1
|
Arobi Katha UT, Begum Y, Mortuza MG, Sharmin S, Rafiquzzaman M, Biswas S, Saleh MA. Phytoconstituents of Chloranthus elatior as a potential adjunct in the treatment of anxiety disorders: In vivo and in silico approaches. Heliyon 2024; 10:e40728. [PMID: 39698094 PMCID: PMC11652921 DOI: 10.1016/j.heliyon.2024.e40728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Traditional plants have played a vital role in civilization and medicine throughout history. Chloranthus elatior, a plant used in South Asian traditional medicine, has various medicinal applications but limited research on its impact on the central nervous system (CNS). This study analyzed the methanolic leaf extract of Chloranthus elatior (MECE) for secondary metabolites and conducted experiments to evaluate the sedative, and anxiolytic effect of MECE on a mice model. To assess anxiolytic effects, elevated plus maze (EPM) and light-dark box (LDB) tests were performed. Sedative effects were explored in open field and hole-cross tests. Additionally, in silico investigations included molecular docking and ADME/T property assessments for 40 secondary metabolites. The phytochemical analysis of MECE revealed the presence of alkaloids, tannins, flavonoids, and glycosides. MECE exhibited significant anxiolytic effects in both the EPM and LDB tests, with statistical significance (P < 0.001). The open field and hole-cross tests demonstrated significant sedative potential (P < 0.05) compared to the standard Diazepam. Furthermore, molecular docking was performed to evaluate the potential of the compounds with a potassium channel protein. Among them, Chloramultilide C, 4-dimethoxyflavanone, and Neolitacumone B were identified as potential against the target protein with a binding score of -8.8 kcal/mol, -6.5 kcal/mol, and -6.4 kcal/mol, respectively. Additionally, pharmacokinetic attributes and ADMET analysis emphasized promising properties for drug development. These findings suggest that MECE possesses sedative and anxiolytic properties that could be valuable for addressing insomnia and anxiety associated with various psychiatric disorders.
Collapse
Affiliation(s)
| | - Yesmin Begum
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Md Golam Mortuza
- Department of Science and Humanities, Bangladesh Army International University of Science and Technology, Cumilla, 3500, Bangladesh
| | - Sayma Sharmin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Md Rafiquzzaman
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
2
|
Zhou T, Long D, Zhou M, Hu X, Wang Y, Wang X. Pickle water ameliorates castor oil-induced diarrhea in mice by regulating the homeostasis of the gut microbiota and intestinal mucosal barrier. Front Nutr 2024; 11:1455091. [PMID: 39328466 PMCID: PMC11424515 DOI: 10.3389/fnut.2024.1455091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Diarrhea is a common clinical condition that can potentially be fatal. Current treatment options often have side effects, such as constipation and vomiting, and there remains a need for more effective therapies. Pickled vegetables, a famous traditional food in China, have been suggested in clinical studies to alleviate diarrhea in children, particularly through the use of pickle water (PW). However, the pharmacological effects and mechanisms of PW on intestinal health remain unclear. This study aimed to explore the protective effects of PW on castor oil-induced diarrhea in ICR mice and to investigate its potential mechanisms. Methods To evaluate the antidiarrheal effects of PW, we used a castor oil-induced diarrhea model in ICR mice. Various indices were measured to assess the severity of diarrhea. After euthanizing the mice, oxidative stress markers in the ileum were assessed using biochemical methods, and the expression of tight junction-related proteins in the ileum was analyzed using Western blot. Additionally, 16S rRNA high-throughput sequencing was used to evaluate the diversity and composition of the intestinal flora. Results The results showed that PW supplementation reduced body weight without significantly affecting organ index and liver function in the castor oil-induced diarrhea mice. PW also effectively reduced the dilution rate, diarrhea index, average loose stool grade, propelling distance of carbon powder, and intestinal propulsive rate while improving the pathological abnormality in the ileum. Furthermore, PW enhanced the activities of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), and catalase (CAT) while reducing malonaldehyde (MDA) levels. PW also increased the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin in the ileum. Additionally, the analysis of 16S rDNA revealed that PW increased both α and β diversity, improved the composition of the intestinal flora, and restored it to a normal level. Discussion Collectively, dietary PW administration ameliorates Castor oil-induced diarrhea by restoring tight junctions between intestinal mucosal cells, suppressing oxidative stress, and regulating the composition of intestinal flora. These findings suggest that PW may be a promising strategy for managing diarrhea.
