1
|
Liu X, Wang DR, Chen GL, Wang X, Hao SY, Qu MS, Liu JY, Wang XF, You CX. MdTPR16, an apple tetratricopeptide repeat (TPR)-like superfamily gene, positively regulates drought stress in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108572. [PMID: 38677189 DOI: 10.1016/j.plaphy.2024.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
The Tetratricopeptide repeat (TPR)-like superfamily with TPR conserved domains is widely involved in the growth and abiotic stress in many plants. In this report, the gene MdTPR16 belongs to the TPR family in apple (Malus domestica). Promoter analysis reveal that MdTPR16 incorporated various stress response elements, including the drought stress response elements. And different abiotic stress treatments, drought especially, significantly induce the response of MdTPR16. Overexpression of MdTPR16 result in better drought tolerance in apple and Arabidopsis by up-regulating the expression levels of drought stress-related genes, achieving a higher chlorophyll content level, more material accumulation, and overall better growth compared to WT in the drought. Under drought stress, the overexpressed MdTPR16 also mitigate the oxidative damage in cells by reducing the electrolyte leakage, malondialdehyde content, and the H2O2 and O2- accumulation in apples and Arabidopsis. In conclusion, MdTPR16 act as a beneficial regulator of drought stress response by regulating the expression of related genes and the cumulation of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Xin Liu
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Lin Chen
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xun Wang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Shi-Ya Hao
- School of Arts and Sciences, Rutgers-New Brunswick, 57 US Highway 1, New Brunswick, NJ, 08901-8554, USA
| | - Man-Shu Qu
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jia-Yi Liu
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
2
|
López-García CM, Ávila-Hernández CA, Quintana-Rodríguez E, Aguilar-Hernández V, Lozoya-Pérez NE, Rojas-Raya MA, Molina-Torres J, Araujo-León JA, Brito-Argáez L, González-Sánchez AA, Ramírez-Chávez E, Orona-Tamayo D. Extracellular Self- and Non-Self DNA Involved in Damage Recognition in the Mistletoe Parasitism of Mesquite Trees. Int J Mol Sci 2023; 25:457. [PMID: 38203628 PMCID: PMC10778891 DOI: 10.3390/ijms25010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Psittacanthus calyculatus parasitizes mesquite trees through a specialized structure called a haustorium, which, in the intrusive process, can cause cellular damage in the host tree and release DAMPs, such as ATP, sugars, RNA, and DNA. These are highly conserved molecules that primarily function as signals that trigger and activate the defense responses. In the present study, we generate extracellular DNA (exDNA) from mesquite (P. laevigata) tree leaves (self-exDNA) and P. calyculatus (non-self exDNA) mistletoe as DAMP sources to examine mesquite trees' capacity to identify specific self or non-self exDNA. We determined that mesquite trees perceive self- and non-self exDNA with the synthesis of O2•-, H2O2, flavonoids, ROS-enzymes system, MAPKs activation, spatial concentrations of JA, SA, ABA, and CKs, and auxins. Our data indicate that self and non-self exDNA application differs in oxidative burst, JA signaling, MAPK gene expression, and scavenger systems. This is the first study to examine the molecular biochemistry effects in a host tree using exDNA sources derived from a mistletoe.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - César Alejandro Ávila-Hernández
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Elizabeth Quintana-Rodríguez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Nancy Edith Lozoya-Pérez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Mariana Atzhiry Rojas-Raya
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jorge Molina-Torres
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | | | - Enrique Ramírez-Chávez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Domancar Orona-Tamayo
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| |
Collapse
|
3
|
Peng H, Zhao D, Tang W, Peng A. Dienediamine: A safe surrogate for the herbicide paraquat. MOLECULAR PLANT 2023; 16:1962-1975. [PMID: 37924209 DOI: 10.1016/j.molp.2023.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Paraquat (PQ) has been used as an herbicide worldwide because of its potent activity against weeds. However, it is highly toxic to humans. The very high fatality of PQ poisoning is due to its inherent toxicity and the lack of any effective treatment. Consequently, developing a non-toxic herbicide with comparable efficacy to PQ will contribute to global food security and help prevent PQ-related fatalities. Herein, we report a new herbicide called dienediamine, which was discovered from how to intervene the redox cycle of PQ, an inherent toxicity nature. Dienediamine, the "reduced" form of PQ with no function as an electron transfer agent, was shown to be non-toxic through comprehensive in vivo and in vitro experiments at molar concentrations equivalent to PQ's absolute lethal dose. Remarkably, dienediamine can undergo conversion to PQ under natural sunlight and ambient air conditions, exhibiting herbicidal activities that are comparable to those of PQ. The conversion of dienediamine to PQ, which is toxic to chloroplasts, is the key mechanism underlying its potent herbicidal activity. Our study discovers that dienediamine is a safe and superior alternative to PQ, possessing significant potential for application in sustainable agriculture globally.
