1
|
Chen M, Wang Y, Yuan P, Wang L, Li X, Lei B. Multifunctional bioactive glass nanoparticles: surface-interface decoration and biomedical applications. Regen Biomater 2024; 11:rbae110. [PMID: 39323748 PMCID: PMC11422188 DOI: 10.1093/rb/rbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Developing bioactive materials with multifunctional properties is crucial for enhancing their biomedical applications in regenerative medicine. Bioactive glass nanoparticle (BGN) is a new generation of biomaterials that demonstrate high biocompatibility and tissue-inducing capacity. However, the hard nanoparticle surface and single surface property limited their wide biomedical applications. In recent years, the surface functional strategy has been employed to decorate the BGN and improve its biomedical applications in bone tissue repair, bioimaging, tumor therapy and wound repair. This review summarizes the progress of surface-interface design strategy, customized multifunctional properties and biomedical applications in detail. We also discussed the current challenges and further development of multifunctional BGN to meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Yidan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Xiaocheng Li
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
2
|
Menshikh K, Reddy AK, Cochis A, Fraulini F, Zambon A, Lusvardi G, Rimondini L. Bifunctional mesoporous glasses for bone tissue engineering: Biological effects of doping with cerium and polyphenols in 2D and 3D in vitro models. BIOMATERIALS AND BIOSYSTEMS 2024; 14:100095. [PMID: 38912165 PMCID: PMC11192985 DOI: 10.1016/j.bbiosy.2024.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
This study evaluates the cytocompatibility of cerium-doped mesoporous bioactive glasses (Ce-MBGs) loaded with polyphenols (Ce-MBGs-Poly) for possible application in bone tissue engineering after tumour resection. We tested MBGs powders and pellets on 2D and 3D in vitro models using human bone marrow-derived mesenchymal stem cells (hMSCs), osteosarcoma cells (U2OS), and endothelial cells (EA.hy926). Promisingly, at a low concentration in culture medium, Poly-loaded MBGs powders containing 1.2 mol% of cerium inhibited U2OS metabolic activity, preserved hMSCs viability, and had no adverse effects on EA.hy926 migration. Moreover, the study discussed the possible interaction between cerium and Poly, influencing anti-cancer effects. In summary, this research provides insights into the complex interactions between Ce-MBGs, Poly, and various cell types in distinct 2D and 3D in vitro models, highlighting the potential of loaded Ce-MBGs for post-resection bone tissue engineering with a balance between pro-regenerative and anti-tumorigenic activities.
Collapse
Affiliation(s)
- Ksenia Menshikh
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Ajay Kumar Reddy
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Francesca Fraulini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Alfonso Zambon
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
3
|
Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Cholewa-Kowalska K. Bioactive Glasses Modulate Anticancer Activity and Other Polyphenol-Related Properties of Polyphenol-Loaded PCL/Bioactive Glass Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24261-24273. [PMID: 38709741 PMCID: PMC11103658 DOI: 10.1021/acsami.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, bioactive glass (BG) particles obtained by three different methods (melt-quenching, sol-gel, and sol-gel-EISA) were used as modifiers of polyphenol-loaded PCL-based composites. The composites were loaded with polyphenolic compounds (PPh) extracted from sage (Salvia officinalis L.). It was hypothesized that BG particles, due to their different textural properties (porosity, surface area) and surface chemistry (content of silanol groups), would act as an agent to control the release of polyphenols from PCL/BG composite films and other significant properties associated with and affected by the presence of PPh. The polyphenols improved the hydrophilicity, apatite-forming ability, and mechanical properties of the composites and provided antioxidant and anticancer activity. As the BG particles had different polyphenol-binding capacities, they modulated the kinetics of polyphenol release from the composites and the aforementioned properties to a great extent. Importantly, the PPh-loaded materials exhibited multifaceted and selective anticancer activity, including ROS-mediated cell cycle arrest and apoptosis of osteosarcoma (OS) cells (Saos-2) via Cdk2-, GADD45G-, and caspase-3/7-dependent pathways. The materials showed a cytotoxic and antiproliferative effect on cancerous osteoblasts but not on normal human osteoblasts. These results suggest that the composites have great potential as biomaterials for treating bone defects, particularly following surgical removal of OS tumors.
