1
|
Cantons JM, Bachhuka A, Marsal LF. Sensing Platform Based on Gold Nanoclusters and Nanoporous Anodic Alumina for Preeclampsia Detection. BIOSENSORS 2024; 14:610. [PMID: 39727876 DOI: 10.3390/bios14120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia. This platform integrates the high surface area properties of nanoporous anodic alumina (NAA) with the unique optical characteristics of gold nanoclusters (AuNCs) to achieve enhanced detection capabilities. The NAA surface functionalized to promote attachment of AuNCs, which then was functionalized with specific antibodies to confer selectivity towards endoglin. Photoluminescence (PL) analysis of the biosensor demonstrated a linear detection range of 10-50 ng/mL, with a detection limit of 5.4 ng/mL and a sensitivity of 0.004 a.u./(ng/mL). This proof-of-concept study suggests that the NAA-AuNCs-based biosensing platform holds significant potential for the development of ultrasensitive, portable, and cost-effective diagnostic tools for preeclampsia, offering a promising avenue for advancing prenatal care.
Collapse
Affiliation(s)
- Josep Maria Cantons
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Lluis F Marsal
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain
| |
Collapse
|
2
|
Song S, Han L, Chen M, Pan L, Tu K. Recent Progress in Nanomaterial-Based Fluorescence Assays for the Detection of Food-Borne Pathogens. SENSORS (BASEL, SWITZERLAND) 2024; 24:7715. [PMID: 39686252 DOI: 10.3390/s24237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Food safety is of great concern, and food-borne bacterial infections and diseases are a major crisis for health. Therefore, it is necessary to develop rapid detection techniques for the prevention and recognition of food safety hazards caused by food-borne pathogens. In recent years, the fluorescence assay has become a widely utilized detection method due to its good signal amplification effect, high detection sensitivity, high stability, and short detection time. In this review, the different kinds of fluorescence materials were concentrated, including quantum dots (QDs), carbon dots (CDs), metal-organic frameworks (MOFs), and upconversion nanoparticles (UCNPs). The optical properties and applications of different kinds of fluorescent materials were analyzed and compared. Furthermore, according to the biosensing components, different fluorescence biosensors are reviewed, including label-free based fluorescence probes, aptamer-based biosensors, and antibody-based biosensors. Finally, we focused our attention on the discussion of fluorescent detection techniques combined with other techniques and their applications. The review presents future trends in fluorescence sensors, providing new sights for the detection of food-borne pathogens.
Collapse
Affiliation(s)
- Shiyu Song
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Park S, Nguyen VP, Wang X, Paulus YM. Gold Nanoparticles for Retinal Molecular Optical Imaging. Int J Mol Sci 2024; 25:9315. [PMID: 39273264 PMCID: PMC11395175 DOI: 10.3390/ijms25179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging.
Collapse
Affiliation(s)
- Sumin Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Yannis M. Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Ali R, