KA, Swanberg M. Nigral transcriptomic profiles in Engrailed-1 hemizygous mouse models of Parkinson's disease reveal upregulation of oxidative phosphorylation-related genes associated with delayed dopaminergic neurodegeneration. Front Aging Neurosci 2024; 16:1337365. [PMID: 38374883 PMCID: PMC10875038 DOI: 10.3389/fnagi.2024.1337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disorder, increasing both in terms of prevalence and incidence. To date, only symptomatic treatment is available, highlighting the need to increase knowledge on disease etiology in order to develop new therapeutic strategies. Hemizygosity for the gene Engrailed-1 (En1), encoding a conserved transcription factor essential for the programming, survival, and maintenance of midbrain dopaminergic neurons, leads to progressive nigrostriatal degeneration, motor impairment and depressive-like behavior in SwissOF1 (OF1-En1+/-). The neurodegenerative phenotype is, however, absent in C57Bl/6j (C57-En1+/-) mice. En1+/- mice are thus highly relevant tools to identify genetic factors underlying PD susceptibility. Methods Transcriptome profiles were defined by RNAseq in microdissected substantia nigra from 1-week old OF1, OF1- En1+/-, C57 and C57- En1+/- male mice. Differentially expressed genes (DEGs) were analyzed for functional enrichment. Neurodegeneration was assessed in 4- and 16-week old mice by histology. Results Nigrostriatal neurodegeneration was manifested in OF1- En1+/- mice by increased dopaminergic striatal axonal swellings from 4 to 16 weeks and decreased number of dopaminergic neurons in the SNpc at 16 weeks compared to OF1. In contrast, C57- En1+/- mice had no significant increase in axonal swellings or cell loss in SNpc at 16 weeks. Transcriptomic analyses identified 198 DEGs between OF1- En1+/- and OF1 mice but only 52 DEGs between C57- En1+/- and C57 mice. Enrichment analysis of DEGs revealed that the neuroprotective phenotype of C57- En1+/- mice was associated with a higher expression of oxidative phosphorylation-related genes compared to both C57 and OF1- En1+/- mice. Discussion Our results suggest that increased expression of genes encoding mitochondrial proteins before the onset of neurodegeneration is associated with increased resistance to PD-like nigrostriatal neurodegeneration. This highlights the importance of genetic background in PD models, how different strains can be used to model clinical and sub-clinical pathologies and provides insights to gene expression mechanisms associated with PD susceptibility and progression.
Collapse
Affiliation(s)
- Lautaro Francisco Belfiori
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alfredo Dueñas Rey
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dorottya Mária Ralbovszki
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Filip Fredlund
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sagar Shivayogi Balikai
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Dag Ahrén
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Stockholm, Sweden
| | - Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Hu Z, Wu T, Zhou Z, Zhang Y, Chen Q, Yao H, Ji M, Shen G, Dong C, Shi C, Huang Z, Jiang N, Han N, Tian X. Asiaticoside Attenuates Blood-Spinal Cord Barrier Disruption by Inhibiting Endoplasmic Reticulum Stress in Pericytes After Spinal Cord Injury. Mol Neurobiol 2024; 61:678-692. [PMID: 37653222 DOI: 10.1007/s12035-023-03605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The blood-spinal cord barrier (BSCB) plays a vital role in the recovery of spinal cord function after spinal cord injury (SCI). Pericytes, pluripotent members of the neurovascular unit (NVU), receive signals from neighboring cells and are critical for maintaining CNS function. Therapeutic targets for the BSCB include endothelial cells (ECs) and glial cells, but few drugs target pericytes. This study was designed to explore whether asiaticoside has a positively effect on pericytes and the integrity of the BSCB. In this study, we found that asiaticoside could inhibit the loss of junction proteins just 1 day after SCI in vivo, but our in vitro study showed no significant differences in the expression of endothelial junction proteins between the control and asiaticoside treatment groups. We also found that asiaticoside could inhibit endoplasmic reticulum (ER) stress and pericyte apoptosis, which might be associated with the inhibition of junction protein reduction in ECs. Thus, we investigated the interactions between pericytes and ECs. Our results showed that asiaticoside could decrease the release of matrix metalloproteinase (MMP)-9 in pericytes and therefore upregulate the expression of junction proteins in ECs. Furthermore, the protective effect of asiaticoside on pericytes is related to the inhibition of ER stress via the MAPK signaling pathway. Taken together, our results demonstrate that asiaticoside treatment inhibits BSCB disruption and enhances functional recovery after SCI.
Collapse
Affiliation(s)
- Zhenxin Hu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Tingting Wu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziheng Zhou
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315302, China
| | - Qiyue Chen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanbing Yao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengchu Ji
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ge Shen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenling Dong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chengge Shi
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhixian Huang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nizhou Jiang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Nan Han
- Department of Ultrasonography, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiliang Tian
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
14
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
15
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
16
|
Zhou Z, Zhang M, Fang Q, Huang J. Relationship between Parkinson's disease and cardio-cerebrovascular diseases: a Mendelian randomized study. Sci Rep 2023; 13:20428. [PMID: 37993489 PMCID: PMC10665329 DOI: 10.1038/s41598-023-47708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
Parkinson's disease (PD) and cardio-cerebrovascular diseases are related, according to earlier studies, but these studies have some controversy. Our aim was to assess the impact of PD on cardiocerebrovascular diseases using a Mendelian randomization (MR) method. The data for PD were single nucleotide polymorphisms (SNPs) from a publicly available genome-wide association study (GWAS) dataset containing data on 482,730 individuals. And the outcome SNPs data is were derived from five different GWAS datasets. The basic method for MR analysis was the inverse variance weighted (IVW) approach. We use the weighted median method and the MR-Egger method to supplement the MR analysis conclusion. Finally, We used Cochran's Q test to test heterogeneity, MR-PRESSO method and leave-one-out analysis method to perform sensitivity analysis. We used ratio ratios (OR) to assess the strength of the association between exposure and outcome, and 95% confidence intervals (CI) to show the reliability of the results. Our findings imply that PD is linked to a higher occurrence of coronary artery disease (CAD) (OR = 1.055, 95% CI 1.020-1.091, P = 0.001), stroke (OR = 1.039, 95% CI 1.007-1.072, P = 0.014). IVW analyses for stroke's subgroups of ischemic stroke (IS) and 95% CI 1.007-1.072, P = 0.014). IVW analyses for stroke's subgroups of ischemic stroke (IS) and cardioembolic stroke (CES) also yielded positive results, respectively (OR = 1.043, 95% CI 1.008-1.079, P = 0.013), (OR = 1.076, 95% CI 1.008-1.149, P = 0.026). There is no evidence of a relationship between PD and other cardio-cerebrovascular diseases. Additionally, sensitivity analysis revealed reliable outcomes. Our MR study analysis that PD is related with an elevated risk of CAD, stroke, IS, and CES.
