1
|
Khan SK, Dutta J, Ahmad I, Rather MA. Nanotechnology in aquaculture: Transforming the future of food security. Food Chem X 2024; 24:101974. [PMID: 39582638 PMCID: PMC11585796 DOI: 10.1016/j.fochx.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
In the face of growing global challenges in food security and increasing demand for sustainable protein sources, the aquaculture industry is undergoing a transformative shift through the integration of nanotechnology. This review paper explores the profound role of nanotechnology in aquaculture, addressing critical issues such as efficient feed utilization, disease management, and environmental sustainability. Nanomaterials are used to enhance nutritional content and digestibility of aquafeed, optimize fish growth and health, and improve disease prevention. Nanoparticle-based vaccines and drug delivery systems reduce antibiotic reliance, while nano sensors monitor water quality in real-time. Furthermore, nanotechnology has revolutionized infrastructure design, contributing to smart, self-regulating aquaculture systems. Despite its vast potential, challenges such as ethical considerations and long-term safety must be addressed. This paper highlights nanotechnology's transformative role in aquaculture, underscoring its potential to contribute significantly to global food security through enhanced productivity and sustainability.
Collapse
Affiliation(s)
- Saba Khursheed Khan
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| |
Collapse
|
2
|
Chaparro D, Goudeli E. Shape-dependent oxidation rates of nano-structured silver particles. J Chem Phys 2024; 161:124704. [PMID: 39319654 DOI: 10.1063/5.0227329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Reactive molecular dynamics is used to investigate the oxidation of anisotropic silver nanoparticles (nano-Ag) of various shapes, including sphere, cube, disk, cylinder, triangle, and pyramid. The effect of the nano-Ag initial morphology on their stability and composition during oxidation is quantified. Surface oxidation at 600 K leads to the formation of a core-shell structure for all nano-Ag shapes. The surface composition of facet orientations of pristine nano-Ag can be correlated with particle stability due to their different surface energies and oxygen reactivity. In particular, pyramid and triangular nano-Ag, having a high surface fraction of (110) facets, are more prone to morphological changes upon oxidation and loss of their crystallinity, compared to nanospheres and nanocubes, which exhibit the highest stability among all shapes, attributed to the large fraction of highly coordinated atoms. Spherical and cubic nano-Ag oxidize faster, owing to their large surface fractions of (100) and (111) facets, which are more reactive than (110) ones. Understanding the effect of surface crystal structure and shape of anisotropic nano-Ag can improve the design of superior metal oxide nanomaterials with desired characteristics.
Collapse
Affiliation(s)
- Diego Chaparro
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| | - Eirini Goudeli
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
3
|
Bhandari S, Parihar VS, Kellomäki M, Mahato M. Highly selective and flexible silver nanoparticles-based paper sensor for on-site colorimetric detection of paraquat pesticide. RSC Adv 2024; 14:28844-28853. [PMID: 39257667 PMCID: PMC11386213 DOI: 10.1039/d4ra04557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Paper-based sensors or paper-based analytical devices (PADs) have recently emerged as the cost-efficient, and portable, on-site detection tools for various biological and environmental analytes. However, paper-based sensors often suffer from poor selectivity. Here, a single-step paper-based flexible sensor platform has been developed for the on-site detection of paraquat (PQ) pesticide in real samples, utilizing chitosan and citrate-capped silver nanoparticles integrated with a flexible paper. The nanocomposite paper film was thoroughly characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The composite paper platform demonstrated a color change with a reaction time within a few minutes (6-7 min) in the presence of PQ pesticide. The trace level PQ pesticide has been detected with a limit of detection (LOD) of 10 μM and a linear range (LR) of 10-100 μM. The sensor shows 3× more selective signal towards PQ pesticide compared to other similar pesticides. The relative standard deviation (RSD) was found to be 5% for repeatability, 4% for reproducibility, 2% for interference, and 3.5% for real sample analysis, indicating high precision sensing and within the WHO limit of RSD (20%). The present work will open up new avenues for the advancements in flexible paper sensors; cost-effective, portable, on-site sensors, and sustainable device development.
Collapse
Affiliation(s)
- Sanjeev Bhandari
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Vijay Singh Parihar
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University 33720 Tampere Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University 33720 Tampere Finland
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
4
|
Abbas R, Luo J, Qi X, Naz A, Khan IA, Liu H, Yu S, Wei J. Silver Nanoparticles: Synthesis, Structure, Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1425. [PMID: 39269087 PMCID: PMC11397261 DOI: 10.3390/nano14171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Silver nanoparticles (Ag NPs) have accumulated significant interest due to their exceptional physicochemical properties and remarkable applications in biomedicine, electronics, and catalysis sensing. This comprehensive review provides an in-depth study of synthetic approaches such as biological synthesis, chemical synthesis, and physical synthesis with a detailed overview of their sub-methodologies, highlighting advantages and disadvantages. Additionally, structural properties affected by synthesis methods are discussed in detail by examining the dimensions and surface morphology. The review explores the distinctive properties of Ag NPs, including optical, electrical, catalytic, and antimicrobial properties, which render them beneficial for a range of applications. Furthermore, this review describes the diverse applications in several fields, such as medicine, environmental science, electronics, and optoelectronics. However, with numerous applications, several kinds of issues still exist. Future attempts need to address difficulties regarding synthetic techniques, environmental friendliness, and affordability. In order to ensure the secure utilization of Ag NPs, it is necessary to establish sustainability in synthetic techniques and eco-friendly production methods. This review aims to give a comprehensive overview of the synthesis, structural analysis, properties, and multifaceted applications of Ag NPs.
Collapse
Affiliation(s)
- Rimsha Abbas
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Adeela Naz
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Imtiaz Ahmad Khan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
5
|
Zhang Y, Wang H, Lu M, Li G, Bai M, Yang W, Tan W, Li G. A dual-modality sensing probe of fluorescent and colorimetric for detection of cobalt ion based on silver nanoparticles functionalized rhodamine 6G derivatives. CHEMOSPHERE 2024; 362:142790. [PMID: 38971435 DOI: 10.1016/j.chemosphere.2024.142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The combination of fluorescent probe and colorimetric technique has become one of the most powerful analytical methods due to the advantages of visualization, minimal measurement errors and high sensitivity. Hence, a novel dual-modality sensing probe with both colorimetric and fluorescent capabilities was developed for detecting cobalt ions (Co2+) based on homocysteine mediated silver nanoparticles and rhodamine 6G derivatives probe (AgNPs-Hcy-Rh6G2). The fluorescence of the AgNPs-Hcy-Rh6G2 probe turned on due to the opening of the Rh6G2 spirolactam ring in the presence of Co2+ by a catalytic hydrolysis. The fluorescent intensity of probe is proportional to Co2+ concentration in the range of 0.10-50 μM with a detection limit of 0.05 μM (S/N = 3). More fascinatingly, the color of AgNPs-Hcy-Rh6G2 probe changed from colorless to pink with increasing Co2+ concentration, which allowing colorimetric determination of Co2+. The absorbance of AgNPs-Hcy-Rh6G2 probe is proportional to Co2+ concentration in the range from 0.10 to 25 μM with a detection limit of 0.04 μM (S/N = 3). This colorimetric and fluorescent dual-modal method exhibited good selectivity, and reproducibility and stability, holding great potential for real samples analysis in environmental and drug field.
Collapse
Affiliation(s)
- Yao Zhang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Mingrong Lu
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Gufeng Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China
| | - Mei Bai
- The Ecological and Environmental Monitoring Station of DEEY, Wenshan, 663099, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Wei Tan
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China.
| | - Guizhen Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming, 650500, PR China.
| |
Collapse
|
6
|
Papageorgiou M, Kitsou I, Gkomoza P, Alivisatou AA, Papaparaskevas J, Tsetsekou A. Bioinspired synthesis of multifunctional, highly stable polymeric templated silver-silica colloids as catalytic and antibacterial coatings for paper. Colloids Surf B Biointerfaces 2024; 240:113997. [PMID: 38815309 DOI: 10.1016/j.colsurfb.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this paper, a simple, bottom up, bioinspired technique is proposed for the synthesis of highly stable colloids of silica supported spherical silver nanoparticles (SiO2@Ag) that act as efficient catalytic and antimicrobial coatings for an organic substrate, filter paper. The core - shell structure and the highly branched dendritic polymer, poly(ethylene)imine, enabled the precise control of growth rate and morphology of silica and silver nanoparticles. The polymer also enabled the deposition of these nanoparticles onto an organic substrate, filter paper, through immersion by modifying its surface. The catalytic and antibacterial properties of these samples were assessed. The results obtained from this analysis showed a complete degradation of an aqueous pollutant, 4-nitrophenol, for 6 successive catalytic cycles without intermediate purification steps. Furthermore, the polymeric silica-silver suspension proved to express antibacterial activity against both Gram-positive and Gram-negative bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa). The antibacterial properties were evaluated according to the disk diffusion method, whereas the Minimum Inhibitory Concentration was also determined. The samples were examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction analysis, z-potential analysis, Fourier Transform Infrared Spectroscopy and Ultraviolet-visible Spectroscopy.
Collapse
Affiliation(s)
- Michaela Papageorgiou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | - Ioanna Kitsou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | - Paraskevi Gkomoza
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece
| | | | - Joseph Papaparaskevas
- Microbiology Department, School of Medicine, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Athena Tsetsekou
- School of Mining & Metallurgical Engineering, National Technical University of Athens, Athens 106 82, Greece.
| |
Collapse
|
7
|
Sahu M, Ganguly M, Sharma P. Recent applications of coinage metal nanoparticles passivated with salicylaldehyde and salicylaldehyde-based Schiff bases. NANOSCALE ADVANCES 2024:d4na00427b. [PMID: 39148500 PMCID: PMC11322903 DOI: 10.1039/d4na00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Salicylaldehyde (SD) and its derivatives are effective precursors for generating coinage metal (gold, silver, and copper) nanoparticles (NPs). These NPs have a variety of potential environmental applications, such as in water purification and sensing, and those arising from their antibacterial activity. The use of SD and its derivatives for synthesizing coinage NPs is attractive due to several factors. First, SD is a relatively inexpensive and readily available starting material. Second, the synthetic procedures are typically simple and can be carried out under mild conditions. Finally, the resulting NPs can be tailored to have specific properties, such as size, shape, and surface functionality, by varying the reaction conditions. In an alkaline solution, the phenolate form of SD was converted to its quinone form, while ionic coinage metal salts were converted to zero-valent nanoparticles. The capping in situ produced quinone of coinage metal nanoparticles generated metal-enhanced fluorescence under suitable experimental conditions. The formation of iminic bonds during the formation of Schiff bases altered the properties (especially metal-enhanced fluorescence) and applications.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
8
|
Rao Z, Cao D, Geng F, Huang H, Kang Y. Determination of the Localized Surface Plasmon Resonance Alteration of AgNPs via Multiwavelength Evanescent Scattering Microscopy for Pb(II) Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37981-37993. [PMID: 39007740 DOI: 10.1021/acsami.4c05900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We developed multiwavelength evanescent scattering microscopy (MWESM), which can acquire plasmonic nanoparticle images at the particle level using the evanescent field as the incident source and distinguish different LSPR (localized surface plasmon resonance) spectral peaks among four wavelengths. Our microscope could be easily and simply built by modifying a commercial total internal reflection fluorescence microscope (TIRFM) with the substitution of a beamsplitter and the addition of a semicircular stop. The ultrathin depth of illumination and rejection of the reflected incident source together contribute to the high sensitivity and contrast of single nanoparticle imaging. We first validated the capability of our imaging system in distinguishing plasmonic nanoparticles bearing different LSPR spectral peaks, and the results were consistent with the scattering spectra results of hyperspectral imaging. Moreover, we demonstrated high imaging quality from the aspects of the signal/noise ratio and point spread function of the single-particle images. Meaningfully, the system can be utilized in rapidly determining the concentration of toxic lead ions in environmental and biological samples with good linearity and sensitivity, based on single-particle evanescent scattering imaging through the detection of the alteration of the LSPR of silver nanoparticles. This system holds the potential to advance the field of nanoparticle imaging and foster the application of nanomaterials as sensors.
Collapse
Affiliation(s)
- Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
9
|
Sahu M, Ganguly M, Sharma P. Role of silver nanoparticles and silver nanoclusters for the detection and removal of Hg(ii). RSC Adv 2024; 14:22374-22392. [PMID: 39010928 PMCID: PMC11247438 DOI: 10.1039/d4ra04182h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Silver metal, being a 3d transition metal in group 11 in the periodic table, is widely used in material science for its distinguished plasmonic properties. Nanoparticles (NPs) and nanoclusters (NCs) are widely used in sensing applications having a surface plasmon band and emissive properties, respectively. Mercury is one of the detrimental toxins and threats to various ecosystems. The distinction between nanoparticles and nanoclusters, the utility and toxicity of heavy metal mercury, fluorometric and colorimetric approaches to the recognition of mercury ions with NPs and NCs, the mechanism of detection, spot detection, and natural water sample analyses were illustrated in detail in this review article. Moreover, the sensing platform and analyte (Hg2+) fate were described for substantiating the mechanism. It was observed that NCs are mostly utilized for fluorometric approaches, while NPs are mostly employed for colorimetric approaches. Fluorometric detection is mainly quenching-based. However, sensing with enhancement was found in a few reports. Adulteration of other metals with silver particles often modifies the sensing platform.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
10
|
Kumar A, Prabha M, Tiwari P, Malviya T, Singh V. Xanthan gum-capped Chromia Nanoparticles (XG-CrNPs): A promising nanoprobe for the detection of heavy metal ions. Int J Biol Macromol 2024; 266:131192. [PMID: 38574641 DOI: 10.1016/j.ijbiomac.2024.131192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The present study reports on the selective and sensitive detection of metals using xanthan gum-capped chromia nanoparticles (XG-CrNPs). The nanoparticles were synthesized by the chemical reduction method using sodium borohydride and xanthan gum as the reducing and capping agents, respectively. The synthesis of XG-CrNPs was confirmed by the appearance of the two absorption peaks at 272 nm and 371 nm in the UV-visible region. The nanoparticles have been extensively characterized by FTIR, TEM-EDX, XRD, and TGA analyses. The well-dispersed XG-CrNPs exhibited a quasi-spherical structure with an average particle size of 3 nm. A significantly low amount (2 μg/L) of XG-CrNPs was used for selective and sensitive detection of heavy metal ions. It showed excellent metal detecting properties by quenching its band gap signal which was extraordinarily conspicuous for Co(II), Hg(II), and Cd(II) in comparison to other metal ions like Ag(I), Ba(II), Mg(II), Mn(II), Ni(II), and Zn(II). The limit of detection of Co(II), Cd(II), and Hg(II) with this nanoprobe was found to be 2.167 μM, 1.065 μM, and 0.601 μM respectively. The nanoparticles manifested higher shelf-life and can be reused up to three consecutive cycles where most of its activity was conserved even after being used. Thus, it may find use in metal sensor devices for the detection of hazardous metals.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Mani Prabha
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Puneet Tiwari
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Tulika Malviya
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Vandana Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
11
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Thakur S, Hussin MH, Brosse N, Thakur VK. A comprehensive review on processing, characteristics, and applications of cellulose nanofibrils/graphene hybrid-based nanocomposites: Toward a synergy between two-star nanomaterials. Int J Biol Macromol 2024; 268:131633. [PMID: 38641279 DOI: 10.1016/j.ijbiomac.2024.131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Nanostructured materials are fascinating since they are promising for intensely enhancing materials' performance, and they can offer multifunctional features. Creating such high-performance nanocomposites via effective and mild approaches is an inevitable requirement for sustainable materials engineering. Nanocomposites, which combine two-star nanomaterials, namely, cellulose nanofibrils (CNFs) and graphene derivatives (GNMs), have recently revealed interesting physicochemical properties and excellent performance. Despite numerous studies on the production and application of such systems, there is still a lack of concise information on their practical uses. In this review, recent progress in the production, modification, properties, and emerging uses of CNFs/GNMs hybrid-based nanocomposites in various fields such as flexible energy harvesting and storage, sensors, adsorbents, packaging, and thermal management, among others, are comprehensively examined and described based on recent investigations. Nevertheless, numerous challenges and gaps need to be addressed to successfully introduce such nanomaterials in large-scale industrial applications. This review will certainly help readers understand the design approaches and potential applications of CNFs/GNMs hybrid-based nanocomposites for which new research directions in this emerging topic are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500 Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, Edinburgh EH9 3JG, UK
| |
Collapse
|
12
|
Silva-Holguín PN, Garibay-Alvarado JA, Reyes-López SY. Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1939. [PMID: 38730746 PMCID: PMC11084846 DOI: 10.3390/ma17091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Water pollution is a worldwide environmental and health problem that requires the development of sustainable, efficient, and accessible technologies. Nanotechnology is a very attractive alternative in environmental remediation processes due to the multiple properties that are conferred on a material when it is at the nanometric scale. This present review focuses on the understanding of the structure-physicochemical properties-performance relationships of silver nanoparticles, with the objective of guiding the selection of physicochemical properties that promote greater performance and are key factors in their use as antibacterial agents, surface modifiers, colorimetric sensors, signal amplifiers, and plasmonic photocatalysts. Silver nanoparticles with a size of less than 10 nm, morphology with a high percentage of reactive facets {111}, and positive surface charge improve the interaction of the nanoparticles with bacterial cells and induce a greater antibacterial effect. Adsorbent materials functionalized with an optimal concentration of silver nanoparticles increase their contact area and enhance adsorbent capacity. The use of stabilizing agents in silver nanoparticles promotes selective adsorption of contaminants by modifying the surface charge and type of active sites in an adsorbent material, in addition to inducing selective complexation and providing stability in their use as colorimetric sensors. Silver nanoparticles with complex morphologies allow the formation of hot spots or chemical or electromagnetic bonds between substrate and analyte, promoting a greater amplification factor. Controlled doping with nanoparticles in photocatalytic materials produces improvements in their electronic structural properties, promotes changes in charge transfer and bandgap, and improves and expands their photocatalytic properties. Silver nanoparticles have potential use as a tool in water remediation, where by selecting appropriate physicochemical properties for each application, their performance and efficiency are improved.