Collapse
Affiliation(s)
- Michal Dziadek
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Kinga Dziadek
- Faculty
of Food Technology, Department of Human Nutrition and Dietetics, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Kamila Checinska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Barbara Zagrajczuk
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| |
Collapse
|
4
|
Kargozar S, Hooshmand S, Hosseini SA, Gorgani S, Kermani F, Baino F. Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196642. [PMID: 36235178 PMCID: PMC9573515 DOI: 10.3390/molecules27196642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
Abstract
Elevated levels of oxidative stress are usually observed following injuries, leading to impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great opportunity for imparting specific biological activities to them. On this point, BGs may easily become antioxidant substances through simple physicochemical modifications. For example, particular antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses. On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs (MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they make it possible to load antioxidants and deliver them to the desired locations. However, there are actually limited in vivo experimental studies on the capability of modified BGs for scavenging free radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and regeneration. The present work aims to highlight the potential of different types of BGs in modulating oxidative stress and subsequently improving tissue healing.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: S.K: (S.K.); (F.B.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Farzad Kermani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Correspondence: S.K: (S.K.); (F.B.)
| |
Collapse
|
5
|
Lusvardi G, Fraulini F, D’Addato S, Zambon A. Loading with Biomolecules Modulates the Antioxidant Activity of Cerium-Doped Bioactive Glasses. ACS Biomater Sci Eng 2022; 8:2890-2898. [PMID: 35696677 PMCID: PMC9937534 DOI: 10.1021/acsbiomaterials.2c00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to identify new bioactive glasses (BGs) with optimal antioxidant properties, we carried out an evaluation of a series of cerium-doped BGs [Ce-BGs─H, K, and mesoporous bioactive glasses (MBGs)] loaded with different biomolecules, namely, gallic acid, polyphenols (POLY), and anthocyanins. Quantification of loading at variable times highlighted POLY on MBGs as the system with the highest loading. The ability to dismutate hydrogen peroxide (catalase-like activity) of the BGs evaluated is strongly correlated with cerium doping, while it is marginally decreased compared to the parent BG upon loading with biomolecules. Conversely, unloaded Ce-BGs show only a marginal ability to dismutate the superoxide anion (SOD)-like activity, while upon loading with biomolecules, POLY in particular, the SOD-like activity is greatly enhanced for these materials. Doping with cerium and loading with biomolecules give complementary antioxidant properties to the BGs investigated; combined with the persistent bioactivity, this makes these materials prime candidates for upcoming studies on biological systems.
Collapse
Affiliation(s)
- Gigliola Lusvardi
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via G.Campi 103, Modena 41125, Italy,
| | - Francesca Fraulini
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via G.Campi 103, Modena 41125, Italy
| | - Sergio D’Addato
- Department
of Physical, Information and Mathematical Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/a, Modena 41125, Italy,Istituto
Nanoscienze−CNR, Via G. Campi 213/a, Modena 41125, Italy
| | - Alfonso Zambon
- Department
of Chemical and Geological Sciences, University
of Modena and Reggio Emilia, Via G.Campi 103, Modena 41125, Italy,
| |
Collapse
|
6
|
Zhang M, Lu X, Zhang G, Liao X, Wang J, Zhang N, Yu C, Zeng G. Novel Cellulose Nanocrystals-Based Polyurethane: Synthesis, Characterization and Antibacterial Activity. Polymers (Basel) 2022; 14:polym14112197. [PMID: 35683870 PMCID: PMC9182890 DOI: 10.3390/polym14112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
As a new type of polymer, water-driven polyurethane (PU) has attracted increasing attention of researchers; however, with the popularization of its application, the following infection problems limit their applications, especially in the biomedical field. Herein, a series of novel cellulose nanocrystals (CNCs)-based PUs were first synthesized by chemical cross-linking CNCs with triblock copolymer polylactide–poly (ethylene glycol)–polylactide (CNC-PU). After covalent binding with tannic acid (TA-CNC-PU), the silver nanoparticles (Ag NPs) were further introduced into the material by a reduction reaction (Ag/TA-CNC-PU). Finally, the prepared serial CNCs-based PU nanocomposites were fully characterized, including the microstructure, water contact angle, water uptake, thermal properties as well as antibacterial activity. Compared with CNC-PU, the obtained TA-CNC-PU and Ag/TA-CNC-PU were capable of lower glass transition temperatures and improved thermal stability. In addition, we found that the introduction of tannic acid and Ag NPs clearly increased the material hydrophobicity and antibacterial activity. In particular, the Ag/TA-CNC-PU had a better antibacterial effect on E. coli, while TA-CNC-PU had better inhibitory effect on S. aureus over a 24 h time period. Therefore, these novel CNCs-based PUs may be more beneficial for thermal processing and could potentially be developed into a new class of smart biomaterial material with good antibacterial properties by adjusting the ratio of TA or Ag NPs in their structures.