Collapse
Affiliation(s)
- Tian Zhou
- The Affiliated Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongmei Long
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, China
| | - Maoting Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xianghong Hu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yu Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xing Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Revathi S, Altemimi AB, Sutikno S, Cacciola F. Phytochemical screening along with in vitro antioxidant, antibacterial and anticancer activity of Senna auriculata (L.) bark extracts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39189785 DOI: 10.1080/09603123.2024.2395446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
This study aimed to evaluate the phytochemical content and biological properties of Senna auriculata (L.) Roxb. Four extracts-acetone, methanol, ethanol, and chloroform-were tested for antioxidant potential, enzymatic activity (peroxidase and polyphenol oxidase), antimicrobial, and anticancer effects. GC-MS analysis identified 34 bioactive compounds. The acetone extract exhibited the highest total alkaloid (5.8%), phenolic (752.78 ± 2.25 mg GAE/g), and flavonoid (285.78 ± 1.25 mg QE/g) content, along with the highest antioxidant (1489.42 ± 4.35 mg AAE/g) and enzyme activities. All extracts inhibited both Gram-positive and negative bacteria, with the acetone extract showing superior inhibition against S. aureus and B. subtilis. Additionally, the acetone and methanol extracts demonstrated anticancer effects on MDA-MB-231 breast cancer cells. These findings suggest that Senna auriculata has potential as a therapeutic agent for various diseases.
Collapse
Affiliation(s)
- Seemaisamy Revathi
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Sutikno Sutikno
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
de Lima Silva MG, Santos da Silva LY, Torres Pessoa R, de Oliveira MRC, Batista FLA, Alcântara IS, Bezerra Martins AOBP, Ribeiro-Filho J, Coutinho HDM, de Menezes IRA. Antiedematogenic and Analgesic Activities of Abietic Acid in Mice. Chem Biodivers 2023; 20:e202300906. [PMID: 37795905 DOI: 10.1002/cbdv.202300906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
Exacerbated inflammatory responses to harmful stimuli can lead to significant pain, edema, and other complications that require pharmacological intervention. Abietic acid (AA) is a diterpene found as a significant constituent in pine species, and evidence has identified its biological potential. The present study aimed to evaluate abietic acid's antiedematogenic and anti-inflammatory activity in mice. Swiss mice (Mus musculus) weighing 20-30 g were treated with AA at 50, 100, and 200 mg/kg. The central nervous system (CNS) effects were evaluated using open-field and rotarod assays. The antinociceptive and anti-inflammatory screening was assessed by the acetic acid and formalin tests. The antiedematogenic activity was investigated by measuring paw edema induced by carrageenan, dextran, histamine, arachidonic acid, and prostaglandin, in addition to using a granuloma model. The oral administration of abietic acid (200 mg/Kg) showed no evidence of CNS effects. The compound also exhibited significant antiedematogenic and anti-inflammatory activities in the carrageenan and dextran models, mostly related to the inhibition of myeloperoxidase (MOP) activity and histamine action and, to a lesser extent, the inhibition of eicosanoid-dependent pathways. In the granuloma model, abietic acid's effect was less expressive than in the acute models investigated in this study. In conclusion, abietic acid has analgesic and antiedematogenic activities related to anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| | - Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| | - Maria Rayane Correia de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| | - Francisco Lucas Alves Batista
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| | - Isabel Sousa Alcântara
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| | | | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio, CE-60180-900, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE-63105-000, Brazil
| |
Collapse
|
5
|
Mehta CH, Paliwal S, Muttigi MS, Seetharam RN, Prasad ASB, Nayak Y, Acharya S, Nayak UY. Polyphenol-based targeted therapy for oral submucous fibrosis. Inflammopharmacology 2023; 31:2349-2368. [PMID: 37106237 PMCID: PMC10518296 DOI: 10.1007/s10787-023-01212-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease management. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-β1), and lysyl oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. EGCG was safer at higher concentrations and more efficient in reducing TGF-β1, collagen type-1A2 and type-3A1 mRNA expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions compared to the standard treatment betamethasone injection with significant reduction in TGF-β1 and collagen concentrations with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects. Highlights Potential polyphenols were shortlisted to treat oral submucous fibrosis (OSF) using in silico tools Epigallocatechin 3-gallate (EGCG) significantly reduced TGF-β1 and collagen both in vitro and in vivo EGCG hydrogel enhanced antioxidant defense, modulated inflammation by reducing TGF-β1 and improved mouth opening in OSF rat model.