Collapse
Affiliation(s)
| | | | - Simón Yobanny Reyes-López
- Laboratorio de Materiales Híbridos Nanoestructurados, Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32300, Mexico; (P.N.S.-H.)
| |
Collapse
|
13
|
Saadati A, Farshchi F, Jafari M, Kholafazad H, Hasanzadeh M, Shadjou N. Optical dِِِِiscrimination of histamine and ethylenediamine in meat samples using a colorimetric affordable test strip (CATS): introducing a novel lab-on paper sensing strategy for low-cost ensuring food safety by rapid and accurate monitoring of biogenic amines. RSC Adv 2024; 14:8602-8614. [PMID: 38495985 PMCID: PMC10938298 DOI: 10.1039/d4ra00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Biogenic amines (BAs) are a group of organic compounds that are produced through the decarboxylation of amino acids by microorganisms. These compounds are commonly found in a variety of foods and are known to cause adverse health effects if consumed in high concentrations. Therefore, the development of sensitive and rapid detection methods for detection and determination of BAs is essential for ensuring food safety. In this study, a novel colorimetric affordable test strip (CATS) was developed for the colorimetric and naked-eye detection of two BAs of ethylenediamine (EDA) and histamine (HIS) in meat samples. Also, triangular silver nanoparticles (AgNPrs) were used as a diagnostic optical probe, and CATS used as a simple, environmentally friendly, inexpensive diagnostic substrate for on-site recognition of meat spoil. The AgNPrs-based optosensor demonstrated high sensitivity and selectivity towards EDA and HIS, allowing for the detection of low concentrations of the BAs in real food samples such as raw chicken and beef. The system presented a UV-vis technique for HIS and EDA analysis in the linear range of 0.1 μM to 0.01 mM, with an LLOQ of 0.1 μM, and 0.05 to 1 μM, with an LLOQ of 0.05 μM, respectively. Additionally, the performance of the designed CATS in the analysis of produced gases was evaluated, highlighting the potential of this simple and cost-effective strategy for the development of BAs diagnostic kits. This approach provides a simple and cost-effective method for detecting BAs in food, which could be beneficial for ensuring food safety and preventing the harmful effects associated with their consumption.
Collapse
Affiliation(s)
- Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No 4365-Manguinhos Rio de Janeiro 21040-900 RJ Brazil
| | - Mohsen Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Houman Kholafazad
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
14
|
Riva L, Dotti A, Iucci G, Venditti I, Meneghini C, Corsi I, Khalakhan I, Nicastro G, Punta C, Battocchio C. Silver Nanoparticles Supported onto TEMPO-Oxidized Cellulose Nanofibers for Promoting Cd 2+ Cation Adsorption. ACS APPLIED NANO MATERIALS 2024; 7:2401-2413. [PMID: 38298253 PMCID: PMC10825820 DOI: 10.1021/acsanm.3c06052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Nanocellulose constitutes a sustainable and biobased solution both as an efficient sorbent material for water treatment and as support for other inorganic nanomaterials with sorbent properties. Herein, we report the synthesis of a nanocomposite by deposition of in situ-generated silver nanoparticles (AgNPs) onto TEMPO-oxidized cellulose nanofibers (TOCNFs). Following an in-depth analytical investigation, we unveil for the first time the key role of AgNPs in enhancing the adsorption efficiency of TOCNF toward Cd2+ ions, chosen as model heavy metal contaminants. The obtained nanocomposite shows a value of Cd2+ sorption capacity at equilibrium from 150 mg L-1 ion aqueous solutions of ∼116 mg g-1 against the value of 78 mg g-1 measured for TOCNF alone. A combination of field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses suggests that Cd2+ ions are mainly adsorbed in the neighborhood of AgNPs. However, XPS characterization allows us to conclude that the role of AgNPs relies on increasing the exposure of carboxylic groups with respect to the original TOCNF, suggesting that these groups are still responsible for absorption. In fact, X-ray absorption spectroscopy (XAS) analysis of the Cd-K edge excludes a direct interaction between Ag0 and Cd2+, supporting the XPS results and confirming the coordination of the latter with carboxyl groups.
Collapse
Affiliation(s)
- Laura Riva
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Anna Dotti
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Giovanna Iucci
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Iole Venditti
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Carlo Meneghini
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Ilaria Corsi
- Department
of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Ivan Khalakhan
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Gloria Nicastro
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Carlo Punta
- Department
of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy
| | - Chiara Battocchio
- Department
of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| |
Collapse
|
15
|
Bahavarnia F, Kohansal F, Hasanzadeh M. One-drop chemosensing of dapoxetine hydrochloride using opto-analysis by multi-channel μPAD decorated silver nanoparticles: introducing a paper-based microfluidic portable device/sensor toward naked-eye pharmaceutical analysis by lab-on-paper technology. RSC Adv 2024; 14:2610-2620. [PMID: 38226144 PMCID: PMC10788682 DOI: 10.1039/d3ra06752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Dapoxetine (DPX) belongs to the selective serotonin reuptake inhibitor (SSRI) class and functions by blocking the serotonin transporter and increasing serotonin activity, thereby delaying ejaculation. Therefore, monitoring of the concentration of DPX in human biofluids is important for clinicians. In this study, application of silver nanoparticles with the morphology of prisms (AgNPrs) for the sensitive measurement of DPX using colorimetric chemosensing and the spectrophotometric method was investigated. Also, DPX was determined in real samples using the spectrophotometry method. Based on the obtained results, all of the detection process in colorimetric assay is related to morphological reform of AgNPrs after it's specific electrostatic and covalent interaction with DPX as analyte. The UV-vis results indicate that the proposed AgNPrs-based chemosensing system has a wide range of linearity (0.01 μM to 1 mM) with a low limit of quantification of 0.01 μM in human urine samples, which is suitable for clinical analysis of this drug in human urine samples. It is important to point out that, this chemosensing strategy showed inappropriate analytical results for the detection of DPX in human urine samples which is a novelty of this platform. Finally, the optimized microfluidic paper-based analytical device (μPAD) was integrated with the colorimetric analysis of DPX to provide a time/color system for estimating analyte concentration by a portable substrate toward in situ and on-site biomedical analysis. Interestingly, the analytical validation tests showed appropriate results with great stability, which may facilitate commercialization of the engineered substrate. For the first time, in order to provide a simple and portable colorimetric/spectrophotometric recognition system to sensitive determination of DPX, an optimized pump-less microfluidic paper-based colorimetric device (μPCD) was introduced and validated for the real-time biomedical analysis of this analyte. According to the obtained results, this alternative approach is suitable for therapeutic drug monitoring (TDM) and biomedical analysis by miniaturized and cost-beneficial devices.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Fereshteh Kohansal
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
16
|
Ibrahim NH, Taha GM, Hagaggi NSA, Moghazy MA. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chem 2024; 18:7. [PMID: 38184656 PMCID: PMC10771699 DOI: 10.1186/s13065-023-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
This study marks a pioneering effort in utilizing Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr., (commonly known as acacia raddiana) leaves as both a reducing and stabilizing agent in the green "eco-friendly" synthesis of silver nanoparticles (AgNPs). The research aimed to optimize the AgNPs synthesis process by investigating the influence of pH, temperature, extract volume, and contact time on both the reaction rate and the resulting AgNPs' morphology as well as discuss the potential of AgNPs in detecting some heavy metals. Various characterization methods, such as UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), Zeta sizer, EDAX, and transmitting electron microscopy (TEM), were used to thoroughly analyze the properties of the synthesized AgNPs. The XRD results verified the successful production of AgNPs with a crystallite size between 20 to 30 nm. SEM and TEM analyses revealed that the AgNPs are primarily spherical and rod-shaped, with sizes ranging from 8 to 41 nm. Significantly, the synthesis rate of AgNPs was notably higher in basic conditions (pH 10) at 70 °C. These results underscore the effectiveness of acacia raddiana as a source for sustainable AgNPs synthesis. The study also examined the AgNPs' ability to detect various heavy metal ions colorimetrically, including Hg2+, Cu2+, Pb2+, and Co2+. UV-Vis spectroscopy proved useful for this purpose. The color of AgNPs shifts from brownish-yellow to pale yellow, colorless, pale red, and reddish yellow when detecting Cu2+, Hg2+, Co2+, and Pb2+ ions, respectively. This change results in an alteration of the AgNPs' absorbance band, vanishing with Hg2+ and shifting from 423 to 352 nm, 438 nm, and 429 nm for Cu2+, Co2+, and Pb2+ ions, respectively. The AgNPs showed high sensitivity, with detection limits of 1.322 × 10-5 M, 1.37 × 10-7 M, 1.63 × 10-5 M, and 1.34 × 10-4 M for Hg2+, Cu2+, Pb2+, and Co2+, respectively. This study highlights the potential of using acacia raddiana for the eco-friendly synthesis of AgNPs and their effectiveness as environmental sensors for heavy metals, showcasing strong capabilities in colorimetric detection.