Collapse
Affiliation(s)
- Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Xiujuan Lu
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Guiping Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Jiale Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Na Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China; (M.Z.); (X.L.); (G.Z.); (X.L.); (J.W.); (N.Z.)
| | - Chunyi Yu
- Department of Construction Management and Real Estate, Chongqing Jianzhu College, Chongqing 400072, China
- Correspondence: (C.Y.); (G.Z.); Tel./Fax: +86-178-3086-2118 (C.Y.); +86-139-9647-1404 (G.Z.)
| | - Guoming Zeng
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China
- Correspondence: (C.Y.); (G.Z.); Tel./Fax: +86-178-3086-2118 (C.Y.); +86-139-9647-1404 (G.Z.)
| |
Collapse
|
7
|
Xing Y, Liao X, Liu X, Li W, Huang R, Tang J, Xu Q, Li X, Yu J. Characterization and Antimicrobial Activity of Silver Nanoparticles Synthesized with the Peel Extract of Mango. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5878. [PMID: 34640275 PMCID: PMC8510210 DOI: 10.3390/ma14195878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/05/2023]
Abstract
The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.
Collapse
Affiliation(s)
- Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xingmei Liao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Wenxiu Li
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Department of Agricultural Technology, Neijiang Vocational and Technical College, Neijiang 641000, China
| | - Ruihan Huang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jing Tang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xuanlin Li
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jinze Yu
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China;
| |
Collapse
|
8
|
Deraine A, Rebelo Calejo MT, Agniel R, Kellomäki M, Pauthe E, Boissière M, Massera J. Polymer-Based Honeycomb Films on Bioactive Glass: Toward a Biphasic Material for Bone Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29984-29995. [PMID: 34129320 PMCID: PMC8289249 DOI: 10.1021/acsami.1c03759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 05/03/2023]
Abstract
The development of innovative materials for bone tissue engineering to promote bone regeneration while avoiding fibrous tissue infiltration is of paramount importance. Here, we combined the known osteopromotive properties of bioactive glasses (BaGs) with the biodegradability, biocompatibility, and ease to shape/handle of poly-l-co-d,l-lactic acid (PLDLA) into a single biphasic material. The aim of this work was to unravel the role of the surface chemistry and topography of BaG surfaces on the stability of a PLDLA honeycomb membrane, in dry and wet conditions. The PLDLA honeycomb membrane was deposited using the breath figure method (BFM) on the surface of untreated BaG discs (S53P4 and 13-93B20), silanized with 3-aminopropyltriethoxysilane (APTES) or conditioned (immersed for 24 h in TRIS buffer solution). The PLDLA membranes deposited onto the BaG discs, regardless of their composition or surface treatments, exhibited a honeycomb-like structure with pore diameter ranging from 1 to 5 μm. The presence of positively charged amine groups (APTES grafting) or the precipitation of a CaP layer (conditioned) significantly improved the membrane resistance to shear as well as its stability upon immersion in the TRIS buffer solution. The obtained results demonstrated that the careful control of the substrate surface chemistry enabled the deposition of a stable honeycomb membrane at their surface. This constitutes a first step toward the development of new biphasic materials enabling osteostimulation (BaG) while preventing migration of fibrous tissue inside the bone defect (honeycomb polymer membrane).