Collapse
Affiliation(s)
- Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shivangi Paliwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Acharya
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
6
|
Balogun FO, Ajao AAN, Sabiu S. A review of indigenous knowledge and ethnopharmacological significance of African Copaiba Balsam Tree, Daniellia oliveri (Fabaceae). Heliyon 2023; 9:e20228. [PMID: 37810056 PMCID: PMC10559981 DOI: 10.1016/j.heliyon.2023.e20228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Daniellia oliveri has found its indigenous relevance in the management of diseases including but not limited to diabetes mellitus, tuberculosis, fever, ulcers, pain, worm manifestation, pneumonia, skin ailments, infectious diseases, sickle cell anaemia, hence, a review of its indigenous knowledge, ethnopharmacological and nutritional benefits was undertaken. Information used for the review was sourced from popular scientific databases (Google Scholar, PubMed, Science Direct, Web of Science, BioMed Central, JSTOR, African Plant, Global Biodiversity Information and others), conference proceedings, dissertations or theses, chapters in books, edited books, and journal collections. The materials obtained from 121 scientific documents targeting majorly between 1994 and 2023 established the presence of major secondary metabolites (such as polyphenols, flavonoids, saponins, alkaloids, etc.), minerals (e.g., sodium, potassium, phosphorus, selenium, calcium, magnesium, etc.), vitamins (beta-carotene, thiamine, riboflavin, niacin, ascorbic acid, etc.), and nutrients (crude protein, moisture, dry matter, ether, carbohydrates, and energy). Literature also lent credence to the preliminary safety profiles of the plant and its pharmacological potentials as analgesic, antinociceptive, antioxidant, antidiabetic, antidiarrhoeal, anthelmintic, anti-inflammatory, antimelanogenesis, antimicrobial, antiplasmodial, antisickling, cardiotoxic, cytotoxic, and neuroprotective agents. While the review is majorly limited to Africa particularly western countries (such as Nigeria, Burkina Faso, Mali, Ghana, Togo, and Benin) and the plant is found to be largely underutilized, it is evident that limited information exists on the in vivo pharmacological evaluation, bioactive compounds identification, and there is a lack of preclinical and clinical trials for possible drug development. Based on the aforementioned, it is hoped that further research studies geared toward providing insights into the established grey areas (such as traditional use investigation, targeted or assay-guided compounds identification, and preclinical and clinical studies) are necessary in order to fully explore the therapeutic, nutritional, and economic benefits of the plant.
Collapse
Affiliation(s)
- Fatai Oladunni Balogun
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve-Biko Campus, Durban, 4001, Durban, KwaZulu-Natal, South Africa
| | - Abdulwakeel Ayokun-nun Ajao
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve-Biko Campus, Durban, 4001, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
7
|
Hussain Shah SA, Aleem A. Investigations of plausible pharmacodynamics supporting the antispasmodic, bronchodilator, and antidiarrheal activities of Berberis lycium Royle. Via in silico, in vitro, and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116115. [PMID: 36587881 DOI: 10.1016/j.jep.2022.116115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis lycium Royle, a member of the Berberidaceae family, is a high-value medicinal plant with a documented history of usage in traditional medicine and has demonstrated significant therapeutic results among local populations throughout the globe. It is used traditionally in many parts of Pakistan to treat diarrhea, abdominal spasms, coughs, and chest problems. AIM OF THE STUDY To investigate the antispasmodic, bronchodilator, and antidiarrheal effects of B. lycium and its possible underlying mechanisms through in silico, in vitro, and in vivo studies. MATERIALS AND METHODS LC ESI-MS/MS analysis was used to identify bioactive components within the hydromethanolic extract of B. lycium. In silico studies, including network pharmacology and molecular docking, were utilized to investigate the antispasmodic and bronchodilator properties of the extract's bioactive components. In vitro pharmacological studies were conducted using isolated rabbit jejunum, trachea, urinary bladder, and rat ileum preparations. In vivo antidiarrheal activities were conducted in mice, including castor oil-induced diarrhea, intestinal transit, and castor oil-induced enteropooling. RESULTS The LC ESI-MS/MS analysis of the hydromethanolic extract of B. lycium identified 38 bioactive compounds. Network pharmacology study demonstrated that the mechanism of BLR for the treatment of