Collapse
Affiliation(s)
- Henian Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Dake Zhao
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China
| | - Wenjun Tang
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| | - Ai Peng
- Center for Nephrology & Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Yanchangzhong Road, Shanghai 200072, China.
| |
Collapse
|
4
|
Cadena-Zamudio JD, Monribot-Villanueva JL, Pérez-Torres CA, Alatorre-Cobos F, Guerrero-Analco JA, Ibarra-Laclette E. Non-Targeted Metabolomic Analysis of Arabidopsis thaliana (L.) Heynh: Metabolic Adaptive Responses to Stress Caused by N Starvation. Metabolites 2023; 13:1021. [PMID: 37755301 PMCID: PMC10535036 DOI: 10.3390/metabo13091021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
As sessile organisms, plants develop the ability to respond and survive in changing environments. Such adaptive responses maximize phenotypic and metabolic fitness, allowing plants to adjust their growth and development. In this study, we analyzed the metabolic plasticity of Arabidopsis thaliana in response to nitrate deprivation by untargeted metabolomic analysis and using wild-type (WT) genotypes and the loss-of-function nia1/nia2 double mutant. Secondary metabolites were identified using seedlings grown on a hydroponic system supplemented with optimal or limiting concentrations of N (4 or 0.2 mM, respectively) and harvested at 15 and 30 days of age. Then, spectral libraries generated from shoots and roots in both ionization modes (ESI +/-) were compared. Totals of 3407 and 4521 spectral signals (m/z_rt) were obtained in the ESI+ and ESI- modes, respectively. Of these, approximately 50 and 65% were identified as differentially synthetized/accumulated. This led to the presumptive identification of 735 KEGG codes (metabolites) belonging to 79 metabolic pathways. The metabolic responses in the shoots and roots of WT genotypes at 4 mM of N favor the synthesis/accumulation of metabolites strongly related to growth. In contrast, for the nia1/nia2 double mutant (similar as the WT genotype at 0.2 mM N), metabolites identified as differentially synthetized/accumulated help cope with stress, regulating oxidative stress and preventing programmed cell death, meaning that metabolic responses under N starvation compromise growth to prioritize a defensive response.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
| | - Fulgencio Alatorre-Cobos
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
- Centro de Investigación Científica de Yucatán (CICY), Unidad de Biotecnología, Merida 97205, Yucatan, Mexico
| | - José Antonio Guerrero-Analco
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| |
Collapse
|
5
|
Scintu D, Scacchi E, Cazzaniga F, Vinciarelli F, De Vivo M, Shtin M, Svolacchia N, Bertolotti G, Unterholzner SJ, Del Bianco M, Timmermans M, Di Mambro R, Vittorioso P, Sabatini S, Costantino P, Dello Ioio R. microRNA165 and 166 modulate response of the Arabidopsis root apical meristem to salt stress. Commun Biol 2023; 6:834. [PMID: 37567954 PMCID: PMC10421904 DOI: 10.1038/s42003-023-05201-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
In plants, developmental plasticity allows for the modulation of organ growth in response to environmental cues. Being in contact with soil, roots are the first organ that responds to various types of soil abiotic stress such as high salt concentration. In the root, developmental plasticity relies on changes in the activity of the apical meristem, the region at the tip of the root where a set of self-renewing undifferentiated stem cells sustain growth. Here, we show that salt stress promotes differentiation of root meristem cells via reducing the dosage of the microRNAs miR165 and 166. By means of genetic, molecular and computational analysis, we show that the levels of miR165 and 166 respond to high salt concentration, and that miR165 and 166-dependent PHABULOSA (PHB) modulation is central to the response of root growth to this stress. Specifically, we show that salt-dependent reduction of miR165 and 166 causes a rapid increase in PHB expression and, hence, production of the root meristem pro-differentiation hormone cytokinin. Our data provide direct evidence for how the miRNA-dependent modulation of transcription factor dosage mediates plastic development in plants.