Collapse
Affiliation(s)
- Zhongzheng Zhou
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muzi Zhang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Fang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Zeng X, Geng W, Zhang Y, Yin J, Xu G, Yu M, Li L, Jia J. Thioredoxin-1 inhibits the activation of IRE1 by targeting Hsp90/p-Cdc37 chaperone complex in Parkinson disease. Ageing Res Rev 2023; 90:102000. [PMID: 37437766 DOI: 10.1016/j.arr.2023.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Endoplasmic reticulum stress is implicated in the etiopathogenesis of Parkinson disease (PD). Our previous study has revealed that thioredoxin-1 (Trx-1) attenuated IRE1 activation in 1-methyl-4-phenylpyridinium ion (MPP+)/1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models. However, its exact mechanism has been largely unclear. In this research, it was reported for the first time that the protein levels of heat shock protein 90 (Hsp90) and phosphorylated cell division cycle 37 (p-Cdc37) were significantly decreased and the interaction of Hsp90/p-Cdc37 complex with IRE1 was disturbed in MPP+/MPTP-induced PD models. Trx-1 overexpression reversed the expression of Hsp90 and p-Cdc37 in cultured cells and the substantia nigra pars compacta of mice. More importantly, Trx-1 overexpression enhanced the interaction of Hsp90/p-Cdc37 complex with IRE1. In conclusion, our data demonstrated that Trx-1 inhibited IRE1 activation in PD by elevating the expression of Hsp90 and p-Cdc37 and strengthening the interaction of Hsp90/p-Cdc37 complex and IRE1.
Collapse
Affiliation(s)
- Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing 314001, China
| | - Wenshuo Geng
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yu Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing 314001, China
| | - Jiayi Yin
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing 314001, China
| | - Guangtao Xu
- Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, China
| | - Meng Yu
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing 314001, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing 314001, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing 314001, China.
| |
Collapse
|
18
|
Wen W, Wang Y, Li H, Hu D, Zhang Z, Lin H, Luo J. Upregulation of mesencephalic astrocyte-derived neurotrophic factor (MANF) expression offers protection against alcohol neurotoxicity. J Neurochem 2023; 166:943-959. [PMID: 37507360 PMCID: PMC10906989 DOI: 10.1111/jnc.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Alcohol exposure has detrimental effects on both the developing and mature brain. Endoplasmic reticulum (ER) stress is one of the mechanisms that contributes to alcohol-induced neuronal damages. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress-responsive protein and is neuroprotective in multiple neuronal injury and neurodegenerative disease models. MANF deficiency has been shown to exacerbate alcohol-induced ER stress and neurodegeneration. However, it is unknown whether MANF supplement is sufficient to protect against alcohol neurotoxicity. Alcohol alters MANF expression in the brain, but the mechanisms underlying alcohol modulation of MANF expression remain unclear. This study was designed to determine how alcohol alters MANF expression in neuronal cells and whether exogeneous MANF can alleviate alcohol neurotoxicity. We showed that alcohol increased MANF transcription and secretion without affecting MANF mRNA stability and protein degradation. ER stress was necessary for alcohol-induced MANF upregulation, as pharmacological inhibition of ER stress by 4-PBA diminished alcohol-induced MANF expression. In addition, the presence of ER stress response element II (ERSE-II) was required for alcohol-stimulated MANF transcription. Mutations or deletion of this sequence abolished alcohol-regulated transcriptional activity. We generated MANF knockout (KO) neuronal cells using CRISPR/Cas9. MANF KO cells exhibited increased unfolded protein response (UPR) and were more susceptible to alcohol-induced cell death. On the other hand, MANF upregulation by the addition of recombinant MANF protein or adenovirus gene transduction protected neuronal cells against alcohol-induced cell death. Further studies using early postnatal mouse pups demonstrated that enhanced MANF expression in the brain by intracerebroventricular (ICV) injection of MANF adeno-associated viruses ameliorated alcohol-induced cell death. Thus, alcohol increased MANF expression through inducing ER stress, which could be a protective response. Exogenous MANF was able to protect against alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yongchao Wang
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37372, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Di Hu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zuohui Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hong Lin
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- VA Iowa City Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
19
|
Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol 2023; 146:369-385. [PMID: 37421475 PMCID: PMC10412683 DOI: 10.1007/s00401-023-02601-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hallmark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
Collapse
Affiliation(s)
- Manuel Flores-Leon
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
20
|
Odongo R, Bellur O, Abdik E, Çakır T. Brain-wide transcriptome-based metabolic alterations in Parkinson's disease: human inter-region and human-experimental model correlations. Mol Omics 2023; 19:522-537. [PMID: 36928892 DOI: 10.1039/d2mo00343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Alterations in brain metabolism are closely associated with the molecular hallmarks of Parkinson's disease (PD). A clear understanding of the main metabolic perturbations in PD is therefore important. Here, we retrospectively analysed the expression of metabolic genes from 34 PD-control post-mortem human brain transcriptome data comparisons from literature, spanning multiple brain regions. We found high metabolic correlations between the Substantia nigra (SN)- and cerebral cortex-derived tissues. Moreover, three clusters of PD patient cohorts were identified based on perturbed metabolic processes in the SN - each characterised by perturbations in (a) bile acid metabolism (b) omega-3 fatty acid metabolism, and (c) lipoic acid and androgen metabolism - metabolic themes not comprehensively addressed in PD. These perturbations were supported by concurrence between transcriptome and proteome changes in the expression patterns for CBR1, ECI2, BDH2, CYP27A1, ALDH1B1, ALDH9A1, ADH5, ALDH7A1, L1CAM, and PLXNB3 genes, providing a valuable resource for drug targeting and diagnosis. Also, we analysed 58 PD-control transcriptome data comparisons from in vivo/in vitro disease models and identified experimental PD models with significant correlations to matched human brain regions. Collectively, our findings suggest metabolic alterations in several brain regions, heterogeneity in metabolic alterations between study cohorts for the SN tissues and the need to optimize current experimental models to advance research on metabolic aspects of PD.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Orhan Bellur
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
21
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
22
|
Pan F, Hu D, Sun LJ, Bai Q, Wang YS, Hou X. Valproate reduces retinal ganglion cell apoptosis in rats after optic nerve crush. Neural Regen Res 2023; 18:1607-1612. [PMID: 36571369 PMCID: PMC10075129 DOI: 10.4103/1673-5374.357913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury. Valproate is a histone deacetylase inhibitor and multitarget drug, which has been demonstrated to protect retinal neurons. In this study, we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling. We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope. Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein, phosphorylated eukaryotic translation initiation factor 2α, and caspase-12 in the endoplasmic reticulum of retinal ganglion cells. These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress. These findings represent a newly discovered mechanism that regulates how valproate protects neurons.