diarrhea might involve IL1B, TLR4, PIK3R1, TNF, PTPRC, IL2, PIK3CD, and ABCB1, whereas, for respiratory ailments, it may involve PIK3CG, TRPV1, STAT3, ICAM1, ACE, PTGER2, PTGS2, TNF, MMP9, NOS2, IL2, CCR5, HRH1, and VDR. Molecular docking research revealed that chlorogenic acid, epigallocatechin, isorhamnetin, quinic acid, gallic acid, camptothecin, formononetin-7-O-glucoside, velutin, caffeic acid, and (S)-luteanine exhibited a higher docking score than dicyclomine with validated proteins of smooth muscle contractions such as CACB2_HUMAN, ACM3_HUMAN, MYLK_HUMAN, and PLCG1_HUMAN. In vitro investigations demonstrated that Blr.Cr, Blr.EtOAc, and Blr.Aq relaxed spontaneously contracting jejunum preparations; carbachol (1 μM)-induced and K+ (80 mM)-induced jejunum, trachea, and urinary bladder contractions in a concentration-dependent manner, similar to dicyclomine. Moreover, Blr.Cr, Blr.EtOAc, and Blr.Aq exhibited a rightward shift in Ca+2 and carbachol cumulative response curves, similar to dicyclomine, demonstrating the coexistence of antimuscarinic and Ca+2 antagonistic mechanisms due to the presence of alkaloids and flavonoids. In vivo antidiarrheal activities showed that the hydromethanolic extract was significantly effective against castor oil-induced diarrhea and castor oil-induced enteropooling, similar to loperamide, and charcoal meal intestinal transit, similar to atropine, in mice at doses of 50, 100, and 200 mg/kg body weight, which supports its traditional use in diarrhea. CONCLUSION The dual blocking mechanism of muscarinic receptors and Ca+2 channels behind the smooth muscle relaxing activity reveals the therapeutic relevance of B. lycium in diarrhea, abdominal spasms, coughs, and chest problems.
Collapse
Affiliation(s)
- Syed Adil Hussain Shah
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Ambreen Aleem
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
8
|
Korcan SE, Çankaya N, Azarkan SY, Bulduk İ, Karaaslan EC, Kargıoğlu M, Konuk M, Güvercin G. Determination of Antioxidant Activities of
Viscum album
L.: First Report on Interaction of Phenolics with Survivin Protein using
in silico Analysis. ChemistrySelect 2023. [DOI: 10.1002/slct.202300130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Bao Y, Zhang R, Jiang X, Liu F, He Y, Hu H, Hou X, Hao L, Pei X. Detoxification mechanisms of ginseng to aconite: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116009. [PMID: 36516908 DOI: 10.1016/j.jep.2022.116009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconite (Fuzi, FZ), the processed root tuber of Aconitum carmichaelii Debx., is utilized as a classic medicine to treat diseases of the cardiovascular system and immune system. Resulting from the narrow margin of safety between a therapeutic dose and a toxic dose, FZ often causes cardiotoxicity including hypotension, palpitation, and bradycardia. Contributing to the detoxification effects of the other famous herbal medicine ginseng (Renshen, RS), which is the dried root and rhizome of Panax ginseng C. A. Meyer, people broadly combine FZ and RS as compatibility more than 1800 years to attenuate the toxicity of FZ. However, the systematic detoxification mechanisms of RS to FZ have not been fully revealed. AIM OF THE REVIEW Aiming to provide a comprehensive interpretation of the attenuation processes of FZ via RS, this review summarizes the up-to-date information about regulatory mechanisms of RS to FZ to shed the light on the essence of detoxification. MATERIALS AND METHODS Literature was searched in electronic databases, including PubMed, Web of Science ScienceDirect, Google Scholar, CNKI and WanFang Data. Relevant studies on detoxification mechanisms were included while irrelevant and duplicate studies were excluded. According to the study design, subject, intervention regime, outcome, first author and year of publication of included data, detoxification mechanisms of RS to FZ were summarized and visualized. RESULTS A total of 144 studies were identified through databases from their inception up to Oct. 2022. Included information indicated that diester-diterpenoid alkaloids (DDAs) were the main toxic substances of FZ. The main mechanisms that RS attenuates the toxicity of FZ were transforming toxic compounds of FZ, affecting the absorption and metabolism of FZ as well as the FZ-induced cell toxicity alleviation. CONCLUSION FZ, as a famous traditional Chinese medicine, has good prospects for utilization. The narrow margin of safety between a therapeutic dose and a toxic dose of FZ limits its clinical effect and safety while RS is always combined with FZ to alleviate its toxicity. However, mechanisms responsible for the detoxification process have not been well identified. Therefore, detoxification mechanisms of RS to FZ are reviewed to ensure the safety and effectiveness of FZ.