Collapse
Affiliation(s)
- Nesma H Ibrahim
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Gharib M Taha
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Noura Sh A Hagaggi
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marwa A Moghazy
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| |
Collapse
|
17
|
Ciobotaru IC, Oprea D, Ciobotaru CC, Enache TA. Low-Cost Plant-Based Metal and Metal Oxide Nanoparticle Synthesis and Their Use in Optical and Electrochemical (Bio)Sensors. BIOSENSORS 2023; 13:1031. [PMID: 38131791 PMCID: PMC10741781 DOI: 10.3390/bios13121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Technological progress has led to the development of analytical tools that promise a huge socio-economic impact on our daily lives and an improved quality of life for all. The use of plant extract synthesized nanoparticles in the development and fabrication of optical or electrochemical (bio)sensors presents major advantages. Besides their low-cost fabrication and scalability, these nanoparticles may have a dual role, serving as a transducer component and as a recognition element, the latter requiring their functionalization with specific components. Different approaches, such as surface modification techniques to facilitate precise biomolecule attachment, thereby augmenting recognition capabilities, or fine tuning functional groups on nanoparticle surfaces are preferred for ensuring stable biomolecule conjugation while preserving bioactivity. Size optimization, maximizing surface area, and tailored nanoparticle shapes increase the potential for robust interactions and enhance the transduction. This article specifically aims to illustrate the adaptability and effectiveness of these biosensing platforms in identifying precise biological targets along with their far-reaching implications across various domains, spanning healthcare diagnostics, environmental monitoring, and diverse bioanalytical fields. By exploring these applications, the article highlights the significance of prioritizing the use of natural resources for nanoparticle synthesis. This emphasis aligns with the worldwide goal of envisioning sustainable and customized biosensing solutions, emphasizing heightened sensitivity and selectivity.
Collapse
Affiliation(s)
- Iulia Corina Ciobotaru
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| | - Daniela Oprea
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
- Faculty of Physics, University of Bucharest, 405 Atomistilor, 077125 Magurele, Romania
| | | | - Teodor Adrian Enache
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| |
Collapse
|
18
|
Wrońska N, Płaczkowska S, Niedziałkowska K, Lisowska K. The Synergistic Effect of Biosynthesized Silver Nanoparticles and Phytocompound as a Novel Approach to the Elimination of Pathogens. Molecules 2023; 28:7921. [PMID: 38067650 PMCID: PMC10707795 DOI: 10.3390/molecules28237921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Due to the wide applications of silver nanoparticles (AgNPs), research on their ecological synthesis has been extensive in recent years. In our study, biogenic silver nanoparticles were synthesized extracellularly using the white rot fungus Trametes versicolor via two cultivation methods: static and shaking. The cell filtrate of the fungus was used as a reducing agent in the process of nanoparticle synthesis. Characterization of the obtained nanoparticles was carried out using UV-VIS spectroscopy and scanning electron microscopy. The biosynthesized nanoparticles have antimicrobial potential against pathogenic bacteria, particularly in Gram-negative strains. The bactericidal effect was obtained for E. coli at a concentration of 7 µg/mL. The use of higher concentrations of compounds was necessary for Gram-positive bacteria. Taking into account the problem of the risk of cytotoxicity of AgNPs, combined therapy using a phytochemical was used for the first time, which was aimed at reducing the doses of nanoparticles. The most representative synergistic effect was observed in the treatment of 5 µg/mL silver nanoparticles in combination with 15 µg/mL ursolic acid against E. coli and P. aeruginosa with a bactericidal effect. Moreover, the coadministration of nanoparticles considerably reduced the growth of both Staphylococcus strains, with a bactericidal effect against S. aureus. The viability test confirmed the strong synergistic effect of both tested compounds. Silver nanoparticles synthesized using the T. versicolor showed excellent antibacterial potential, which opens perspectives for future investigations concerning the use of the nanoparticles as antimicrobials in the areas of health.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (S.P.); (K.N.); (K.L.)
| | | | | | | |
Collapse
|
19
|
Kusuma SAF, Harmonis JA, Pratiwi R, Hasanah AN. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. SENSORS (BASEL, SWITZERLAND) 2023; 23:8172. [PMID: 37837002 PMCID: PMC10575141 DOI: 10.3390/s23198172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
During the last decade, advances have been made in nanotechnology using nanomaterials, leading to improvements in their performance. Gold nanoparticles (AuNPs) have been widely used in the field of sensor analysis and are also combined with certain materials to obtain the desired characteristics. AuNPs are commonly used as colorimetric sensors in detection methods. In developing an ideal sensor, there are certain characteristics that must be met such as selectivity, sensitivity, accuracy, precision, and linearity, among others. Various methods for the synthesis of AuNPs and conjugation with other components have been carried out in order to obtain good characteristics for their application. AuNPs can be applied in the detection of both heavy metals and biological molecules. This review aimed at observing the role of AuNPs in its application. The synthesis of AuNPs for sensors will also be revealed, along with their characteristics suitable for this role. In the application method, the size and shape of the particles must be considered. AuNPs used in heavy metal detection have a particle size of around 15-50 nm; in the detection of biological molecules, the particle size of AuNPs used is 6-35 nm whereas in pharmaceutical compounds for cancer treatment and the detection of other drugs, the particle size used is 12-30 nm. The particle sizes did not correlate with the type of molecules regardless of whether it was a heavy metal, biological molecule, or pharmaceutical compound but depended on the properties of the molecule itself. In general, the best morphology for application in the detection process is a spherical shape to obtain good sensitivity and selectivity based on previous studies. Functionalization of AuNPs with conjugates/receptors can be carried out to increase the stability, sensitivity, selectivity, solubility, and plays a role in detecting biological compounds through conjugating AuNPs with biological molecules.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Jacko Abiwaqash Harmonis
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| |
Collapse
|
20
|
Mondal MS, Paul A, Rhaman M. Recycling of silver nanoparticles from electronic waste via green synthesis and application of AgNPs-chitosan based nanocomposite on textile material. Sci Rep 2023; 13:13798. [PMID: 37612338 PMCID: PMC10447510 DOI: 10.1038/s41598-023-40668-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
The main thrust of this project is the fabrication of silver nanoparticles (AgNPs) from electronic waste (PCB board) and applying it on 100% cotton fabric as an antimicrobial agent. The nanoparticle formation of silver was done by green synthesis way using an aqueous leaf extract of Eichhornia crassipes. Furthermore, chitosan was also applied to the fabric with silver nanoparticles by coating. FTIR and SEM tests characterized the fabricated silver nanoparticles, and antimicrobial tests were followed by the disc diffusion method. The SEM analysis showed an average particle size of 76.91 nm. The FTIR analysis showed the successful reduction of silver nanoparticles and the bonding with chitosan and cellulose. Besides, the EDX reports confirmed the existence of AgNPs by indicating a strong signal in the silver region. In addition, SEM characteristics analysis confirmed the uniform deposition of silver nanoparticles. Finally, the antimicrobial property was tested against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The antimicrobial result was found satisfactory in the case of green-synthesized recycled AgNPs. However, the effectiveness was not observed to be higher than green-synthesized pure AgNPs. In this study, the zone of inhibition of AgNPs was also compared to the reference antibiotics Ciprofloxacin.
Collapse
Affiliation(s)
- Moni Sankar Mondal
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
| | - Ayon Paul
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Mukitur Rhaman
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
21
|
Golsanamlu Z, Soleymani J, Gharekhani A, Jouyban A. In-situ preparation of norepinephrine-functionalized silver nanoparticles and application for colorimetric detection of tacrolimus in plasma samples. Heliyon 2023; 9:e18404. [PMID: 37576308 PMCID: PMC10412875 DOI: 10.1016/j.heliyon.2023.e18404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Tacrolimus (Tac) is a well-documented immunosuppressive agent for the prevention of graft-vs-host diseases in several types of organ transplants. The narrow therapeutic window and the individual-variable pharmacokinetics of Tac demonstrate the importance of regular therapeutic drug monitoring (TDM) as an imperative concept for its oral medication regimens. A simple, one-step, selective, and sensitive colorimetric platform is fabricated for the determination of Tac by surface modification of the silver nanoparticles (AgNPs) via norepinephrine (NE) molecules. The attachment of NE and Tac induces the aggregation of the AgNPs, which is observed by color distinction (yellow to brown) and a noteworthy shifting of the absorption peak in the visible region. The fabricated nanoprobe can detect Tac concentrations in plasma samples in two linear ranges from 2 ng/mL to 70 ng/mL and 70 ng/mL to 1000 ng/mL with R2 > 0.99. The limit of detection (LOD) was calculated as low as 0.1 ng/mL. The developed method was applied for the determination of Tac in patient's plasma samples under Tac medication therapy.
Collapse
Affiliation(s)
- Zahra Golsanamlu
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharekhani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Paul TK, Jalil MA, Repon MR, Alim MA, Islam T, Rahman ST, Paul A, Rhaman M. Mapping the Progress in Surface Plasmon Resonance Analysis of Phytogenic Silver Nanoparticles with Colorimetric Sensing Applications. Chem Biodivers 2023; 20:e202300510. [PMID: 37471642 DOI: 10.1002/cbdv.202300510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.