Collapse
Affiliation(s)
- Daria Scintu
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126, Pisa, Italy
| | - Emanuele Scacchi
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Francesca Cazzaniga
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Federico Vinciarelli
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Mirko De Vivo
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Margaryta Shtin
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126, Pisa, Italy
| | - Noemi Svolacchia
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Gaia Bertolotti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Simon Josef Unterholzner
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazzale Università, 5, 39100, Bolzano, Italy
| | | | - Marja Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Riccardo Di Mambro
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126, Pisa, Italy
| | - Paola Vittorioso
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università di Roma, Sapienza - via dei Sardi, 70, 00185, Rome, Italy.
| |
Collapse
|
6
|
Singh A, Roychoudhury A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. PLANT CELL REPORTS 2023; 42:961-974. [PMID: 37079058 DOI: 10.1007/s00299-023-03013-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress. Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
7
|
Shi L, Lin K, Su T, Shi F. Abscisic Acid Inhibits Cortical Microtubules Reorganization and Enhances Ultraviolet-B Tolerance in Arabidopsis thaliana. Genes (Basel) 2023; 14:genes14040892. [PMID: 37107650 PMCID: PMC10137628 DOI: 10.3390/genes14040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Ultraviolet-B (UV-B) radiation is one of the important environmental factors limiting plant growth. Both abscisic acid (ABA) and microtubules have been previously reported to be involved in plant response to UV-B. However, whether there is a potential link between ABA and microtubules and the consequent signal transduction mechanism underlying plant response to UV-B radiation remains largely unclear. Here, by using sad2-2 mutant plants (sensitive to ABA and drought) and exogenous application of ABA, we saw that ABA strengthens the adaptive response to UV-B stress in Arabidopsis thaliana (A. thaliana). The abnormal swelling root tips of ABA-deficient aba3 mutants demonstrated that ABA deficiency aggravated the growth retardation imposed by UV-B radiation. In addition, the cortical microtubule arrays of the transition zones of the roots were examined in the aba3 and sad2-2 mutants with or without UV-B radiation. The observation revealed that UV-B remodels cortical microtubules, and high endogenous ABA can stabilize the microtubules and reduce their UV-B-induced reorganization. To further confirm the role of ABA on microtubule arrays, root growth and cortical microtubules were evaluated after exogenous ABA, taxol, and oryzalin feeding. The results suggested that ABA can promote root elongation by stabilizing the transverse cortical microtubules under UV-B stress conditions. We thus uncovered an important role of ABA, which bridges UV-B and plants' adaptive response by remodeling the rearrangement of the cortical microtubules.
Collapse
Affiliation(s)
- Lichun Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Kun Lin
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Tongbing Su
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Fumei Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
8
|
Ma M, Lu Y, Di D, Kronzucker HJ, Dong G, Shi W. The nitrification inhibitor 1,9-decanediol from rice roots promotes root growth in Arabidopsis through involvement of ABA and PIN2-mediated auxin signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153891. [PMID: 36495813 DOI: 10.1016/j.jplph.2022.153891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
1,9-decanediol (1,9-D) is a biological nitrification inhibitor secreted in roots, which effectively inhibits soil nitrifier activity and reduces nitrogen loss from agricultural fields. However, the effects of 1,9-D on plant root growth and the involvement of signaling pathways in the plant response to 1,9-D have not been investigated. Here, we report that 1,9-D, in the 100-400 μM concentration range, promotes primary root length in Arabidopsis seedlings at 3d and 5d, by 10.1%-33.3% and 6.9%-32.6%, and, in a range of 50-200 μM, leads to an increase in the number of lateral roots. 150 μM 1,9-D was found optimum for the positive regulation of root growth. qRT-PCR analysis reveals that 1,9-D can significantly increase AtABA3 gene expression and that a mutation in ABA3 results in insensitivity of root growth to 1,9-D. Moreover, through pharmacological experiments, we show that exogenous addition of ABA (abscisic acid) with 1,9-D enhances primary root length by 23.5%-63.3%, and an exogenous supply of 1,9-D with the ABA inhibitor Flu reduces primary root length by 1.0%-14.3%. Primary root length of the pin2/eir1-1 is shown to be insensitive to both exogenous addition of 1,9-D and ABA, indicating that the auxin carrier PIN2/EIR1 is involved in promotion of root growth by 1,9-D. These results suggest a novel for 1,9-D in regulating plant root growth through ABA and auxin signaling.