Collapse
Affiliation(s)
- A. Deraine
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - M. T. Rebelo Calejo
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - R. Agniel
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - M. Kellomäki
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - E. Pauthe
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - M. Boissière
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - J. Massera
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| |
Collapse
|
9
|
Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Golda-Cepa M, Brzychczy-Wloch M, Menaszek E, Kopec A, Cholewa-Kowalska K. PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioact Mater 2021; 6:1811-1826. [PMID: 34632164 PMCID: PMC8484899 DOI: 10.1016/j.bioactmat.2020.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
In this work, polymeric and bioactive glass (BG)-modified composite films were successfully loaded with polyphenols (PPh) extracted from sage. It was hypothesized that PPh, alone and in combination with BGs particles, would affect physicochemical and biological properties of the films. Furthermore, sol-gel-derived BG particles would serve as an agent for control the release of the polyphenolic compounds, and other important properties related to the presence of PPh. The results showed that polyphenolic compounds significantly modified numerous material properties and also acted as biologically active substances. On the one hand, PPh can be considered as plasticizers for PCL, on the other hand, they can act as coupling agent in composite materials, improving their mechanical performance. The presence of PPh in materials improved their hydrophilicity and apatite-forming ability, and also provided antioxidant activity. What is important is that the aforementioned properties and kinetics of PPh release can be modulated by the use of various concentrations of PPh, and by the modification of PCL matrix with sol-gel-derived BG particles, capable of binding PPh. The films containing the lowest concentration of PPh exhibited cytocompatibility, significantly increased alkaline phosphatase activity and the expression of bone extracellular matrix proteins (osteocalcin and osteopontin) in human normal osteoblasts, while they reduced intracellular reactive oxygen species production in macrophages. Furthermore, materials loaded with PPh showed antibiofilm properties against Gram positive and Gram negative bacteria. The results suggest that obtained materials represent potential multifunctional biomaterials for bone tissue engineering with a wide range of tunable properties.
Collapse
Affiliation(s)
- Michal Dziadek
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa St., 30-387, Krakow, Poland
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Kinga Dziadek
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, 122 Balicka St., 30-149, Krakow, Poland
| | - Kamila Checinska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Barbara Zagrajczuk
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Monika Golda-Cepa
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa St., 30-387, Krakow, Poland
| | - Monika Brzychczy-Wloch
- Jagiellonian University, Medical College, Department of Molecular Medical Microbiology, 18 Czysta St., 31-121, Krakow, Poland
| | - Elzbieta Menaszek
- Jagiellonian University, Medical College, Department of Cytobiology, 9 Medyczna St., 30-688, Krakow, Poland
| | - Aneta Kopec
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, 122 Balicka St., 30-149, Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| |
Collapse
|
10
|
He X, Gopinath K, Sathishkumar G, Guo L, Zhang K, Lu Z, Li C, Kang ET, Xu L. UV-Assisted Deposition of Antibacterial Ag-Tannic Acid Nanocomposite Coating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20708-20717. [PMID: 33900718 DOI: 10.1021/acsami.1c03566] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The marked increase in bacterial colonization of medical devices and multiple drug resistance to traditional antibiotics underline the pressing need for developing novel antibacterial surface coatings. In the present investigation, natural polyphenol tannic acid (TA)-capped silver nanoparticles (TA-Ag NPs) were synthesized via an environmentally friendly and sustainable one-step redox reaction under UV irradiation with a simultaneous and uniform deposition on polydimethylsiloxane (PDMS) and other substrate surfaces. In the synthesis process, the dihydroxyphenyl and trihydroxyphenyl groups of TA actively participate in Ag+ reduction, forming co-ordination linkages with Ag NPs and bestowing the deposition on the PDMS surface. The physico-chemical features of TA-Ag NPs were characterized in detail. Microscopic examination, surface elemental analysis, and wettability measurements clearly reveal the decoration of TA-Ag NPs on the substrate surfaces. The modified PDMS surfaces can kill the adhered bacteria or resist the bacterial adhesion, and no live bacteria can be found on their surfaces. Most importantly, the modified PDMS surfaces exhibit predominant antibacterial effects both in vitro in the catheter bridge model and in vivo in a rat subcutaneous infection model. On the other hand, the functionalized surfaces exhibit only a negligible level of cytotoxicity against L929 mouse fibroblasts with no side effects on the major organs of Sprague-Dawley rats after implantation, indicating their biocompatibility for potential biomedical applications.