Collapse
Affiliation(s)
- Feng Pan
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dan Hu
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Li-Juan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qian Bai
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu-Sheng Wang
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xu Hou
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
23
|
Schneider JS. GM1 Ganglioside as a Disease-Modifying Therapeutic for Parkinson's Disease: A Multi-Functional Glycosphingolipid That Targets Multiple Parkinson's Disease-Relevant Pathogenic Mechanisms. Int J Mol Sci 2023; 24:9183. [PMID: 37298133 PMCID: PMC10252733 DOI: 10.3390/ijms24119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting millions of patients worldwide. Many therapeutics are available for treating PD symptoms but there is no disease-modifying therapeutic that has been unequivocally shown to slow or stop the progression of the disease. There are several factors contributing to the failure of many putative disease-modifying agents in clinical trials and these include the choice of patients and clinical trial designs for disease modification trials. Perhaps more important, however, is the choice of therapeutic, which for the most part, has not taken into account the multiple and complex pathogenic mechanisms and processes involved in PD. This paper discusses some of the factors contributing to the lack of success in PD disease-modification trials, which have mostly investigated therapeutics with a singular mechanism of action directed at one of the many PD pathogenic processes, and suggests that an alternative strategy for success may be to employ multi-functional therapeutics that target multiple PD-relevant pathogenic mechanisms. Evidence is presented that the multi-functional glycosphingolipid GM1 ganglioside may be just such a therapeutic.
Collapse
Affiliation(s)
- Jay S Schneider
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Chiu CC, Weng YH, Yeh TH, Lu JC, Chen WS, Li AHR, Chen YL, Wei KC, Wang HL. Deficiency of RAB39B Activates ER Stress-Induced Pro-apoptotic Pathway and Causes Mitochondrial Dysfunction and Oxidative Stress in Dopaminergic Neurons by Impairing Autophagy and Upregulating α-Synuclein. Mol Neurobiol 2023; 60:2706-2728. [PMID: 36715921 DOI: 10.1007/s12035-023-03238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Deletion and missense or nonsense mutation of RAB39B gene cause familial Parkinson's disease (PD). We hypothesized that deletion and mutation of RAB39B gene induce degeneration of dopaminergic neurons by decreasing protein level of functional RAB39B and causing RAB39B deficiency. Cellular model of deletion or mutation of RAB39B gene-induced PD was prepared by knocking down endogenous RAB39B in human SH-SY5Y dopaminergic cells. Transfection of shRNA-induced 90% reduction in RAB39B level significantly decreased viability of SH-SY5Y dopaminergic neurons. Deficiency of RAB39B caused impairment of macroautophagy/autophagy, which led to increased protein levels of α-synuclein and phospho-α-synucleinSer129 within endoplasmic reticulum (ER) and mitochondria. RAB39B deficiency-induced increase of ER α-synuclein and phospho-α-synucleinSer129 caused activation of ER stress, unfolded protein response, and ER stress-induced pro-apoptotic cascade. Deficiency of RAB39B-induced increase of mitochondrial α-synuclein decreased mitochondrial membrane potential and increased mitochondrial superoxide. RAB39B deficiency-induced activation of ER stress pro-apoptotic pathway, mitochondrial dysfunction, and oxidative stress caused apoptotic death of SH-SY5Y dopaminergic cells by activating mitochondrial apoptotic cascade. In contrast to neuroprotective effect of wild-type RAB39B, PD mutant (T168K), (W186X), or (G192R) RAB39B did not prevent tunicamycin- or rotenone-induced increase of neurotoxic α-synuclein and activation of pro-apoptotic pathway. Our results suggest that RAB39B is required for survival and macroautophagy function of dopaminergic neurons and that deletion or PD mutation of RAB39B gene-induced RAB39B deficiency induces apoptotic death of dopaminergic neurons via impairing autophagy function and upregulating α-synuclein.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1St Road, Kweishan, Taoyuan, 333, Taiwan
| | - Wan-Shia Chen
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1St Road, Kweishan, Taoyuan, 333, Taiwan
| | - Allen Han-Ren Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1St Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
25
|
Zhou S, Zhou X, Jiang Z, Ma J, Li Y, Qian Z, Li H. The Mechanism of SNHG8/Microrna-421-3p/Sorting Nexin 8 Axis on Dopaminergic Neurons in Substantia Nigra in a Mouse Model of Parkinson's Disease. Neurochem Res 2023; 48:942-955. [PMID: 36401052 DOI: 10.1007/s11064-022-03795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the aging population. Particularly, long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in PD, while the role of lncRNA SNHG8 in PD remains to be further explored. C57BL/6 mice were induced by rotenone to establish a PD model in vivo, and then the dopaminergic (DA) neuronal damage and locomotor dysfunction in rotenone-treated mice were evaluated. Murine DA cell line MN9D was treated with rotenone to establish a cellular PD model in vitro. Then, the viability, apoptosis, mitochondrial dysfunction, endoplasmic reticulum stress, and autophagy in rotenone-treated MN9D cells were assessed. Expression levels of SNHG8, microRNA-421-3p (miR-421-3p), and sorting nexin 8 (SNX8) in the substantia nigra (SN) of PD mice and rotenone-treated MN9D cells were detected. The interaction between SNHG8 and miR-421-3p, and the targeting relationship between SNX8 and miR-421-3p were confirmed. SNHG8 and SNX8 expression levels were decreased while miR-421-3p expression level was increased in the SN of PD mice and rotenone-treated MN9D cells. Upregulated SNHG8 ameliorated dopaminergic neuron damage and locomotor dysfunction in PD mice. Meanwhile, upregulated SNHG8 enhanced viability, diminished apoptosis, and alleviated mitochondrial dysfunction, endoplasmic reticulum stress, and autophagy in rotenone-treated MN9D cells. Mechanistically, SNHG8 bound to miR-421-3p, and miR-421-3p targeted SNX8. Overexpressed SNHG8 downregulates miR-421-3p to alleviate rotenone-induced dopaminergic neuron injury in PD via upregulating SNX8.