Collapse
Affiliation(s)
- Yiwen Bao
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Xinyi Jiang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China.
| | - Yao He
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China.
| | - Huiling Hu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Xinlian Hou
- Huarun Sanjiu (Ya'an) Pharmaceutical Group Co., LTD, Ya'an, 625000, PR China
| | - Li Hao
- Huarun Sanjiu (Ya'an) Pharmaceutical Group Co., LTD, Ya'an, 625000, PR China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| |
Collapse
|
10
|
Rao H, Ahmad S, Y.Aati H, Basit A, Ahmad I, Ahmad Ghalloo B, Nadeem Shehzad M, Nazar R, Zeeshan M, Nasim J, ur Rehman Khan K. Phytochemical screening, biological evaluation, and molecular docking studies of aerial parts of Trigonella hamosa (branched Fenugreek). ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
11
|
Torres AM, Ojeda GA, Angelina E, Bustillo S, Peruchena N, Tonidandel L, Larcher R, Nardin T, Dellacassa E. The anti-snake activity of Nectandra angustifolia flavonoids on phospholipase A2: In vitro and in silico evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115889. [PMID: 36334817 DOI: 10.1016/j.jep.2022.115889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lauraceae family includes Nectandra angustifolia a species widely used in the folk medicine of South America against various maladies. It is commonly used to treat different types of processes like inflammation, pain, and snakebites. Snakes of the Bothrops genus are responsible for about 97% of the ophidic accidents in northeastern Argentina. AIM OF THE STUDY To evaluate the anti-snake activity of the phytochemicals present in N. angustifolia extracts, identify the compounds, and evaluate their inhibitory effect on phospholipase A2 (PLA2) with in vitro and in silico assays. METHODS Seasonal variations in the alexiteric potential of aqueous, ethanolic and hexanic extracts were evaluated by inhibition of coagulant, haemolytic, and cytotoxic effects of B. diporus venom. The chemical identity of an enriched fraction obtained by bio-guided fractioning was established by UPLC-MS/MS analysis. Molecular docking studies were carried out to investigate the binding mechanisms of the identified compounds to PLA2 enzyme from snake venom. RESULTS All the extracts inhibited venom coagulant activity. However, spring ethanolic extract achieved 100% inhibition of haemolytic activity. Bio-guide fractioning led to an enriched fraction (F4) with the highest haemolytic inhibition. Five flavonoids were identified in this fraction; molecular docking and Molecular Dynamics (MD) simulations indicated the binding mechanisms of the identified compounds. The carbohydrates present in some of the compounds had a critical effect on the interaction with PLA2. CONCLUSION This study shows, for the first time, which compounds are responsible for the anti-snake activity in Nectandra angustifolia based on in vitro and in silico assays. The results obtained in this work support the traditional use of this species as anti-snake in folk medicine.
Collapse
Affiliation(s)
- Ana María Torres
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, 3400, Corrientes, Argentina; Instituto de Química Básica y Aplicada del NEA - (IQUIBA-NEA-CONICET), Av. Libertad 5470, 3400, Corrientes, Argentina
| | - Gonzalo Adrián Ojeda
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, 3400, Corrientes, Argentina; Instituto de Química Básica y Aplicada del NEA - (IQUIBA-NEA-CONICET), Av. Libertad 5470, 3400, Corrientes, Argentina.
| | - Emilio Angelina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, 3400, Corrientes, Argentina; Instituto de Química Básica y Aplicada del NEA - (IQUIBA-NEA-CONICET), Av. Libertad 5470, 3400, Corrientes, Argentina
| | - Soledad Bustillo
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, 3400, Corrientes, Argentina; Instituto de Química Básica y Aplicada del NEA - (IQUIBA-NEA-CONICET), Av. Libertad 5470, 3400, Corrientes, Argentina
| | - Nélida Peruchena
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, 3400, Corrientes, Argentina; Instituto de Química Básica y Aplicada del NEA - (IQUIBA-NEA-CONICET), Av. Libertad 5470, 3400, Corrientes, Argentina
| | - Loris Tonidandel
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all'Adige, Via E. Mach 1, 38010-S, Michele all'Adige (TN), Italy
| | - Roberto Larcher
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all'Adige, Via E. Mach 1, 38010-S, Michele all'Adige (TN), Italy
| | - Tiziana Nardin
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all'Adige, Via E. Mach 1, 38010-S, Michele all'Adige (TN), Italy
| | - Eduardo Dellacassa
- Facultad de Química, Universidad de la República, Av General Flores 2124, 11800, Montevideo, Uruguay
| |
Collapse
|
12
|