Collapse
Affiliation(s)
- Mingkun Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Orellana D, Machuca D, Ibeas MA, Estevez JM, Poupin MJ. Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants. Front Microbiol 2022; 13:1083270. [PMID: 36583055 PMCID: PMC9792790 DOI: 10.3389/fmicb.2022.1083270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria. Graphical AbstractThe effects of the different nutritional and inoculation treatments are indicated for plant growth parameters (A), gene regulation (B) and phosphorus and iron content (C). Figures created with BioRender.com with an academic license.
Collapse
Affiliation(s)
- Daniela Orellana
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile,ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Daniel Machuca
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Miguel Angel Ibeas
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - José Manuel Estevez
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile,ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,*Correspondence: María Josefina Poupin,
| |
Collapse
|
10
|
Ma J, Xie Y, Yang Y, Jing C, You X, Yang J, Sun C, Qin S, Chen J, Cao K, Huang J, Li Y. AMF colonization affects allelopathic effects of Zea mays L. root exudates and community structure of rhizosphere bacteria. FRONTIERS IN PLANT SCIENCE 2022; 13:1050104. [PMID: 36507415 PMCID: PMC9731342 DOI: 10.3389/fpls.2022.1050104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) widely exist in the soil ecosystem. It has been confirmed that AMF can affect the root exudates of the host, but the chain reaction effect of changes in the root exudates has not been reported much. The change of soil microorganisms and soil enzyme vigor is a direct response to the change in the soil environment. Root exudates are an important carbon source for soil microorganisms. AMF colonization affects root exudates, which is bound to have a certain impact on soil microorganisms. This manuscript measured and analyzed the changes in root exudates and allelopathic effects of root exudates of maize after AMF colonization, as well as the enzymatic vigor and bacterial diversity of maize rhizosphere soil. The results showed that after AMF colonization, the contents of 35 compounds in maize root exudates were significantly different. The root exudates of maize can inhibit the seed germination and seedling growth of recipient plants, and AMF colonization can alleviate this situation. After AMF colonization, the comprehensive allelopathy indexes of maize root exudates on the growth of radish, cucumber, lettuce, pepper, and ryegrass seedlings decreased by 60.99%, 70.19%, 80.83%, 36.26% and 57.15% respectively. The root exudates of maize inhibited the growth of the mycelia of the pathogens of soil-borne diseases, and AMF colonization can strengthen this situation. After AMF colonization, the activities of dehydrogenase, sucrase, cellulase, polyphenol oxidase and neutral protein in maize rhizosphere soil increased significantly, while the bacterial diversity decreased but the bacterial abundance increased. This research can provide a theoretical basis for AMF to improve the stubble of maize and the intercropping mode between maize and other plants, and can also provide a reference for AMF to prevent soil-borne diseases in maize.
Collapse
Affiliation(s)
- Junqing Ma
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yi Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yisen Yang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
| | - Changliang Jing
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xiangwei You
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Juan Yang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
| | - Chenyu Sun
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
| | - Shengfeng Qin
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
| | - Jianhua Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
| | - Kexin Cao
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
| | - Jinghua Huang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, Guangxi, China
| | - Yiqiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
11
|
Han LN, Wang SJ, Chen H, Ren Y, Xie XA, Wang XY, Hu WT, Tang M. Arbuscular mycorrhiza mitigates zinc stress on Eucalyptus grandis through regulating metal tolerance protein gene expression and ionome uptake. FRONTIERS IN PLANT SCIENCE 2022; 13:1022696. [PMID: 36420037 PMCID: PMC9676645 DOI: 10.3389/fpls.2022.1022696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are symbionts of most terrestrial plants and enhance their adaptability in metal-contaminated soils. In this study, mycorrhized and non-mycorrhized Eucalyptus grandis were grown under different Zn treatments. After 6 weeks of treatment, the growing status and ionome content of plants as well as the expression patterns of metal tolerance proteins and auxin biosynthesis-related genes were measured. In this study, mycorrhized E. grandis showed higher biomass and height at a high level of Zn compared with non-mycorrhized plants. In addition, AM plants accumulated P, Mg, and Mn in roots and P, Fe, and Cu in shoots, which indicate that AM fungi facilitate the uptake of ionome nutrients to promote plant growth. In addition, mycorrhiza upregulated the expression of EgMTP1 and EgMTP7, whose encoding proteins were predicted to be located at the vacuolar membrane. Meanwhile, Golgi membrane transporter EgMTP5 was also induced in AM shoot. Our results suggest that AM likely mitigates Zn toxicity through sequestrating excess Zn into vacuolar and Golgi. Furthermore, the expression of auxin biosynthesis-related genes was facilitated by AM, and this is probably another approach for Zn tolerance.