Collapse
Affiliation(s)
- Tamal Krishna Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Reazuddin Repon
- Laboratory of Plant Physiology, Nature Research Center, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, LT-51424, Kaunas, Lithuania
| | - Md Abdul Alim
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Sheikh Tamjidur Rahman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Ayon Paul
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Mukitur Rhaman
- Department of Textile Engineering, Faculty of Mechanical Engineering, Khulna, University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
23
|
Viskadourakis Z, Fanourakis G, Tamiolakis E, Theodosi A, Katsara K, Vrithias NR, Tsilipakos O, Kenanakis G. Fabrication of mm-Scale Complementary Split Ring Resonators, for Potential Application as Water Pollution Sensors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5290. [PMID: 37569990 PMCID: PMC10420294 DOI: 10.3390/ma16155290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Rectangular, millimeter-scale complementary split ring resonators were fabricated, employing the so-called Computer Numerical Control method, combined with a home-built mechanical engraver. Their electromagnetic performance was thoroughly investigated with respect to their dimensions in the frequency regime between 2 and 9 GHz via combining experiments and corresponding theoretical simulations, wherein a considerably effective consistency was obtained. Moreover, their sensing response was extensively investigated against various aqueous solutions enriched with typical fertilizers used in agriculture, as well as detergents commonly used in every-day life. Corresponding experimental results evidently establish the capability of the studied metasurfaces as potential sensors against water pollution.
Collapse
Affiliation(s)
- Zacharias Viskadourakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology—Hellas (FORTH), N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Greece; (G.F.); (A.T.); (K.K.); (N.R.V.)
| | - George Fanourakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology—Hellas (FORTH), N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Greece; (G.F.); (A.T.); (K.K.); (N.R.V.)
| | - Evangelos Tamiolakis
- Department of Materials Science Technology, University of Crete, GR-70013 Heraklion, Greece;
| | - Anna Theodosi
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology—Hellas (FORTH), N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Greece; (G.F.); (A.T.); (K.K.); (N.R.V.)
- Department of Materials Science Technology, University of Crete, GR-70013 Heraklion, Greece;
| | - Klytaimnistra Katsara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology—Hellas (FORTH), N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Greece; (G.F.); (A.T.); (K.K.); (N.R.V.)
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, GR-71410 Heraklion, Greece
| | - Nikolaos Rafael Vrithias
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology—Hellas (FORTH), N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Greece; (G.F.); (A.T.); (K.K.); (N.R.V.)
- Department of Materials Science Technology, University of Crete, GR-70013 Heraklion, Greece;
| | - Odysseas Tsilipakos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, GR-11635 Athens, Greece;
| | - George Kenanakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology—Hellas (FORTH), N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Greece; (G.F.); (A.T.); (K.K.); (N.R.V.)
| |
Collapse
|
24
|
Aslan Y, Atabay M, Chowdhury HK, Göktürk I, Saylan Y, Inci F. Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods. BIOSENSORS 2023; 13:bios13050569. [PMID: 37232930 DOI: 10.3390/bios13050569] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Recent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited due to obstacles associated with cost and production, impeding its widespread adoption. One promising alternative, on the other hand, is aptamer integration, i.e., short sequences of single-stranded DNA and RNA structures. The advantageous properties of these molecules are as follows: small molecular size, amenability to chemical modification, low- or nonimmunogenic characteristics, and their reproducibility within a short generation time. The utilization of these aforementioned features is critical in developing sensitive and portable POC systems. Furthermore, the deficiencies related to past experimental efforts to improve biosensor schematics, including the design of biorecognition elements, can be tackled with the integration of computational tools. These complementary tools enable the prediction of the reliability and functionality of the molecular structure of aptamers. In this review, we have overviewed the usage of aptamers in the development of novel and portable POC devices, in addition to highlighting the insights that simulations and other computational methods can provide into the use of aptamer modeling for POC integration.
Collapse
Affiliation(s)
- Yusuf Aslan
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Hussain Kawsar Chowdhury
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ilgım Göktürk
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
25
|
Thulasinathan B, Ganesan V, Manickam P, Kumar P, Govarthanan M, Chinnathambi S, Alagarsamy A. Simultaneous electrochemical determination of persistent petrogenic organic pollutants based on AgNPs synthesized using carbon dots derived from mushroom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163729. [PMID: 37120020 DOI: 10.1016/j.scitotenv.2023.163729] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic substances and accumulate in water bodies through various industries. Due to their harmful effects on humans, it is very important to monitor PAHs in various water resources. In the present work, we report an electrochemical sensor based on silver nanoparticles synthesized using mushroom-derived carbon dots for the simultaneous determination of anthracene and naphthalene, for the first time. Pleurotus species mushroom was used to synthesize the carbon dots (C-dots) via the hydrothermal method and these C-dots were used as a reducing agent for the synthesis of silver nanoparticles (AgNPs). The synthesized AgNPs have been characterized through UV-Visible and FTIR spectroscopy, DLS, XRD, XPS, FE-SEM, and HR-TEM. Well-characterized AgNPs were used to modify glassy carbon electrodes (GCEs) by the drop-casting method. Ag-NPs/GCE has shown strong electrochemical activity towards the oxidation of anthracene and naphthalene at well-separated potentials in phosphate buffer saline (PBS) at pH 7.0. The sensor exhibited a wide linear working range of 250 nM to 1.15 mM for anthracene and 500 nM to 842 μM for naphthalene with the corresponding lowest detection limits (LODs) of 112 nM and 383 nM respectively with extraordinary anti-interference ability against many possible interferents. The fabricated sensor showed high stability and reproducibility. The usefulness of the sensor for the monitoring of anthracene and naphthalene in a seashore soil sample has been demonstrated by the standard addition method. The sensor gave better results with a high recovery percentage indicating the first-ever device to detect two PAHs at the single electrode with the best analytical results.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, India; Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi 630003, India
| | - Veerapandi Ganesan
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu, India
| | - Pandiaraj Manickam
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi 630003, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Sekar Chinnathambi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu, India.
| | - Arun Alagarsamy
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, India.
| |
Collapse
|
26
|
Palani G, Trilaksana H, Sujatha RM, Kannan K, Rajendran S, Korniejenko K, Nykiel M, Uthayakumar M. Silver Nanoparticles for Waste Water Management. Molecules 2023; 28:molecules28083520. [PMID: 37110755 PMCID: PMC10145794 DOI: 10.3390/molecules28083520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Rapidly increasing industrialisation has human needs, but the consequences have added to the environmental harm. The pollution caused by several industries, including the dye industries, generates a large volume of wastewater containing dyes and hazardous chemicals that drains industrial effluents. The growing demand for readily available water, as well as the problem of polluted organic waste in reservoirs and streams, is a critical challenge for proper and sustainable development. Remediation has resulted in the need for an appropriate alternative to clear up the implications. Nanotechnology is an efficient and effective path to improve wastewater treatment/remediation. The effective surface properties and chemical activity of nanoparticles give them a better chance to remove or degrade the dye material from wastewater treatment. AgNPs (silver nanoparticles) are an efficient nanoparticle for the treatment of dye effluent that have been explored in many studies. The antimicrobial activity of AgNPs against several pathogens is well-recognised in the health and agriculture sectors. This review article summarises the applications of nanosilver-based particles in the dye removal/degradation process, effective water management strategies, and the field of agriculture.