Collapse
Affiliation(s)
- Siwei Zhou
- Geriatric Rehabilitation Center, Zhejiang Rehabilitation Medical Center, No.2828 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Xiaofang Zhou
- Geriatric Rehabilitation Center, Zhejiang Rehabilitation Medical Center, No.2828 Binsheng Road, Hangzhou, 310051, Zhejiang, China.
| | - Zewen Jiang
- Outpatient Department, Zhejiang Armed Police Corps Hospital, No.86 Jiangnan Road, Hangzhou, Zhejiang, China
| | - Jinrong Ma
- Geriatric Rehabilitation Center, Zhejiang Rehabilitation Medical Center, No.2828 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Yuanmei Li
- Geriatric Rehabilitation Center, Zhejiang Rehabilitation Medical Center, No.2828 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Zhiyong Qian
- Geriatric Rehabilitation Center, Zhejiang Rehabilitation Medical Center, No.2828 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| | - Hua Li
- Geriatric Rehabilitation Center, Zhejiang Rehabilitation Medical Center, No.2828 Binsheng Road, Hangzhou, 310051, Zhejiang, China
| |
Collapse
|
26
|
Yoo YM, Joo SS. Melatonin Can Modulate Neurodegenerative Diseases by Regulating Endoplasmic Reticulum Stress. Int J Mol Sci 2023; 24:ijms24032381. [PMID: 36768703 PMCID: PMC9916953 DOI: 10.3390/ijms24032381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
As people age, their risks of developing degenerative diseases such as cancer, diabetes, Parkinson's Disease (PD), Alzheimer's Disease (AD), rheumatoid arthritis, and osteoporosis are generally increasing. Millions of people worldwide suffer from these diseases as they age. In most countries, neurodegenerative diseases are generally recognized as the number one cause afflicting the elderly. Endoplasmic reticulum (ER) stress has been suggested to be associated with some human neurological diseases, such as PD and AD. Melatonin, a neuroendocrine hormone mainly synthesized in the pineal gland, is involved in pleiotropically biological functions, including the control of the circadian rhythm, immune enhancement, and antioxidant, anti-aging, and anti-tumor effects. Although there are many papers on the prevention or suppression of diseases by melatonin, there are very few papers about the effects of melatonin on ER stress in neurons and neurodegenerative diseases. This paper aims to summarize and present the effects of melatonin reported so far, focusing on its effects on neurons and neurodegenerative diseases related to ER stress. Studies have shown that the primary target molecule of ER stress for melatonin is CHOP, and PERK and GRP78/BiP are the secondary target molecules. Therefore, melatonin is crucial in protecting neurons and treating neurodegeneration against ER stress.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- East Coast Life Sciences Institute, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Correspondence: (Y.-M.Y.); (S.S.J.); Tel.: +82-10-2494-5309 (Y.-M.Y.); +82-33-640-2856 (S.S.J.); Fax: +82-33-640-2849 (Y.-M.Y. & S.S.J.)
| | - Seong Soo Joo
- Department of Marine Bioscience, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Correspondence: (Y.-M.Y.); (S.S.J.); Tel.: +82-10-2494-5309 (Y.-M.Y.); +82-33-640-2856 (S.S.J.); Fax: +82-33-640-2849 (Y.-M.Y. & S.S.J.)
| |
Collapse
|
27
|
Motawi TK, Al-Kady RH, Senousy MA, Abdelraouf SM. Repaglinide Elicits a Neuroprotective Effect in Rotenone-Induced Parkinson's Disease in Rats: Emphasis on Targeting the DREAM-ER Stress BiP/ATF6/CHOP Trajectory and Activation of Mitophagy. ACS Chem Neurosci 2023; 14:180-194. [PMID: 36538285 DOI: 10.1021/acschemneuro.2c00656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Repaglinide, a meglitinide insulinotropic antidiabetic, was unraveled as a promising therapeutic agent for Huntington's disease by targeting the neuronal calcium sensor downstream regulatory element antagonist modulator (DREAM). However, its mechanistic profile in Parkinson's disease (PD) especially its impact on endoplasmic reticulum (ER) stress, mitophagy, and their interconnections is poorly elucidated. This study is the first to examine the neuroprotective potential of repaglinide in rotenone-induced PD in rats by exploring its effects on DREAM, BiP/ATF6/CHOP ER stress pathway, apoptosis, mitophagy/autophagy, oxidative stress, astrogliosis/microgliosis, and neuroinflammation. Male Wistar rats were randomly assigned to four groups: groups 1 and 2 received the vehicle or repaglinide (0.5 mg/kg/day p.o). Groups 3 and 4 received rotenone (1.5 mg/kg/48 h s.c) for 21 days; meanwhile, group 4 additionally received repaglinide (0.5 mg/kg/day p.o) for 15 days starting from day 11. Interestingly, repaglinide lessened striatal ER stress and apoptosis as evidenced by reduced BiP/ATF6/CHOP and caspase-3 levels; however, it augmented striatal DREAM mRNA expression. Repaglinide triggered the expression of the mitophagy marker PINK1 and the autophagy protein beclin1 and alleviated striatal oxidative stress through escalating catalase activity. In addition, repaglinide halted astrocyte/microglial activation and neuroinflammation in the striatum as expressed by reducing glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor protein 1 (Iba1) immunostaining and decreasing interleukin (IL)-6 and IL-1β levels. Repaglinide restored striatum morphological alterations, intact neuron count, and neurobehavioral motor performance in rats examined by an open field, grip strength, and footprint gait analysis. Conclusively, repaglinide modulates the DREAM-ER stress BiP/ATF6/CHOP cascade, increases mitophagy/autophagy, inhibits apoptosis, and lessens oxidative stress, astrocyte/microglial activation, and neuroinflammation in PD.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rawan H Al-Kady
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Biochemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Sahar M Abdelraouf
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| |
Collapse
|
28
|
Endoplasmic Reticulum Stress-Regulated Chaperones as a Serum Biomarker Panel for Parkinson's Disease. Mol Neurobiol 2023; 60:1476-1485. [PMID: 36478320 PMCID: PMC9899193 DOI: 10.1007/s12035-022-03139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Examination of post-mortem brain tissues has previously revealed a strong association between Parkinson's disease (PD) pathophysiology and endoplasmic reticulum (ER) stress. Evidence in the literature regarding the circulation of ER stress-regulated factors released from neurons provides a rationale for investigating ER stress biomarkers in the blood to aid diagnosis of PD. The levels of ER stress-regulated proteins in serum collected from 29 PD patients and 24 non-PD controls were measured using enzyme-linked immunosorbent assays. A panel of four biomarkers, protein disulfide-isomerase A1, protein disulfide-isomerase A3, mesencephalic astrocyte-derived neurotrophic factor, and clusterin, together with age and gender had higher ability (area under the curve 0.64, sensitivity 66%, specificity 57%) and net benefit to discriminate PD patients from the non-PD group compared with other analyzed models. Addition of oligomeric and total α-synuclein to the model did not improve the diagnostic power of the biomarker panel. We provide evidence that ER stress-regulated proteins merit further investigation for their potential as diagnostic biomarkers of PD.