Collapse
|
12
|
Fan T, Aslam MM, Zhou JL, Chen MX, Zhang J, Du S, Zhang KL, Chen YS. A crosstalk of circadian clock and alternative splicing under abiotic stresses in the plants. FRONTIERS IN PLANT SCIENCE 2022; 13:976807. [PMID: 36275558 PMCID: PMC9583901 DOI: 10.3389/fpls.2022.976807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The circadian clock is an internal time-keeping mechanism that synchronizes the physiological adaptation of an organism to its surroundings based on day and night transition in a period of 24 h, suggesting the circadian clock provides fitness by adjusting environmental constrains. The circadian clock is driven by positive and negative elements that regulate transcriptionally and post-transcriptionally. Alternative splicing (AS) is a crucial transcriptional regulator capable of generating large numbers of mRNA transcripts from limited numbers of genes, leading to proteome diversity, which is involved in circadian to deal with abiotic stresses. Over the past decade, AS and circadian control have been suggested to coordinately regulate plant performance under fluctuating environmental conditions. However, only a few reports have reported the regulatory mechanism of this complex crosstalk. Based on the emerging evidence, this review elaborates on the existing links between circadian and AS in response to abiotic stresses, suggesting an uncovered regulatory network among circadian, AS, and abiotic stresses. Therefore, the rhythmically expressed splicing factors and core clock oscillators fill the role of temporal regulators participating in improving plant growth, development, and increasing plant tolerance against abiotic stresses.
Collapse
Affiliation(s)
- Tao Fan
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Mehtab Muhammad Aslam
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Li Zhou
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shenxiu Du
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
13
|
Boonyaves K, Wu TY, Dong Y, Urano D. Interplay between ARABIDOPSIS Gβ and WRKY transcription factors differentiates environmental stress responses. PLANT PHYSIOLOGY 2022; 190:813-827. [PMID: 35748759 PMCID: PMC9434291 DOI: 10.1093/plphys/kiac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Different environmental stresses often evoke similar physiological disorders such as growth retardation; however, specific consequences reported among individual stresses indicate potential mechanisms to distinguish different stress types in plants. Here, we examined mechanisms to differentiate between stress types in Arabidopsis (Arabidopsis thaliana). Gene expression patterns recapitulating several abiotic stress responses suggested abscisic acid (ABA) as a mediator of the common stress response, while stress type-specific responses were related to metabolic adaptations. Transcriptome and metabolome analyses identified Arabidopsis Gβ (AGB1) mediating the common stress-responsive genes and primary metabolisms under nitrogen excess. AGB1 regulated the expressions of multiple WRKY transcription factors. Gene Ontology and mutant analyses revealed different roles among WRKYs: WRKY40 is involved in ABA and common stress responses, while WRKY75 regulates metabolic processes. The AGB1-WRKY signaling module controlled developmental plasticity in roots under nitrogen excess. Signal transmission from AGB1 to a selective set of WRKYs would be essential to evoke unique responses to different types of stresses.