Collapse
Affiliation(s)
- Geetha Palani
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Herri Trilaksana
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - R Merlyn Sujatha
- Department of Biomedical Engineering, JNN Institute of Engineering, Kannigaipair 601102, India
| | - Karthik Kannan
- Chemical Sciences Department and the Radical Research Centre, Ariel University, Ariel 40700, Israel
| | - Sundarakannan Rajendran
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Kinga Korniejenko
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marek Nykiel
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marimuthu Uthayakumar
- Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| |
Collapse
|
27
|
Corsi I, Venditti I, Trotta F, Punta C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161181. [PMID: 36581299 DOI: 10.1016/j.scitotenv.2022.161181] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanosafety is paramount considering the risks associated with manufactured nanomaterials (MNMs) whose implications could outweigh their advantages for environmental applications. Although nanotechnology-based solutions to implement pollution control, remediation and prevention are incremental with clear benefits for public health and Earth' natural ecosystems, nanoremediation is having a setback due to the risks associated with the safety of MNMs for humans and the environment. MNMs are diverse, work differently and bionano-interactions occurring upon environmental exposure will guide their fate and hazardous outcomes. Here we propose a new ecologically-based design strategy (eco-design) having its roots in green nanoscience and LCA that will ground on an Ecological Risk Assessment approach, which introduces the evaluation of MNMs' ecotoxicity along with their performances and efficacies at the design stage. As such, the proposed eco-design strategy will allow recognition and design-out since the very beginning of material synthesis, those hazardous peculiar features that can be hazardous to living beings and the natural environment. A more ecologically sound eco-design strategy in which nanosafety is conceptually included in MNMs design will sustain safer nanotechnologies including those for the environment as remediation by leveraging any risks for humans and natural ecosystems.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, via della Vasca Navale 79, 00146 Rome, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
28
|
Highly stable and uniform colloidal silver quantum dots stabilized with (N,S,O) donor ligand: Selective sensing of Hg(II)/Cu(II) and I− ions and reduction of nitro-aromatics in water. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
29
|
Jaleh B, Mousavi SS, Sajjadi M, Eslamipanah M, Maryaki MJ, Orooji Y, Varma RS. Synthesis of bentonite/Ag nanocomposite by laser ablation in air and its application in remediation. CHEMOSPHERE 2023; 315:137668. [PMID: 36581123 DOI: 10.1016/j.chemosphere.2022.137668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this research, a simple, green, and efficient approach is described to produce novel bentonite/Ag nanocomposite wherein the preparation of Ag nanoparticles (Ag NPs) deployed the laser ablation method in air; Ag NPs are deposited on the bentonite via the magnetic stirring method. The structural and morphological characterization of the as-prepared bentonite/Ag nanocomposite (denoted as B/Ag30, 30 min being the laser ablation time) is accomplished using different methods. Additionally, the catalytic assessment of the ensued composite exhibited excellent catalytic reduction/degradation activity for common aqueous pollutants namely methyl orange (MO), congo red (CR) and 4-nitrophenol (4-NP) utilizing NaBH4 as reductant. Furthermore, the recycling tests displayed the high stability/reusability of B/Ag30 nanocomposite for at least 4 runs with retention of catalytic prowess.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | | | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Motahar Jafari Maryaki
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
30
|
Continuous, green, and room-temperature synthesis of silver nanowires in a helically-coiled millifluidic reactor. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Thet Tun WS, Saenchoopa A, Daduang S, Daduang J, Kulchat S, Patramanon R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice †. RSC Adv 2023; 13:9603-9614. [PMID: 36968027 PMCID: PMC10038066 DOI: 10.1039/d3ra00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
In this work, cellulose nanofibers and graphene oxide are used to fabricate a simple and reliable electrochemical biosensor, based on acetylcholinesterase (AChE) for the detection of highly dangerous organophosphates (OPs), utilizing chlorpyrifos as a representative sample. AChE is an enzyme that is essential for neurotransmission and catalyzes the conversion of acetylcholine (ATCh) into thiocholine and acetic acid. The pesticide used in this work, chlorpyrifos, inhibits the catalytic activity of AChE on ATCh, and this inhibition can be measured using square wave voltammetry (SWV). Utilizing a process of surface modification, layers of cellulose nanofibers, graphene oxide, a chitosan-graphene oxide composite, and acetylcholinesterase (AChE/CS-GO/GO/CNFs) were immobilized on a screen-printed carbon electrode (SPCE). The modified SPCE working electrode was characterized using scanning electron microscopy and graphene oxide trapped in the cellulose nanofibers was found to increase the sensitivity of the biosensor. The modified biosensor demonstrated good performance for detection of chlorpyrifos over a linear range of 25–1000 nM under optimum conditions, and the limits of detection and quantification were 2.2 nM and 73 nM, respectively. Our sophisticated technique might offer a more precise, straightforward, quick, and environmentally friendly way to assess chlorpyrifos contamination in water and juice samples. Cellulose nanofibers and graphene oxide are used to fabricate an electrochemical biosensor based on acetylcholinesterase for detecting organophosphates. This biosensor is simple and reliable, and it utilizes chlorpyrifos as a representative sample of highly dangerous OPs.![]()
Collapse
Affiliation(s)
- Wonn Shweyi Thet Tun
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Apichart Saenchoopa
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen UniversityKhon Kaen 40002Thailand
| | - Jureerat Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| |
Collapse
|
32
|
Rajkumar G, Sundar R. Sonochemical-assisted eco-friendly synthesis of silver nanoparticles (AgNPs) using avocado seed extract: Naked-eye selective colorimetric recognition of Hg2+ ions in aqueous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Khatoon A, Khand NH, Mallah A, Solangi AR, Memon SQ, Memon AF, Karaman C, Karimi F, Karaman O. A Fast and Reliable Electrophoretic Method for Size-Based Characterization of Silver Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amna Khatoon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Nadir H. Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491Trondheim, Norway
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Saima Q. Memon
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Almas F. Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh71000, Pakistan
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya07070, Turkey
- School of Engineering, Lebanese American University, Byblos1102 2801, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan9477177870, Iran
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya07070, Turkey
| |
Collapse
|
34
|
Lite MC, Constantinescu RR, Tănăsescu EC, Kuncser A, Romanițan C, Lăcătuşu I, Badea N. Design of Green Silver Nanoparticles Based on Primula Officinalis Extract for Textile Preservation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217695. [PMID: 36363287 PMCID: PMC9654331 DOI: 10.3390/ma15217695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/12/2023]
Abstract
The present study aims to bring an addition to biomass resources valorization for environmental-friendly synthesis of nanoparticles. Thus, the green synthesis of silver nanoparticles (AgNPs) was performed, using a novel and effective reducing agent, Primula officinalis extract. The synthesis was optimized by monitoring the characteristic absorption bands, using UV−Vis spectroscopy, and by evaluating the size and physical stability. The phenolic consumption was established using Folin-Ciocâlteu method (1.40 ± 0.42 mg, representing ~5% from the total amount of poly--phenols) and the antioxidant activity was evaluated using chemiluminescence and TEAC methods. The optimum ratio extract to Ag ions was 1:3, for which the AgNPs presented a zeta potential value of −29.3 ± 1.2 mV and particles size of 5−30 nm. For characterization, EDS and XRD techniques were used, along with microscopy techniques (TEM). The AgNPs dispersions were applied on natural textile samples (cotton and wool), as a novel antimicrobial treatment for textile preservation. The treated fabrics were further characterized in terms of chromatic parameters and antimicrobial effect against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Penicillium hirsutum strains. The high percentages of bacterial reduction, >99%, revealed that the AgNPs produced are a good candidate for textiles preservation against microbial degradation.
Collapse
Affiliation(s)
- Mihaela Cristina Lite
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucretiu Patrascanu 16, 030508 Bucharest, Romania
| | - Rodica Roxana Constantinescu
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucretiu Patrascanu 16, 030508 Bucharest, Romania
| | - Elena Cornelia Tănăsescu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucretiu Patrascanu 16, 030508 Bucharest, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Cosmin Romanițan
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae 126A, 077190 Voluntari, Romania
| | - Ioana Lăcătuşu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
35
|
Bellingeri A, Scattoni M, Venditti I, Battocchio C, Protano G, Corsi I. Ecologically based methods for promoting safer nanosilver for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129523. [PMID: 35820334 DOI: 10.1016/j.jhazmat.2022.129523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Nanosilver, widely employed in consumer products as biocide, has been recently proposed as sensor, adsorbent and photocatalyst for water pollution monitoring and remediation. Since nanosilver ecotoxicity still pose limitations to its environmental application, a more ecological exposure testing strategy should be coupled to the development of safer formulations. Here, we tested the environmental safety of novel bifunctionalized nanosilver capped with citrate and L-cysteine (AgNPcitLcys) as sensor/sorbent of Hg2+ in terms of behaviour and ecotoxicity on microalgae (1-1000 µg/L) and microcrustaceans (0.001-100 mg/L), from the freshwater and marine environment, in acute and chronic scenarios. Acute toxicity resulted poorly descriptive of nanosilver safety while chronic exposure revealed stronger effects up to lethality. Low dissolution of silver ions from AgNPcitLcys was observed, however a nano-related ecotoxicity is hypothesized. Double coating of AgNPcitLcys succeeded in mitigating ecotoxicity to tested organisms, hence encouraging further research on safer nanosilver formulations. Environmentally safe applications of nanosilver should focus on ecologically relevant exposure scenarios rather than relying only on acute exposure data.
Collapse
Affiliation(s)
- Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Mattia Scattoni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
36
|
|
37
|
Saadati A, Farshchi F, Hasanzadeh M, Liu Y, Seidi F. Colorimetric and naked-eye detection of arsenic(iii) using a paper-based microfluidic device decorated with silver nanoparticles. RSC Adv 2022; 12:21836-21850. [PMID: 36091189 PMCID: PMC9358409 DOI: 10.1039/d2ra02820d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023] Open
Abstract
Arsenic (As) as a metal ion has long-term toxicity and its presence in water poses a serious threat to the environment and human health. So, rapid and accurate recognition of traces of As is of particular importance in environmental and natural resources. In this study, a fast and sensitive colorimetric method was developed using silver nano prisms (Ag NPrs), cysteine-capped Ag NPrs, and methionine-capped Ag NPrs for accurate detection of arsenic-based on transforming the morphology of silver nanoparticles (AgNPs). The generated Ag atoms from the redox reaction of silver nitrate and As(iii) were deposited on the surface of Ag NPrs and their morphology changed to a circle. The morphological changes resulted in a change in the color of the nanoparticles from blue to purple, which was detectable by the naked eye. The rate of change was proportional to the concentration of arsenic. The changes were also confirmed using UV-Vis absorption spectra and showed a linear relationship between the change in adsorption peak and the concentration of arsenic in the range of 0.0005 to 1 ppm with a lower limit of quantification (LLOQ) of 0.0005 ppm. The proposed probes were successfully used to determine the amount of As(iii) in human urine samples. In addition, modified microfluidic substrates were fabricated with Ag NPrs, Cys-capped Ag NPrs, and methionine-capped Ag NPrs nanoparticles that are capable of arsenic detection in the long-time and can be used in the development of on-site As(iii) detection kits. In addition, silver nanowires (AgNWs) were used as a probe to detect arsenic, but good results were not obtained in human urine specimens and paper microfluidic platforms. In this study, for the first time, AgNPs were developed for optical colorimetric detection of arsenic using paper-based microfluidics. Ag NPrs performed best in both optical and colorimetric techniques. Therefore, they can be a promising option for the development of sensitive, inexpensive, and portable tools in the environmental and biomedical diagnosis of As(iii).