Rocha JE, de Freitas TS, Xavier JC, Pereira RLS, Pereira Junior FN, Nogueira CES, Marinho MM, Bandeira PN, Rodrigues LG, Marinho ES, de Lacerda BCGV, de Andrade EM, Teixeira AMR, Dos Santos HS, Coutinho HDM. ADMET study, spectroscopic characterization and effect of synthetic nitro chalcone in combination with norfloxacin, ciprofloxacin, and ethidium bromide against Staphylococcus aureus efflux pumps. Fundam Clin Pharmacol 2023; 37:163-173. [PMID: 36082507 DOI: 10.1111/fcp.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Chalcones are present in a wide variety of plants, having in their structure two aromatic rings that are linked together by a chain composed of three carbon atoms with α, β-unsaturated to carbonyl system. Bacteria have several drug resistance mechanisms, among them the efflux pump; this mechanism, when active, is able to expel different compounds from inside bacterial cells. Several efflux pumps have already been identified for Staphylococcus aureus bacteria, including MepA and NorA. Many chalcones have been isolated and identified with various activities, such as antimicrobial. In view of this, this article aimed to evaluate the antibiotic modifying effect of chalcone (E)-1-(2-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one against S. aureus carrier of NorA and MepA efflux pump. Regarding the antibiotic, there was a synergism when associated with ciprofloxacin in SA-K2068 strain, showing this chalcone as an alternative to reverse the resistance to this medicine. The physicochemical properties calculated were fundamental in the description of the predicted pharmacokinetic properties. Despite the mutagenic risk caused by the metabolic activation of nitrochalcone, it is possible to notice a pharmacological principle in a longer half-life for the performance of biological activities. The compound has a good bioavailability, as it is highly absorbed in the intestine and easily transported by plasma proteins, in addition to not presenting neurotoxic, hepatotoxic, and cardiotoxic damage.
Collapse
Affiliation(s)
- Janaína E Rocha
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | - Thiago S de Freitas
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | - Jayze C Xavier
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | - Raimundo L S Pereira
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | | | - Carlos E S Nogueira
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | - Márcia M Marinho
- Faculdade de Educação, Ciência e Letras de Iguatu, Universidade Estadual do Ceará, Iguatu, Ceará, Brasil
| | - Paulo N Bandeira
- Centro de Ciencias Exatas e Tecnologia, Universidade Estadual do Vale do Acaraú, Sobral, Ceará, Brasil
| | - Leilane G Rodrigues
- Centro de Ciencias Exatas e Tecnologia, Universidade Estadual do Vale do Acaraú, Sobral, Ceará, Brasil
| | - Emmanuel S Marinho
- Faculdade de Filosofia Dom Aureliano Mato, Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, Brasil
| | | | | | - Alexandre M R Teixeira
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | - Hélcio S Dos Santos
- Centro de Ciencias Exatas e Tecnologia, Universidade Estadual do Vale do Acaraú, Sobral, Ceará, Brasil
| | - Henrique D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| |
Collapse
|
13
|
Chang X, Li Y, Liu J, Wang Y, Guan X, Wu Q, Zhou Y, Zhang X, Chen Y, Huang Y, Liu R. ß-tubulin contributes to Tongyang Huoxue decoction-induced protection against hypoxia/reoxygenation-induced injury of sinoatrial node cells through SIRT1-mediated regulation of mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154502. [PMID: 36274412 DOI: 10.1016/j.phymed.2022.154502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND TYHX-Tongyang Huoxue decoction has been used clinically for nearly 40 years. The ingredients of TYHX are Radix Astragali (Huangqi), Red Ginseng (Hongshen), Rehmannia Glutinosa (Dihuang), Common Yam Rhizome (Shanyao) and Cassia-bark-tree Bark (Rougui). Our previous experiments confirmed that TYHX can protect sinoatrial node cells. However, its mechanism of action is not completely understood yet. PURPOSE The present study aimed to determine the protective effects of TYHX against Sinus node cell injury under hypoxic stress and elucidate the underlying mechanisms of protection. METHODS Through RNA sequencing analysis and network pharmacology analysis, we found significant differences in mitochondrial-related genes before and after hypoxia-mimicking SNC, resolved the main regulatory mechanism of TYHX. Through the intervention of TYHX on SNC, a series of detection methods such as laser confocal, fluorescence co-localization, mitochondrial membrane potential and RT-PCR. The regulatory effect of TYHX on β-tubulin in sinoatrial node cells was verified by in vitro experiments. The mechanism of action of TYHX and its active ingredient quercetin to maintain mitochondrial homeostasis and protect sinoatrial node cells through mitophagy, mitochondrial fusion/fission and mitochondrial biosynthesis was confirmed. RESULTS Through RNA sequencing analysis, we found that there were significant differences in mitochondrial related genes before and after SNC was modeled by hypoxia. Through pharmacological experiments, we showed that TYHX could inhibit the migration of Drp1 to mitochondria, inhibit excessive mitochondrial fission, activate mitophagy and increase the