Collapse
|
29
|
Panagaki T, Randi EB, Szabo C, Hölscher C. Incretin Mimetics Restore the ER-Mitochondrial Axis and Switch Cell Fate Towards Survival in LUHMES Dopaminergic-Like Neurons: Implications for Novel Therapeutic Strategies in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1149-1174. [PMID: 37718851 PMCID: PMC10657688 DOI: 10.3233/jpd-230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that afflicts more than 10 million people worldwide. Available therapeutic interventions do not stop disease progression. The etiopathogenesis of PD includes unbalanced calcium dynamics and chronic dysfunction of the axis of the endoplasmic reticulum (ER) and mitochondria that all can gradually favor protein aggregation and dopaminergic degeneration. OBJECTIVE In Lund Human Mesencephalic (LUHMES) dopaminergic-like neurons, we tested novel incretin mimetics under conditions of persistent, calcium-dependent ER stress. METHODS We assessed the pharmacological effects of Liraglutide-a glucagon-like peptide-1 (GLP-1) analog-and the dual incretin GLP-1/GIP agonist DA3-CH in the unfolded protein response (UPR), cell bioenergetics, mitochondrial biogenesis, macroautophagy, and intracellular signaling for cell fate in terminally differentiated LUHMES cells. Cells were co-stressed with the sarcoplasmic reticulum calcium ATPase (SERCA) inhibitor, thapsigargin. RESULTS We report that Liraglutide and DA3-CH analogs rescue the arrested oxidative phosphorylation and glycolysis. They mitigate the suppressed mitochondrial biogenesis and hyper-polarization of the mitochondrial membrane, all to re-establish normalcy of mitochondrial function under conditions of chronic ER stress. These effects correlate with a resolution of the UPR and the deficiency of components for autophagosome formation to ultimately halt the excessive synaptic and neuronal death. Notably, the dual incretin displayed a superior anti-apoptotic effect, when compared to Liraglutide. CONCLUSIONS The results confirm the protective effects of incretin signaling in ER and mitochondrial stress for neuronal degeneration management and further explain the incretin-derived effects observed in PD patients.
Collapse
Affiliation(s)
- Theodora Panagaki
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Elisa B. Randi
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Faculty of Science & Medicine, University of Fribourg, Fribourg, Switzerland
| | - Christian Hölscher
- Research & Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
30
|
Vijayalalitha R, Archita T, Juanitaa GR, Jayasuriya R, Amin KN, Ramkumar KM. Role of Long Non-Coding RNA in Regulating ER Stress Response to the Progression of Diabetic Complications. Curr Gene Ther 2023; 23:96-110. [PMID: 35927920 DOI: 10.2174/1566523222666220801141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Chronic hyperglycemia damages the nerves and blood vessels, culminating in other vascular complications. Such complications enhance cytokine, oxidative and endoplasmic reticulum (ER) stress. ER is the primary organelle where proteins are synthesised and attains confirmatory changes before its site of destination. Perturbation of ER homeostasis activates signaling sensors within its lumen, the unfolded protein response (UPR) that orchestrates ER stress and is extensively studied. Increased ER stress markers are reported in diabetic complications in addition to lncRNA that acts as an upstream marker inducing ER stress response. This review focuses on the mechanisms of lncRNA that regulate ER stress markers, especially during the progression of diabetic complications. Through this systemic review, we showcase the dysfunctional lncRNAs that act as a leading cause of ER stress response to the progression of diabetic complications.
Collapse
Affiliation(s)
- Ramanarayanan Vijayalalitha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Tca Archita
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - George Raj Juanitaa
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Karan Naresh Amin
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
31
|
Epimedin B exerts neuroprotective effect against MPTP-induced mouse model of Parkinson's disease: GPER as a potential target. Biomed Pharmacother 2022; 156:113955. [DOI: 10.1016/j.biopha.2022.113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
32
|
Tiwari S, Singh A, Gupta P, Singh S. UBA52 Is Crucial in HSP90 Ubiquitylation and Neurodegenerative Signaling during Early Phase of Parkinson's Disease. Cells 2022; 11:cells11233770. [PMID: 36497031 PMCID: PMC9738938 DOI: 10.3390/cells11233770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Protein aggregation is one of the major pathological events in age-related Parkinson's disease (PD) pathology, predominantly regulated by the ubiquitin-proteasome system (UPS). UPS essentially requires core component ubiquitin; however, its role in PD pathology is obscure. This study aimed to investigate the role of ubiquitin-encoding genes in sporadic PD pathology. Both cellular and rat models of PD as well as SNCA C57BL/6J-Tg (Th-SNCA*A30P*A53T)39 Eric/J transgenic mice showed a decreased abundance of UBA52 in conjunction with significant downregulation of tyrosine hydroxylase (TH) and neuronal death. In silico predictions, mass spectrometric analysis, and co-immunoprecipitation findings suggested the protein-protein interaction of UBA52 with α-synuclein, HSP90 and E3-ubiquitin ligase CHIP, and its co-localization with α-synuclein in the mitochondrion. Next, in vitro ubiquitylation assay indicated an imperative requirement of the lysine-63 residue of UBA52 in CHIP-mediated HSP90 ubiquitylation. Myc-UBA52 expressed neurons inhibited alteration in PD-specific markers such as α-synuclein and TH protein along with increased proteasome activity in diseased conditions. Furthermore, Myc-UBA52 expression inhibited the altered protein abundance of HSP90 and its various client proteins, HSP75 (homolog of HSP90 in mitochondrion) and ER stress-related markers during early PD. Taken together, the data highlights the critical role of UBA52 in HSP90 ubiquitylation in parallel to its potential contribution to the modulation of various disease-related neurodegenerative signaling targets during the early phase of PD pathology.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Gupta
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
33
|
Sandes JM, de Figueiredo RCBQ. The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy. Front Cell Infect Microbiol 2022; 12:1057774. [PMID: 36439218 PMCID: PMC9684732 DOI: 10.3389/fcimb.2022.1057774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 01/04/2024] Open
Abstract
The endoplasmic reticulum (ER) of higher eukaryotic cells forms an intricate membranous network that serves as the main processing facility for folding and assembling of secreted and membrane proteins. The ER is a highly dynamic organelle that interacts with other intracellular structures, as well as endosymbiotic pathogenic and non-pathogenic microorganisms. A strict ER quality control (ERQC) must work to ensure that proteins entering the ER are folded and processed correctly. Unfolded or misfolded proteins are usually identified, selected, and addressed to Endoplasmic Reticulum-Associated Degradation (ERAD) complex. Conversely, when there is a large demand for secreted proteins or ER imbalance, the accumulation of unfolded or misfolded proteins activates the Unfold Protein Response (UPR) to restore the ER homeostasis or, in the case of persistent ER stress, induces the cell death. Pathogenic trypanosomatids, such as Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp are the etiological agents of important neglected diseases. These protozoans have a complex life cycle alternating between vertebrate and invertebrate hosts. The ER of trypanosomatids, like those found in higher eukaryotes, is also specialized for secretion, and depends on the ERAD and non-canonical UPR to deal with the ER stress. Here, we reviewed the basic aspects of ER biology, organization, and quality control in trypanosomatids. We also focused on the unusual way by which T. cruzi, T. brucei, and Leishmania spp. respond to ER stress, emphasizing how these parasites' ER-unrevealed roads might be an attractive target for chemotherapy.