Collapse
Affiliation(s)
- Arezoo Saadati
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Central European Institute of Technology, Brno University of Technology Brno CZ-612 00 Czech Republic
| | - Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No. 4365 - Manguinhos Rio de Janeiro 21040-900 RJ Brazil
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Yuqian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
38
|
Khan Z, Ahmad AL-Thabaiti S. Chitosan capped silver nanoparticles: Adsorption and photochemical activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Jayeoye TJ, Eze FN, Olatunji OJ, Tyopine AA. Synthesis of biocompatible Konjac glucomannan stabilized silver nanoparticles, with Asystasia gangetica phenolic extract for colorimetric detection of mercury (II) ion. Sci Rep 2022; 12:9176. [PMID: 35655085 PMCID: PMC9163164 DOI: 10.1038/s41598-022-13384-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, the synthesis of a biocompatible silver nanoparticles (AgNPs), for colorimetric detection of toxic mercury (II) ion (Hg2+), is reported. Phenolic-rich fraction of Asystasia gangetica leaf was extracted and used as a reductant of silver salt, all within the hydrophilic konjac glucomannan (KgM) solution as stabilizer, at room temperature (RT). The bioactive components of Asystasia gangetica phenolic extract (AGPE), as elucidated with a (UHPLC-MS-QTOF-MS), revealed plethora of phenolic compounds, which can facilitate the reduction of silver salt at ambient conditions. Sparkling yellow colloidal solution of KgM-AgNPs was realized within 1 h, at RT, having a UV–vis maximum at 420 nm. KgM-AgNPs was characterized using UV–vis, Raman and (FTIR), TEM, SEM, EDS, XRD, TGA/DTG. TEM and FESEM images showed that KgM-AgNPs were spherical, with particle size distribution around 10–15 nm from TEM. The KgM-AgNPs biocompatibility was investigated on mouse L929 fibrobroblast and rat erythrocytes, without any harmful damages on the tested cells. In aqueous environment, KgM-AgNPs demonstrated good detection capacity toward Hg2+, in a Hg2+ concentration dependent fashion, within 3 min. Absorbance ratios (A360/A408) was linear with Hg2+ concentrations from 0.010–10.0 to 10.0–60.0 µM, with an estimated (LOD) of 3.25 nM. The probe was applied in lake water sample, with satisfactory accuracy.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria.
| | - Fredrick Nwude Eze
- Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Hat Yai, 90112, Songkhla, Thailand. .,Drug Delivery System Excellence Center, Prince of Songkhla University, Hat Yai, 90112, Songkhla, Thailand.
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkhla University, Hat Yai, 90110, Thailand
| | - Andrew Aondoaver Tyopine
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
40
|
Regasa MB, Nyokong T. Design and fabrication of electrochemical sensor based on molecularly imprinted polymer loaded onto silver nanoparticles for the detection of 17-β-Estradiol. J Mol Recognit 2022; 35:e2978. [PMID: 35633278 DOI: 10.1002/jmr.2978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
In this research report, we prepared an electrochemical sensor based on the molecularly imprinted poly(p-aminophenol) supported by silver nanoparticles capped with 2-mercaptobenzoxazole (AgNP) for the selective and sensitive detection of endocrine disrupting 17β-estradiol (E2). The electropolymerization of the functional monomer prepared the proposed MIP composite-based sensor in the presence of E2 as a template. The recognition materials were characterized using Fourier transform infrared, cyclic voltammetry (CV), square wave voltammetry (SWV), scanning electron microscopy, energy-dispersive X-ray spectroscopy and x-ray powder diffraction techniques. The electrochemical measurements were performed by employing both CV and SWV methods. We did the optimization of critical parameters affecting the sensor performances through the experimental design and verification. The developed sensor showed a linear range from 10 pM to 100 nM with the calculated quantification and detection limits of 1.86 pM and 6.19 pM, respectively. The incorporation of AgNP with high electrical conductivity into the MIP matrix enhanced the sensor's performance. Furthermore, the sensor was applied to determine E2 in real water samples without any sample preconcentration steps to achieve the percent recovery of 91.87-98.36% and acceptable reusability and storage stability performances. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melkamu Biyana Regasa
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa.,Chemistry Department, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia
| | - Tebello Nyokong
- Chemistry Department, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
41
|
Irfan MI, Amjad F, Abbas A, Rehman MFU, Kanwal F, Saeed M, Ullah S, Lu C. Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules 2022; 27:3363. [PMID: 35684301 PMCID: PMC9182355 DOI: 10.3390/molecules27113363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
The present work reports the synthesis, characterization, and antimicrobial activities of adipic acid-capped silver nanoparticles (AgNPs@AA) and their utilization for selective detection of Hg2+ ions in an aqueous solution. The AgNPs were synthesized by the reduction of Ag+ ions with NaBH4 followed by capping with adipic acid. Characterization of as-synthesized AgNPs@AA was carried out by different techniques, including UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), and zeta potential (ZP). In the UV-Vis absorption spectrum, the characteristic absorption band for AgNPs was observed at 404 nm. The hydrodynamic size of as-synthesized AgNPs was found to be 30 ± 5.0 nm. ZP values (-35.5 ± 2.4 mV) showed that NPs possessed a negative charge due to carboxylate ions and were electrostatically stabilized. The AgNPs show potential antimicrobial activity against clinically isolated pathogens. These AgNPs were found to be selectively interacting with Hg2+ in an aqueous solution at various concentrations. A calibration curve was constructed by plotting concentration as abscissa and absorbance ratio (AControl - AHg/AControl) as ordinate. The linear range and limit of detection (LOD) of Hg2+ were 0.6-1.6 μM and 0.12 μM, respectively. A rapid response time of 4 min was found for the detection of Hg2+ by the nano-probe. The effect of pH and temperature on the detection of Hg2+ was also investigated. The nano-probe was successfully applied for the detection of Hg2+ from tap and river water.
Collapse
Affiliation(s)
- Muhammad Imran Irfan
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Fareeha Amjad
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Azhar Abbas
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
- Department of Chemistry, Government Ambala Muslim Graduate College, Sargodha 40100, Pakistan
| | - Muhammad Fayyaz ur Rehman
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Sami Ullah
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| |
Collapse
|
42
|
Solvent Casting and UV Photocuring for Easy and Safe Fabrication of Nanocomposite Film Dressings. Molecules 2022; 27:molecules27092959. [PMID: 35566306 PMCID: PMC9102005 DOI: 10.3390/molecules27092959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to optimize and characterize nanocomposite films based on gellan gum methacrylate (GG-MA) and silver nanoparticles (AgNPs) for application in the field of wound dressing. The films were produced using the solvent casting technique coupled with a photocuring process. The UV irradiation of GG-MA solutions containing glycerol as a plasticizer and different amounts of silver nitrate resulted in the concurrent crosslinking of the photocurable polymer and a reduction of Ag ions with consequent in situ generation of AgNPs. In the first part of the work, the composition of the films was optimized, varying the concentration of the different components, the GG-MA/glycerol and GG-MA/silver nitrate weight ratios as well as the volume of the film-forming mixture. Rheological analyses were performed on the starting solutions, whereas the obtained films were characterized for their mechanical properties. Colorimetric analyses and swelling studies were also performed in order to determine the AgNPs release and the water uptake capacity of the films. Finally, microbiological tests were carried out to evaluate the antimicrobial efficacy of the optimized films, in order to demonstrate their possible application as dressings for the treatment of infected hard-to-heal wounds, which is a demanding task for public healthcare.
Collapse
|
43
|
Gawrońska M, Kowalik M, Makowski M. Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Ultra-Sensitive Si-Based Optical Sensor for Nanoparticle-Size Traditional Water Pollutant Detection. PHOTONICS 2022. [DOI: 10.3390/photonics9050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A low-cost Si-based optical nano-sensor that monitors traditional water pollutants is introduced in this paper. The introduced sensor works in the near-infrared region, 900 nm to 2500 nm spectral range. The proposed structure consists of a Si layer with an optimized thickness of 300 nm on the top of the Al layer acting as a back reflector. On the top of the Si layer, the water pollutants are modeled as nanoparticle materials of different sizes. The finite difference time domain method is utilized to optimize the thicknesses of the Si layer by analyzing the optical light absorption considering different Si layer thicknesses and different pollutant nanoparticles’ sizes. Different interpolation techniques, including polynomials with various degrees and locally weighted smoothing quadratic regression, are used to find the best fitting model representing the simulated data points with goodness of fit analysis. Three features are proposed to identify the water pollutant with its size, peak absorption wavelength, relative amplitude, and a full width at half maximum. The device’s performance in detecting six different pollutants, silver, aluminum, copper, chromium, selenium, and ammonia, is evaluated. Sensitivity, a figure of merit, and a quality factor are used to evaluate the proposed sensor. The obtained maximum sensitivity is 11,300 nm/RIU, FOM of 740, and quality factor of 670.