mitochondrial membrane potential. These protective effects were mainly mediated by β-tubulin. Furthermore, the active component quercetin in TYHX could inhibit excessive mitochondrial fission through SIRT1, maintain mitochondrial energy metabolism and protect SNCs. Our results showed that protection of mitochondrial function through the maintenance of β-tubulin and activation of SIRT1 is the main mechanism by which TYHX alleviates hypoxic stress injury in SNCs. The regulatory effects of TYHX and quercetin on mitochondrial quality surveillance are also necessary. Our findings provide empirical evidence supporting the use of TYHX as a targeted treatment for sick sinus syndrome. CONCLUSION Our data indicate that TYHX exerts protective effects against sinus node cell injury under hypoxic stress, which may be associated with the regulation of mitochondrial quality surveillance (MQS) and inhibition of mitochondrial homeostasis-mediated apoptosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yutong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinai Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yao Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
14
|
Abdel Rahman R, Kamal N, Mediani A, Farag MA. How Do Herbal Cigarettes Compare To Tobacco? A Comprehensive Review of Their Sensory Characters, Phytochemicals, and Functional Properties. ACS OMEGA 2022; 7:45797-45809. [PMID: 36570239 PMCID: PMC9773184 DOI: 10.1021/acsomega.2c04708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Herbal cigarettes, known as tobacco-free or nicotine-free cigarettes, are those recognized as being-tobacco free, being composed of a mixture of various herbs claimed to lessen the smoking habit hazards. However, controversial data regarding its properties occur in the literature with no comprehensive overview or analysis of its effects. Like herbal smokeless tobacco, they are often used to substitute for tobacco products (primarily cigarettes) regarded as a "nonsmoking" aid. This review capitalizes on herbal cigarettes with regard to their quality characteristics, sensory attributes, chemical composition, and health properties to rationalize their choice as a nonsmoking aid. Furthermore, the impacts of heat and/or pyrolysis that occur during smoking on its chemical composition are presented for the first time. Some herbal smokes may produce notable metabolic problems that increase the risk of several chronic metabolic diseases. In general, burning substances from plants can have a variety of negative effects on the body attributed to toxic chemicals such as carbon monoxide, polyaromatics, nicotine, and N-nitrosamines. This review compiles and discusses the phytochemical compositions detected in various herbal cigarettes alongside sensory and quality attributes and health effects.
Collapse
Affiliation(s)
- Rania
T. Abdel Rahman
- Phytochemistry
and National Products Department, Technical Office of Central Administration
of Drug Control, Egyptian Drug Authority
(EDA), Giza 12553, Egypt
| | - Nurkhalida Kamal
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmed Mediani
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
15
|
Yang J, Zhao J, Zhang J. The efficacy and toxicity of grayanoids as analgesics: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115581. [PMID: 35948141 DOI: 10.1016/j.jep.2022.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Grayanoids are natural diterpenoids that are mostly found in the Ericaceae family, such as Rhododendron molle (Blume) G. Don (Relevant herb: nao yang hua), Rhododendron micranthum Turcz (also known as: zhao shan bai), which have traditionally been used to treat abdominal pain, cephalgia, and rheumatoid arthritis. AIMS OF THE REVIEW The review investigated advancements in notable anti-nociception, toxicity, and probable mechanisms of grayanoids. Meanwhile some binding sites of these compounds on voltage-gated sodium channels (VSGCs) were also analyzed and evaluated. MATERIALS AND METHODS The substantial grayanoids literature published before 2022, in SCI Finder, PubMed, Science Direct, Springer, Scopus, Wiley Online Library, J-Stage, and other literature databases had been exhaustively consulted and thoroughly screened. RESULTS More than 50 compounds in grayanoids exhibited exceptionally significant anti-nociception (intraperitoneal injection, less than 1 mg/kg), and the alteration of several substituents that were closely associated to the change in activity were investigated. Multiple possible mechanisms of analgesic action and toxicity had been proposed, with VSGCs playing a key part in both. As a result, the binding locations of these compounds on VGSCs (mostly grayanotoxin I and III) had been summarized. CONCLUSIONS The considerable anti-nociception, toxicity, and probable mechanisms of grayanoids, as well as the investigation of the binding sites on VSGCs, were discussed in this review. Furthermore, the homology of toxicity and anti-nociception of these substances was considered, as well as the possibility of grayanoids being developed as analgesics.