Collapse
Affiliation(s)
- Jana Messias Sandes
- Laboratório de Biologia Celular e Molecular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Keizo Assami, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
34
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
35
|
Corona-Sanchez EG, Martínez-García EA, Lujano-Benítez AV, Pizano-Martinez O, Guerra-Durán IA, Chavarria-Avila E, Aguilar-Vazquez A, Martín-Márquez BT, Arellano-Arteaga KJ, Armendariz-Borunda J, Perez-Vazquez F, García-De la Torre I, Llamas-García A, Palacios-Zárate BL, Toriz-González G, Vazquez-Del Mercado M. Autoantibodies in the pathogenesis of idiopathic inflammatory myopathies: Does the endoplasmic reticulum stress response have a role? Front Immunol 2022; 13:940122. [PMID: 36189221 PMCID: PMC9520918 DOI: 10.3389/fimmu.2022.940122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of rare, acquired autoimmune diseases characterized by profound muscle weakness and immune cell invasion into non-necrotic muscle. They are related to the presence of antibodies known as myositis-specific antibodies and myositis-associated antibodies, which are associated with various IIM phenotypes and the clinical prognosis. The possibility of the participation of other pathological mechanisms involved in the inflammatory response in IIM has been proposed. Such mechanisms include the overexpression of major histocompatibility complex class I in myofibers, which correlates with the activation of stress responses of the endoplasmic reticulum (ER). Taking into account the importance of the ER for the maintenance of homeostasis of the musculoskeletal system in the regulation of proteins, there is probably a relationship between immunological and non-immunological processes and autoimmunity, and an example of this might be IIM. We propose that ER stress and its relief mechanisms could be related to inflammatory mechanisms triggering a humoral response in IIM, suggesting that ER stress might be related to the triggering of IIMs and their auto-antibodies’ production.
Collapse
Affiliation(s)
- Esther Guadalupe Corona-Sanchez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oscar Pizano-Martinez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivette Alejandra Guerra-Durán
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Aguilar-Vazquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomedicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Kevin Javier Arellano-Arteaga
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Especialidad de Medicina Interna, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Zapopan, Mexico
| | - Felipe Perez-Vazquez
- Departamento de Disciplinas Filosófico Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ignacio García-De la Torre
- Departamento de Inmunología y Reumatología, Hospital General de Occidente y Universidad de Guadalajara, Guadalajara, Mexico
| | - Arcelia Llamas-García
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Brenda Lucía Palacios-Zárate
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
| | - Guillermo Toriz-González
- Instituto Transdisciplinar de Investigación y Servicios (ITRANS), Universidad de Guadalajara, Zapopan, Mexico
| | - Monica Vazquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esqueletico, Departamento de Biología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Universidad de Guadalajara-Cuerpo Académico (UDG-CA)-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Dr. Juan I. Menchaca, ” Especialidad de Reumatología, Padrón Nacional de Posgrados de Calidad (PNPC) Consejo Nacional de Ciencia y Tecnología (CONACyT), Guadalajara, Mexico
- *Correspondence: Monica Vazquez-Del Mercado,
| |
Collapse
|
36
|
Smith LJ, Lee CY, Menozzi E, Schapira AHV. Genetic variations in GBA1 and LRRK2 genes: Biochemical and clinical consequences in Parkinson disease. Front Neurol 2022; 13:971252. [PMID: 36034282 PMCID: PMC9416236 DOI: 10.3389/fneur.2022.971252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Variants in the GBA1 and LRRK2 genes are the most common genetic risk factors associated with Parkinson disease (PD). Both genes are associated with lysosomal and autophagic pathways, with the GBA1 gene encoding for the lysosomal enzyme, glucocerebrosidase (GCase) and the LRRK2 gene encoding for the leucine-rich repeat kinase 2 enzyme. GBA1-associated PD is characterized by earlier age at onset and more severe non-motor symptoms compared to sporadic PD. Mutations in the GBA1 gene can be stratified into severe, mild and risk variants depending on the clinical presentation of disease. Both a loss- and gain- of function hypothesis has been proposed for GBA1 variants and the functional consequences associated with each variant is often linked to mutation severity. On the other hand, LRRK2-associated PD is similar to sporadic PD, but with a more benign disease course. Mutations in the LRRK2 gene occur in several structural domains and affect phosphorylation of GTPases. Biochemical studies suggest a possible convergence of GBA1 and LRRK2 pathways, with double mutant carriers showing a milder phenotype compared to GBA1-associated PD. This review compares GBA1 and LRRK2-associated PD, and highlights possible genotype-phenotype associations for GBA1 and LRRK2 separately, based on biochemical consequences of single variants.