Collapse
|
45
|
Kappen J, Bharathi S, John SA. Probing the Interaction of Heavy and Transition Metal Ions with Silver Nanoparticles Decorated on Graphene Quantum Dots by Spectroscopic and Microscopic Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4442-4451. [PMID: 35352934 DOI: 10.1021/acs.langmuir.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a comprehensive study of the interaction of transition and heavy metal ions with graphene quantum dots-capped silver nanoparticles (AgGQDs) using different spectroscopic and microscopic techniques. High-resolution transmission electron microscopy studies show that the interaction of metal ions with AgGQDs leads to the formation of metal oxides, the formation of zerovalent metals, and the aggregation of Ag nanoparticles (AgNPs). The metal ions may interact with AgGQDs through selective coordination with -OH and -COOH functionalities, adsorption on the graphene moiety, and directly to AgNPs. For instance, the interaction of Cd2+ with AgGQDs altered the spherical shape of AgNPs into a chain-like structure. On the contrary, the formation of PbO is observed after the addition of Pb2+ to AgGQDs. Interestingly, the interaction of AgGQDs with Hg2+ results in the complete dissolution of Ag0 from the surface of GQDs and subsequent deposition of Hg0 on the graphene moiety of GQDs. Unlike transition metal ions, Cd2+, Pb2+, and Hg2+ can adsorb strongly on the graphene surface at the bridge, hollow, and top sites, respectively. This special interaction of heavy metal ions with the graphene surface would decide the mechanistic pathway in which the reaction proceeds. The transition metal ions Cu2+, Zn2+, Co3+, Mn2+, Ni2+, and Fe3+ induced the aggregation of AgNPs.
Collapse
Affiliation(s)
- Jincymol Kappen
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - Sinduja Bharathi
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University Gandhigram, Dindigul 624 302, Tamil Nadu, India
| |
Collapse
|
46
|
Intisar A, Ramzan A, Sawaira T, Kareem AT, Hussain N, Din MI, Bilal M, Iqbal HMN. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials - A review. CHEMOSPHERE 2022; 293:133538. [PMID: 34998849 DOI: 10.1016/j.chemosphere.2022.133538] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Increasing demand of food and agriculture is leading us towards the increasing use and introduction of pesticides to the environment. The upright increase of pesticides in water and associated adverse effects have become a great point of concern to develop proficient methods for their mitigation from water. Various different methods have been traditionally employed for this purpose. Recently, nanotechnology has turned out to be the field of prodigious interest for this purpose, and various specific methods were developed and employed to remove pesticides from water. In this study, nanotechnological methods such as adsorption and degradation have been thoroughly discussed along with their applications and limitations where different types of nanoparticles, nanocomposites, nanotubes, and nanomembranes have played a vital role. However, in this study the most commonly adopted method of adsorption is considered to be the better technique due to its low cost, efficiency, and ease of operation. The adsorption kinetic models were described to explain the efficiency of the nano-adrsorbants in order to evaluate the mass transfer processes. However, various degradation methodologies including photocatalysis and catalytic reduction have also been elaborated. Numerous robust metal, metal oxide and functionalized magnetic nanomaterials have been emphasized, categorized, and compared for the removal of pesticides from water. Additionally, current challenges faced by researchers and future directions have also been provided.
Collapse
Affiliation(s)
- Azeem Intisar
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Arooj Ramzan
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Tehzeeb Sawaira
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ama Tul Kareem
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab Lahore, Pakistan
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
47
|
Das P, Dutta T, Manna S, Loganathan S, Basak P. Facile green synthesis of non-genotoxic, non-hemolytic organometallic silver nanoparticles using extract of crushed, wasted, and spent Humulus lupulus (hops): Characterization, anti-bacterial, and anti-cancer studies. ENVIRONMENTAL RESEARCH 2022; 204:111962. [PMID: 34450158 DOI: 10.1016/j.envres.2021.111962] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Since the last few decades, the green synthesis of metal nanoparticles was one of the most thrust areas due to its widespread application. The study proposed using wasted and unusable Humulus lupulus (Hops) extract to synthesize silver nanoparticles for biomedical application. The environment around us gives us many scopes to use the waste from environmental sources and turn it into something valuable. The spent Hops extract was used to synthesize silver nanoparticles (AgNP@HOPs), and the synthesized product exhibited an excellent therapeutic effect in terms of anti-bacterial and anti-cancer agents. The synthesis was optimized considering different factors like time and the concentration of AgNO3. The silver nanoparticles were characterized in detail using different characterization techniques XRD, DLS, TEM, BET, XPS, Raman Spectroscopy, SEM, EDAX, AFM, which revealed the uniqueness of the silver nanoparticles. The average hydrodynamic size was found to be 92.42 ± 2.41 with a low polydispersity index. The presence of Ag-C and Ag-O bonds in the AgNP@HOPs indicated that it is composed of organo-silver and silver oxides. The nanoparticles were found to be spherical with an average size of 17.40 nm. The AgNPs were lethal to both E. coli and S. aureus with a MIC-50 of 201.881 μg/mL and 213.189 μg/mL, respectively. The AgNP@HOPs also exhibited an anti-cancer effect with an IC-50 of 147.175. The AgNP@HOPs exhibited less cytotoxicity and genotoxicity against normal cells and exhibited superior haemocompatibility (major criteria for drug selection). There are indeed various reports on the synthesis of silver nanoparticles, but this study proposes a green method for producing non-genotoxic, non-hemolytic organometallic silver nanoparticles using waste material with considerable therapeutic index from the environmental source with potential application in the medical industry. This work could be taken forward for in-vivo studies and for pre clinical studies.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, India
| | - Tanusree Dutta
- School of Bioscience and Engineering, Jadavpur University, India
| | - Suvendu Manna
- School of Bioscience and Engineering, Jadavpur University, India; Department of Health Safety, Environment and Civil Engineering, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 247008, India
| | - Sravanthi Loganathan
- CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630006, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, India.
| |
Collapse
|
48
|
Abstract
Metal-conducting polyaniline (PANI)-based nanocomposite materials have attracted attention in various applications due to their synergism of electrical, mechanical, and optical properties of the initial components. Herein, metal-PANI nanocomposites, including silver nanoparticle-polyaniline (AgNP-PANI), zinc oxide nanoparticle-polyaniline (ZnONP-PANI), and silver-zinc oxide nanoparticle-polyaniline (Ag–ZnONP-PANI), were prepared using the two processes. Nanocomposite-based electrode platforms were prepared by depositing AgNPs, ZnONPs, or Ag–ZnONPs on a PANI modified glass carbon electrode (GCE) in the presence of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS, 1:2) as coupling agents. The incorporation of AgNPs, ZnONPs, and Ag–ZnONPs onto PANI was confirmed by UV-Vis spectrophotometry, which showed five absorbance bands at 216 nm, 412 nm, 464 nm, 550 nm, and 831 nm (i.e., transition of π-π*, π-polaron band transition, polaron-π* electronic transition, and AgNPs). The FTIR characteristic signatures of the nanocomposite materials exhibited stretching arising from C–H aromatic, C–O, and C–N stretching mode for benzenoid rings, and =C–H plane bending vibration formed during protonation. The CV voltammograms of the nanocomposite materials showed a quasi-reversible behavior with increased redox current response. Notably, AgNP–PANI–GCE electrode showed the highest conductivity, which was attributed the high conductivity of silver. The increase in peak currents exhibited by the composites shows that AgNPs and ZnONPs improve the electrical properties of PANI, and they could be potential candidates for electrochemical applications.
Collapse
|
49
|
Quan MX, Yao QF, Liu QY, Bu ZQ, Ding XZ, Xia LQ, Lu JY, Huang WT. Microwave-Assisted Synthesis of Silver Nanoparticles for Multimode Colorimetric Sensing of Multiplex Metal Ions and Molecular Informatization Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9480-9491. [PMID: 35138082 DOI: 10.1021/acsami.1c23559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic materials have been widely used in chemo/biosensing and biomedicine. However, little attention has been paid to the application of plasmonic materials in terms of the transition from molecular sensing to molecular informatization. Herein, we demonstrated that silver nanoparticles (AgNPs) prepared through facile and rapid microwave heating have multimode colorimetric sensing capabilities to different metal ions (Cr3+, Hg2+, and Ni2+), which can be further transformed into interesting and powerful molecular information technology (massively parallel molecular logic computing and molecular information protection). The prepared AgNPs can quantitatively and sensitively detect Cr3+ and Hg2+ in actual water samples. The AgNPs' multimode-guided multianalyte sensing processing was further investigated to construct a series of basic logic gates and advanced cascaded logic circuits by considering the analytes as the inputs and the colorimetric signals (like color, absorbance, wavelength shift) as the outputs. Moreover, the selective responses and molecular logic computing ability of AgNPs were also utilized to develop molecular cryptosteganography for encrypting and hiding some specific information, which proves that the molecular world and the information world are interconnected and use each other. This research not only opens the door for the transition from molecular sensing to molecular informatization but also provides an excellent opportunity for the construction of the "metaverse" of the molecular world.
Collapse
Affiliation(s)
- Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
50
|
Painuli R, Raghav S, Jha PC, Athar M, Kumar D. Thermodynamics and kinetics to develop an analytical method for sensing of aqueous Hg(II) using caffeic acid decorated AgNPs. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ritu Painuli
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Sapna Raghav
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Prakash C. Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mohd Athar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|