Collapse
Affiliation(s)
- Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Kasi Gopinath
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Gnanasekar Sathishkumar
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Lingli Guo
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - Zhisong Lu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - Changming Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
11
|
Dos Santos AN, de L Nascimento TR, Gondim BLC, Velo MMAC, de A Rêgo RI, do C Neto JR, Machado JR, da Silva MV, de Araújo HWC, Fonseca MG, Castellano LRC. Catechins as Model Bioactive Compounds for Biomedical Applications. Curr Pharm Des 2021; 26:4032-4047. [PMID: 32493187 DOI: 10.2174/1381612826666200603124418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
Research regarding polyphenols has gained prominence over the years because of their potential as pharmacological nutrients. Most polyphenols are flavanols, commonly known as catechins, which are present in high amounts in green tea. Catechins are promising candidates in the field of biomedicine. The health benefits of catechins, notably their antioxidant effects, are related to their chemical structure and the total number of hydroxyl groups. In addition, catechins possess strong activities against several pathogens, including bacteria, viruses, parasites, and fungi. One major limitation of these compounds is low bioavailability. Catechins are poorly absorbed by intestinal barriers. Some protective mechanisms may be required to maintain or even increase the stability and bioavailability of these molecules within living organisms. Moreover, novel delivery systems, such as scaffolds, fibers, sponges, and capsules, have been proposed. This review focuses on the unique structures and bioactive properties of catechins and their role in inflammatory responses as well as provides a perspective on their use in future human health applications.
Collapse
Affiliation(s)
- Adriana N Dos Santos
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Tatiana R de L Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna L C Gondim
- Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraiba, Campina Grande, PB, Brazil
| | - Marilia M A C Velo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Renaly I de A Rêgo
- Post-Graduation Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Paraiba, Campina Grande, PB, Brazil
| | - José R do C Neto
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana R Machado
- Post-Graduation Program in Tropical Medicine and Public Health, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos V da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Helvia W C de Araújo
- Department of Chemistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Maria G Fonseca
- Research Center for Fuels and Materials (NPE - LACOM), Department of Chemistry, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Lúcio R C Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
12
|
Ferlenda G, Cazzola M, Ferraris S, Cochis A, Kumar A, Prenesti E, Spriano S, Vernè E. Surface Functionalization of a Silica-Based Bioactive Glass with Compounds from Rosa canina Bud Extracts. ACS Biomater Sci Eng 2021; 7:96-104. [PMID: 33455203 PMCID: PMC8016168 DOI: 10.1021/acsbiomaterials.0c01170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/02/2020] [Indexed: 12/02/2022]
Abstract
Bud extracts are a new category of vegetal products, which are used in gemmotherapy. These products are liquid preparation sources of bioactive molecules (phytochemicals) and are used in medicine as health-promoting agents. Rosa canina is a medicinal plant belonging to the family Rosaceae. The R. canina bud extracts, in particular, possess anti-inflammatory and antioxidant activities due to the presence of flavonoids and other phenolic compounds. The combination of R. canina bud extracts with biomaterials can be promising for obtaining multifunctional materials carrying both inorganic and biological properties. In this work, a protocol of functionalization has been properly designed, for the first time in the literature, in order to graft various bud extracts of R. canina to a silica-based bioactive glass (CEL2). The Folin-Ciocalteu method was used to determine the redox capacity of total polyphenols in the extracts and on functionalized solid samples. X-ray photoelectron spectroscopy analysis and fluorescence microscopy were employed to investigate the presence of phenol substances on the material surface. Bioactivity (in terms of ability of inducing hydroxyapatite precipitation) has been investigated by soaking the samples, with or without functionalization, in simulated body fluid. The presence of the polyphenols from bud extracts not only preserved glass bioactivity but even enhanced it. In particular, the solution obtained from the byproducts of primary extraction in glycerol macerate showed the best performances. Moreover, the presence and antioxidant activity of bud extract compounds on the material surface after grafting demonstrate the possibility of combining the glass inorganic bioactivity with the biomolecule-specific properties, making possible a local action at the implant site. The promising results reported in this work pave the way for the realization of new multifunctional materials with a green approach.