Collapse
Affiliation(s)
- Laura J. Smith
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
37
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
38
|
Liang H, Guo W, He H, Zhang H, Ye Q, Zhang Q, Liao J, Shen Y, Wang J, Xiao Y, Qin C. Decreased soluble Nogo-B in serum as a promising biomarker for Parkinson's disease. Front Neurosci 2022; 16:894454. [PMID: 35958994 PMCID: PMC9360801 DOI: 10.3389/fnins.2022.894454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022] Open
Abstract
BackgroundRecently, the neurite outgrowth inhibitor-B (Nogo-B) receptor has been reported as a novel candidate gene for Parkinson's disease (PD). Nogo-B receptors need to combine with soluble Nogo-B to exert their physiological function. However, little is known about the relationship between serum soluble Nogo-B and PD.MethodsSerum levels of sNogo-B and α-Synuclein (α-Syn) were measured in a cohort of 53 patients with PD and 49 healthy controls with the ELISA kit method.ResultsSerum sNogo-B level is significantly lower in the PD group than that in healthy controls and is negatively correlated with UPDRS-III score (p = 0.049), H&Y stage (p = 0.0108) as well as serum α-Syn level (p = 0.0001). The area under the curve (AUC) of serum sNogo-B in differentiating patients with PD from controls was 0.801 while the AUC of serum α-Syn was 0.93. Combining serum sNogo-B and α-Syn in differentiating patients with PD from HC presented higher discriminatory potential (AUC = 0.9534).ConclusionDecreased serum sNogo-B may be a potential biomarker for PD. Lower Nogo-B level reflects worse motor function and disease progression of PD. Serum sNogo-B is of added value to serum α-Syn panel in distinguishing PD from controls. Future studies are needed to confirm in larger samples and different populations.
Collapse
Affiliation(s)
- Hongming Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Neurology, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghu He
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Rehabilitation Medicine, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Qiongyu Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingxin Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiajia Liao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Chao Qin
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Yousheng Xiao
| |
Collapse
|
39
|
Guo H, Hu R, Huang G, Pu W, Chu X, Xing C, Zhang C. Molybdenum and cadmium co-exposure induces endoplasmic reticulum stress-mediated apoptosis by Th1 polarization in Shaoxing duck (Anas platyrhyncha) spleens. CHEMOSPHERE 2022; 298:134275. [PMID: 35278442 DOI: 10.1016/j.chemosphere.2022.134275] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) are deleterious to animals, but immunotoxicity co-induced by Mo and Cd remains unclear. To ascertain the confederate impacts of Mo and Cd on endoplasmic reticulum (ER) stress-mediated apoptosis by Helper T (Th) cells 1 polarization in the spleen of ducks, we randomly allocated forty 8-day-old Shaoxing ducks (Anas platyrhyncha) into 4 groups and reared them with having different doses of Mo and/or Cd basic diet. At the 16th week of the experiment, serum and spleen tissues were extracted. Data confirmed that Mo and/or Cd strikingly promoted their levels in spleen, caused histological abnormality and trace elements imbalance, and disrupted Th1/Th2 balance to divert toward Th1, then triggered ER stress by increasing three branches PERK/eIF2α/CHOP, IRE1/Caspase-12 and TRAF2/JNK signaling pathways-related genes mRNA and proteins levels, which stimulated apoptosis by elevating Bak-1, Bax, Caspase-9, Caspase-3 mRNA expression, and cleaved-Caspase-9/Caspase-9, cleaved-Caspase-3/Caspase-3 proteins expression as well as apoptosis rate, and decreasing Bcl-xL, Bcl-2 mRNA expression and Bcl-2/Bax ratio. Besides, the variation in combined group was most evident. Briefly, the study indicates that Mo and/or Cd exposure trigger ER stress-induced apoptosis via Th1 polarization in duck spleens, and its mechanism is somehow closely linked with the deposition of Cd and Mo, which may aggravate toxic damage to spleen.
Collapse
Affiliation(s)
- Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
40
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
41
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
42
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
43
|
Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022; 11:cells11050851. [PMID: 35269473 PMCID: PMC8909305 DOI: 10.3390/cells11050851] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
In response to environmental stimuli, cells make a series of adaptive changes to combat the injury, repair the damage, and increase the tolerance to the stress. However, once the damage is too serious to repair, the cells will undergo apoptosis to protect the overall cells through suicidal behavior. Upon external stimulation, some intracellular proteins turn into unfolded or misfolded protein, exposing their hydrophobic regions to form protein aggregation, which may ultimately produce serious damage to the cells. Ubiquitin plays an important role in the degradation of these unnatural proteins by tagging with ubiquitin chains in the ubiquitin-proteasome or autophagy system. If the two processes fail to eliminate the abnormal protein aggregates, the cells will move to apoptosis and death. Dysregulation of ubiquitin-proteasome system (UPS) and autophagy may result in the development of numerous diseases. This review focuses on the molecular mechanisms of UPS and autophagy in clearance of intracellular protein aggregates, and the relationship between dysregulation of ubiquitin network and diseases.
Collapse
|
44
|
CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020405. [PMID: 35204286 PMCID: PMC8869494 DOI: 10.3390/antiox11020405] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Collapse
|
45
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
46
|
Fang S, Hu X, Wang T, Yang Y, Xu R, Zhang X, Luo J, Ma Y, Patel AB, Dmytriw AA, Jiao L. Parkinson's Disease and Ischemic Stroke: a Bidirectional Mendelian Randomization Study. Transl Stroke Res 2022; 13:528-532. [PMID: 35013977 DOI: 10.1007/s12975-021-00974-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
We aimed to assess the potential causal association between Parkinson's disease (PD) and ischemic stroke (IS) with Mendelian randomization methods. Summary statistics data from two large-scale genome-wide association studies (GWAS) for 33,674 PD cases and 40,585 IS cases were used in this study. We used inverse variance-weighted method for primary analysis, and four other Mendelian randomization methods (weighted median, MR-Egger regression methods, robust adjusted profile score, radial regression) to test whether PD was causal for IS and its subtypes. Analyses were bidirectional to assess reverse causality. Primary analysis showed PD had a significantly causal association with IS (OR 1.04; 95% CI, 1.02-1.07; p = 0.0019), and two subtypes of IS, cardioembolic stroke (OR 1.11; 95% CI, 1.06-1.18; p = 0.0001) and large artery stroke (OR 1.08; 95% CI, 1.01-1.15; p = 0.034), but not with small-vessel stroke (p = 0.180). The point estimates from sensitivity analyses were in the same direction. There was no strong evidence for a reverse causal association between PD and IS. Using multiple Mendelian randomization methods based on large-scale GWAS, PD is a potential cause of cardioembolic stroke and large artery stroke, but not small-vessel stroke. Ischemic stroke does not cause PD.
Collapse
Affiliation(s)
- Shiyuan Fang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinzhi Hu
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yutong Yang
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, SW3 6LY, UK
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Aman B Patel
- Neuroendovascular Program, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Adam A Dmytriw
- Neuroendovascular Program, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA. .,Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchunjie Street, Xicheng District, Beijing, 100053, China.