Collapse
Affiliation(s)
- Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Synthesis of novel EGCG-glucose conjugates and studies of their antioxidative properties for neuroprotections. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Panchal NK, Swarnalatha P, Prince SE. Trichopus zeylanicus ameliorates ibuprofen inebriated hepatotoxicity and enteropathy: an insight into its modulatory impact on pro/anti-inflammatory cytokines and apoptotic signaling pathways. Inflammopharmacology 2022; 30:2229-2242. [PMID: 36008576 PMCID: PMC9410745 DOI: 10.1007/s10787-022-01052-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug that is commonly used for its analgesic, antipyretic and anti-inflammatory effects worldwide. However ibuprofen comes with serious unavoidable adverse effects on various organs when used for long duration or overdosed. Trichopus zeylanicus is a medicinal plant endemic to India owning various beneficial properties and is been used in treating various ailments. Therefore, the objective of this study was to evaluate the ameliorative effect of aqueous leaves’ extract of Trichopus zeylanicus against ibuprofen-induced hepatic toxicity and enteropathy in rats. Overall in this study 30 male albino rats were used, which were divided into five groups (six in each group). Group-I was normal control, Group-II was ibuprofen (400 mg/kg/day) inebriated group, Group-III was silymarin (25 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), Group-IV was ALETZ (1000 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), and Group-V was ALETZ alone (1000 mg/kg/day) group. The duration of the administration was for five days, followed by scarifying rats on the sixth day. Later the rats were assessed for liver and intestine enzyme markers, antioxidant parameters along with histopathological changes. In addition the pro-inflammatory markers such as TNF-α, IL-6 and IL-1β as well as anti-inflammatory cytokine IL-10 levels were measured using ELISA. Lastly the expression pattern of apoptotic signaling markers such as caspase-3, caspase-8 and Bcl-2 was evaluated using western blot. The results obtained from this study showed changes in levels of aforesaid parameter which presented the toxic effect of ibuprofen on liver and small intestine. Pre-treatment of ALETZ in ibuprofen-inebriated group was able to normalize the adverse effect caused due to ibuprofen. The conclusion of the study deduces that pre-treatment with ALETZ alleviates by modulating oxidative stress, inflammation, and apoptosis in ibuprofen inebriated rats, indicating its protective mechanism.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Purushotham Swarnalatha
- Department of Information Security, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India, 632104
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
18
|
Ma YL, Yan BF, Liu J, Dai SL, Liu J, Wang XX, Fang F, Wu SC, Wang Y, Xu CY, Zhao Q, Wang HB, Wu DK. Limonitum Ameliorates Castor Oil-Induced Diarrhoea in Mice by Modulating Gut Microbiota. Folia Biol (Praha) 2022; 68:133-141. [PMID: 36871169 DOI: 10.14712/fb2022068040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Diarrhoea is a common clinical condition; its pathogenesis is strongly associated with gut microbiota dysbiosis. Limonitum is a well-known traditional Chinese medicine that exerts appreciable benefits regarding the amelioration of diarrhoea. However, the mechanism through which Limonitum ameliorates diarrhoea remains unclear. Here, the efficacy and underlying mechanism of Limonitum decoction (LD) regarding diarrhoea were explored from the aspect of gut microbiota. Castor oil (CO) was used to induce diarrhoea in mice, which were then used to evaluate the effects of LD regarding the timing of the first defecation, diarrhoea stool rate, degree of diarrhoea, diarrhoea score, intestinal propulsive rate, and weight of intestinal contents. The concentrations of short-chain fatty acids (SCFAs), including acetic, propionic, isobutyric, butyric and valeric acids, were analysed by gas chromatography-mass spectrometry (GC-MS). The 16S rRNA high-throughput sequencing technology was applied to evaluate changes in the gut microbiota under exposure to LD. LD was found to effectively ameliorate the symptoms of diarrhoea, and the diversity and relative abundance of gut microbiota were restored to normal levels following LD treatment. Additionally, LD significantly restored the observed reductions in SCFAs. These results provide strong evidence that LD can sufficiently ameliorate diarrhoea in mice by regulating their gut microbiota. The findings presented here highlight that Limonitum may constitute a prospective remedy for diarrhoea.
Collapse
Affiliation(s)
- Y L Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - B F Yan
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing, China
| | - J Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - S L Dai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - J Liu
- 3College of Pharmacy, Jiangsu Health Vocational College, Nanjing, China
| | - X X Wang
- Chemistry and Bio-medicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - F Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - S C Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Y Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - C Y Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Q Zhao
- Geological Survey of Jiangsu Province, Geological Society of Jiangsu Province, Nanjing, China
| | - H B Wang
- Suzhou Leiyunshang Pharmaceutical Co. Ltd., Suzhou, China
| | - D K Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|