Collapse
Affiliation(s)
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Yating Dong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | |
Collapse
|
14
|
Ahammed GJ, Guang Y, Yang Y, Chen J. Mechanisms of elevated CO 2-induced thermotolerance in plants: the role of phytohormones. PLANT CELL REPORTS 2021; 40:2273-2286. [PMID: 34269828 DOI: 10.1007/s00299-021-02751-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Rising atmospheric CO2 is a key driver of climate change, intensifying drastic changes in meteorological parameters. Plants can sense and respond to changes in environmental parameters including atmospheric CO2 and temperatures. High temperatures beyond the physiological threshold can significantly affect plant growth and development and thus attenuate crop productivity. However, elevated atmospheric CO2 can mitigate the deleterious effects of heat stress on plants. Despite a large body of literature supporting the positive impact of elevated CO2 on thermotolerance, the underlying biological mechanisms and precise molecular pathways that lead to enhanced tolerance to heat stress remain largely unclear. Under heat stress, elevated CO2-induced expression of respiratory burst oxidase homologs (RBOHs) and reactive oxygen species (ROS) signaling play a critical role in stomatal movement, which optimizes gas exchange to enhance photosynthesis and water use efficiency. Notably, elevated CO2 also fortifies antioxidant defense and redox homeostasis to alleviate heat-induced oxidative damage. Both hormone-dependent and independent pathways have been shown to mediate high CO2-induced thermotolerance. The activation of heat-shock factors and subsequent expression of heat-shock proteins are thought to be the essential mechanism downstream of hormone and ROS signaling. Here we review the role of phytohormones in plant response to high atmospheric CO2 and temperatures. We also discuss the potential mechanisms of elevated CO2-induced thermotolerance by focusing on several key phytohormones such as ethylene. Finally, we address some limitations of our current understanding and the need for further research to unveil the yet-unknown crosstalk between plant hormones in mediating high CO2-induced thermotolerance in plants.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yelan Guang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
- Pingxiang University, Pingxiang, Jiangxi, China.
| |
Collapse
|
15
|
Paul AL, Haveman N, Califar B, Ferl RJ. Epigenomic Regulators Elongator Complex Subunit 2 and Methyltransferase 1 Differentially Condition the Spaceflight Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:691790. [PMID: 34589093 PMCID: PMC8475764 DOI: 10.3389/fpls.2021.691790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Background: Plants subjected to the novel environment of spaceflight show transcriptomic changes that resemble aspects of several terrestrial abiotic stress responses. Under investigation here is whether epigenetic modulations, similar to those that occur in terrestrial stress responses, have a functional role in spaceflight physiological adaptation. The Advanced Plant Experiment-04 - Epigenetic Expression experiment examined the role of cytosine methylation in spaceflight adaptation. The experiment was conducted onboard the International Space Station, and evaluated the spaceflight-altered, genome-wide methylation profiles of two methylation-regulating gene mutants [methyltransferase 1 (met1-7) and elongator complex subunit 2 (elp2-5)] along with a wild-type Col-0 control. Results: The elp2-5 plants suffered in their physiological adaptation to spaceflight in that their roots failed to extend away from the seed and the overall development of the plants was greatly impaired in space. The met1-7 plants suffered less, with their morphology affected by spaceflight in a manner similar to that of the Col-0 controls. The differentially expressed genes (DEGs) in spaceflight were dramatically different in the elp2-5 and met1-7 plants compared to Col-0, indicating that the disruptions in these mutants resulted in a reprogramming of their spaceflight responses, especially in elp2-5. Many of the genes comprising the spaceflight transcriptome of each genotype were differentially methylated in spaceflight. In Col-0 the majority of the DEGs were representative of the now familiar spaceflight response, which includes genes associated with cell wall remodeling, pathogen responses and ROS signaling. However, the spaceflight transcriptomes of met1-7 and elp2-5 each presented patterns of DEGs that are almost completely different than Col-0, and to each other. Further, the DEGs of the mutant genotypes suggest a more severe spaceflight stress response in the mutants, particularly in elp2-5. Conclusion: Arabidopsis physiological adaptation to spaceflight results in differential DNA methylation in an organ-specific manner. Disruption of Met1 methyltransferase function does not dramatically affect spaceflight growth or morphology, yet met1-7 reprograms the spaceflight transcriptomic response in a unique manner. Disruption of elp2-5 results in poor development in spaceflight grown plants, together with a diminished, dramatically reprogrammed transcriptomic response.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Natasha Haveman