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), Beijing, 100053, China. .,Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchunjie Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
47
|
Li XX, Zhang F. Targeting TREM2 for Parkinson's Disease: Where to Go? Front Immunol 2022; 12:795036. [PMID: 35003116 PMCID: PMC8740229 DOI: 10.3389/fimmu.2021.795036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of most common neurodegenerative disorders caused by a combination of environmental and genetic risk factors. Currently, numerous population genetic studies have shown that polymorphisms in myeloid cell-triggered receptor II (TREM2) are associated with a variety of neurodegenerative disorders. Recently, TREM2 has been verified to represent a promising candidate gene for PD susceptibility and progression. For example, the expression of TREM2 was apparently increased in the prefrontal cortex of PD patients. Moreover, the rare missense mutations in TREM2 (rs75932628, p.R47H) was confirmed to be a risk factor of PD. In addition, overexpression of TREM2 reduced dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of PD. Due to the complex pathogenesis of PD, there is still no effective drug treatment. Thus, TREM2 has received increasing widespread attention as a potential therapeutic target. This review focused on the variation of TREM2 in PD and roles of TREM2 in PD pathogenesis, such as excessive-immune inflammatory response, α-Synuclein aggregation and oxidative stress, to further provide evidence for new immune-related biomarkers and therapies for PD.
Collapse
Affiliation(s)
- Xiao-Xian Li
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.,Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
48
|
Padilla-Godínez FJ, Ramos-Acevedo R, Martínez-Becerril HA, Bernal-Conde LD, Garrido-Figueroa JF, Hiriart M, Hernández-López A, Argüero-Sánchez R, Callea F, Guerra-Crespo M. Protein Misfolding and Aggregation: The Relatedness between Parkinson's Disease and Hepatic Endoplasmic Reticulum Storage Disorders. Int J Mol Sci 2021; 22:ijms222212467. [PMID: 34830348 PMCID: PMC8619695 DOI: 10.3390/ijms222212467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of cellular homeostasis can lead to misfolding of proteins thus acquiring conformations prone to polymerization into pathological aggregates. This process is associated with several disorders, including neurodegenerative diseases, such as Parkinson’s disease (PD), and endoplasmic reticulum storage disorders (ERSDs), like alpha-1-antitrypsin deficiency (AATD) and hereditary hypofibrinogenemia with hepatic storage (HHHS). Given the shared pathophysiological mechanisms involved in such conditions, it is necessary to deepen our understanding of the basic principles of misfolding and aggregation akin to these diseases which, although heterogeneous in symptomatology, present similarities that could lead to potential mutual treatments. Here, we review: (i) the pathological bases leading to misfolding and aggregation of proteins involved in PD, AATD, and HHHS: alpha-synuclein, alpha-1-antitrypsin, and fibrinogen, respectively, (ii) the evidence linking each protein aggregation to the stress mechanisms occurring in the endoplasmic reticulum (ER) of each pathology, (iii) a comparison of the mechanisms related to dysfunction of proteostasis and regulation of homeostasis between the diseases (such as the unfolded protein response and/or autophagy), (iv) and clinical perspectives regarding possible common treatments focused on improving the defensive responses to protein aggregation for diseases as different as PD, and ERSDs.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rodrigo Ramos-Acevedo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Hilda Angélica Martínez-Becerril
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Luis D. Bernal-Conde
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Jerónimo F. Garrido-Figueroa
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Marcia Hiriart
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
| | - Adriana Hernández-López
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Rubén Argüero-Sánchez
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
| | - Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy and Allied Sciences, Mwanza 1464, Tanzania;
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.J.P.-G.); (R.R.-A.); (H.A.M.-B.); (L.D.B.-C.); (J.F.G.-F.); (M.H.)
- Regenerative Medicine Laboratory, Department of Surgery, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.H.-L.); (R.A.-S.)
- Correspondence:
| |
Collapse
|
49
|
PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones. Nat Commun 2021; 12:5991. [PMID: 34645803 PMCID: PMC8514460 DOI: 10.1038/s41467-021-26225-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
The reticulon-3 (RTN3)-driven targeting complex promotes clearance of misfolded prohormones from the endoplasmic reticulum (ER) for lysosomal destruction by ER-phagy. Because RTN3 resides in the cytosolic leaflet of the ER bilayer, the mechanism of selecting misfolded prohormones as ER-phagy cargo on the luminal side of the ER membrane remains unknown. Here we identify the ER transmembrane protein PGRMC1 as an RTN3-binding partner. Via its luminal domain, PGRMC1 captures misfolded prohormones, targeting them for RTN3-dependent ER-phagy. PGRMC1 selects cargos that are smaller than the large size of other reported ER-phagy substrates. Cargos for PGRMC1 include mutant proinsulins that block secretion of wildtype proinsulin through dominant-negative interactions within the ER, causing insulin-deficiency. Chemical perturbation of PGRMC1 partially restores WT insulin storage by preventing ER-phagic degradation of WT and mutant proinsulin. Thus, PGRMC1 acts as a size-selective cargo receptor during RTN3-dependent ER-phagy, and is a potential therapeutic target for diabetes.
Collapse
|
50
|
Costa AR, Sousa MM. The role of the membrane-associated periodic skeleton in axons. Cell Mol Life Sci 2021; 78:5371-5379. [PMID: 34085116 PMCID: PMC11071922 DOI: 10.1007/s00018-021-03867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
The identification of the membrane periodic skeleton (MPS), composed of a periodic lattice of actin rings interconnected by spectrin tetramers, was enabled by the development of super-resolution microscopy, and brought a new exciting perspective to our view of neuronal biology. This exquisite cytoskeleton arrangement plays an important role on mechanisms regulating neuronal (dys)function. The MPS was initially thought to provide mainly for axonal mechanical stability. Since its discovery, the importance of the MPS in multiple aspects of neuronal biology has, however, emerged. These comprise its capacity to act as a signaling platform, regulate axon diameter-with important consequences on the efficiency of axonal transport and electrophysiological properties- participate in the assembly and function of the axon initial segment, and control axon microtubule stability. Recently, MPS disassembly has also surfaced as an early player in the course of axon degeneration. Here, we will discuss the current knowledge on the role of the MPS in axonal physiology and disease.
Collapse
Affiliation(s)
- Ana Rita Costa
- Nerve Regeneration Group, IBMC- Instituto de Biologia Molecular e Celular and i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Monica Mendes Sousa
- Nerve Regeneration Group, IBMC- Instituto de Biologia Molecular e Celular and i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|