Collapse
Affiliation(s)
- Giulia Ferlenda
- Politecnico
di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Martina Cazzola
- Politecnico
di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Sara Ferraris
- Politecnico
di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Andrea Cochis
- Department
of Health Sciences, Center for Translational Research on Autoimmune
and Allergic Diseases - CAAD, University
of Piemonte Orientale UPO, c.so Trieste 15/A, 28100, Novara, Italy
| | - Ajay Kumar
- Department
of Health Sciences, Center for Translational Research on Autoimmune
and Allergic Diseases - CAAD, University
of Piemonte Orientale UPO, c.so Trieste 15/A, 28100, Novara, Italy
| | - Enrico Prenesti
- Department
of Chemistry, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Silvia Spriano
- Politecnico
di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Enrica Vernè
- Politecnico
di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| |
Collapse
|
13
|
Silva J, Vanat P, Marques-da-Silva D, Rodrigues JR, Lagoa R. Metal alginates for polyphenol delivery systems: Studies on crosslinking ions and easy-to-use patches for release of protective flavonoids in skin. Bioact Mater 2020; 5:447-457. [PMID: 32280834 PMCID: PMC7139165 DOI: 10.1016/j.bioactmat.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Incorporation of bioactive natural compounds like polyphenols is an attractive approach for enhanced functionalities of biomaterials. In particular flavonoids have important pharmacological activities, and controlled release systems may be instrumental to realize the full potential of these phytochemicals. Alginate presents interesting attributes for dermal and other biomaterial applications, and studies were carried here to support the development of polyphenol-loaded alginate systems. Studies of capillary viscosity indicated that ionic medium is an effective strategy to modulate the polyelectrolyte effect and viscosity properties of alginates. On gelation, considerable differences were observed between alginate gels produced with Ca2+, Ba2+, Cu2+, Fe2+, Fe3+ and Zn2+ as crosslinkers, especially concerning shrinkage and morphological regularity. Stability assays with different polyphenols in the presence of alginate-gelling cations pointed to the choice of calcium, barium and zinc as safer crosslinkers. Alginate-based films loaded with epicatechin were prepared and the kinetics of release of the flavonoid investigated. The results with calcium, barium and zinc alginate matrices indicated that the release dynamics is dependent on film thicknesses, but also on the crosslinking metal used. On these grounds, an alginate-based system of convenient use was devised, so that flavonoids can be easily loaded at simple point-of-care conditions before dermal application. This epicatechin-loaded patch was tested on an ex-vivo skin model and demonstrated capacity to deliver therapeutically relevant concentrations on skin surface. Moreover, the flavonoid released was not modified and retained full antioxidant bioactivity. The alginate-based system proposed offers a multifunctional approach for flavonoid controllable delivery and protection of skin injured or under risk.
Collapse
Affiliation(s)
- João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
| | - Pavlo Vanat
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
| | | | - Joaquim Rui Rodrigues
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
- Laboratório Associado LSRE-LCM, School of Technology and Management, Polytechnic Institute of Leiria, Portugal
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Portugal
- UCIBIO-Faculty of Science and Technology, NOVA University of Lisbon, Portugal
| |
Collapse
|
14
|
Das CA, Kumar VG, Dhas TS, Karthick V, Govindaraju K, Joselin JM, Baalamurugan J. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101593] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Development of Vitroceramic Coatings and Analysis of Their Suitability for Biomedical Applications. COATINGS 2019. [DOI: 10.3390/coatings9100671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within the field of tissue engineering, thin films have been studied to improve implant fixation of metallic or ceramic materials in bone, connective tissue, oral mucosa or skin. In this context, to enhance their suitability as implantable devices, titanium-based substrates received a superficial vitroceramic coating by means of laser ablation. Further, this study describes the details of fabrication and corresponding tests in order to demonstrate the bioactivity and biocompatibility of the newly engineered surfaces. Thus, the metallic supports were covered with a complex material composed of SiO2, P2O5, CaO, MgO, ZnO and CaF2, in the form of thin layers via a physical deposition techniques, namely pulsed laser deposition. The resulting products were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, selected area electron diffraction, and electron energy loss spectroscopy. It was found that a higher substrate temperature and a lower working pressure lead to the highest quality film. Finally, the samples biocompatibility was assessed and they were found to be bioactive after simulated body fluid soaking and biocompatible through the MTT cell viability test.
Collapse
|