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Brandon Califar
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Robert J. Ferl
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Office of Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Singh A. Expression dynamics indicate the role of Jasmonic acid biosynthesis pathway in regulating macronutrient (N, P and K +) deficiency tolerance in rice (Oryza sativa L.). PLANT CELL REPORTS 2021; 40:1495-1512. [PMID: 34089089 DOI: 10.1007/s00299-021-02721-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 05/25/2023]
Abstract
Expression pattern indicates that JA biosynthesis pathway via regulating JA levels might control root system architecture to improve nutrient use efficiency (NUE) and N, P, K+ deficiency tolerance in rice. Deficiencies of macronutrients (N, P and K+) and consequent excessive use of fertilizers have dramatically reduced soil fertility. It calls for development of nutrient use efficient plants. Plants combat nutrient deficiencies by altering their root system architecture (RSA) to enhance the acquisition of nutrients from the soil. Amongst various phytohormones, Jasmonic acid (JA) is known to regulate plant root growth and modulate RSA. Therefore, to understand the role of JA in macronutrient deficiency in rice, expression pattern of JA biosynthesis genes was analyzed under N, P and K+ deficiencies. Several members belonging to different families of JA biosynthesis genes (PLA1, LOX, AOS, AOC, OPR, ACX and JAR1) showed differential expression exclusively in one nutrient deficiency or in multiple nutrient deficiencies. Expression analysis during developmental stages showed that several genes expressed significantly in vegetative tissues, particularly in root. In addition, JA biosynthesis genes were found to have significant expression under the treatment of different phytohormones, including Auxin, cytokinin, gibberellic acid (GA), abscisic acid (ABA), JA and abiotic stresses, such as drought, salinity and cold. Analysis of promoters of these genes revealed various cis-regulatory elements associated with hormone response, plant development and abiotic stresses. These findings suggest that JA biosynthesis pathway by regulating the level of JA might control the RSA thus, it may help rice plant in combating macronutrient deficiency.
Collapse
Affiliation(s)
- Amarjeet Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Ismail MA, Amin MA, Eid AM, Hassan SED, Mahgoub HAM, Lashin I, Abdelwahab AT, Azab E, Gobouri AA, Elkelish A, Fouda A. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells 2021; 10:cells10051059. [PMID: 33946942 PMCID: PMC8146795 DOI: 10.3390/cells10051059] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial endophytes organize symbiotic relationships with the host plant, and their excretions contain diverse plant beneficial matter such as phytohormones and bioactive compounds. In the present investigation, six bacterial and four fungal strains were isolated from the common bean (Phaseolus vulgaris L.) root plant, identified using molecular techniques, and their growth-promoting properties were reviewed. All microbial isolates showed varying activities to produce indole-3-acetic acid (IAA) and different hydrolytic enzymes such as amylase, cellulase, protease, pectinase, and xylanase. Six bacterial endophytic isolates displayed phosphate-solubilizing capacity and ammonia production. We conducted a field experiment to evaluate the promotion activity of the metabolites of the most potent endophytic bacterial (Bacillus thuringiensis PB2 and Brevibacillus agri PB5) and fungal (Alternaria sorghi PF2 and, Penicillium commune PF3) strains in comparison to two exogenously applied hormone, IAA, and benzyl adenine (BA), on the growth and biochemical characteristics of the P. vulgaris L. Interestingly, our investigations showed that bacterial and fungal endophytic metabolites surpassed the exogenously applied hormones in increasing the plant biomass, photosynthetic pigments, carbohydrate and protein contents, antioxidant enzyme activity, endogenous hormones and yield traits. Our findings illustrate that the endophyte Brevibacillus agri (PB5) provides high potential as a stimulator for the growth and productivity of common bean plants.
Collapse
Affiliation(s)
- Mohamed A. Ismail
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Mohamed A. Amin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Correspondence: (S.E.-D.H.); (A.F.); Tel.: +20-102-3884804 (S.E.-D.H.); +20-111-3351244 (A.F.)
| | - Hany A. M. Mahgoub
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
| | - Islam Lashin
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Department of Biology, Faculty of Science and Arts, Al Mandaq, Albaha University, Al-Baha 1988, Saudi Arabia
| | - Abdelrhman T. Abdelwahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Department of Botany Science, Faculty of Science, Northern Border University, Arar 73211, Saudi Arabia
| | - Ehab Azab
- Department of Nutrition and Food Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Elkelish
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41511, Egypt; or
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.I.); (M.A.A.); (A.M.E.); or (H.A.M.M.); (I.L.); (A.T.A.)
- Correspondence: (S.E.-D.H.); (A.F.); Tel.: +20-102-3884804 (S.E.-D.H.); +20-111-3351244 (A.F.)
| |
Collapse
|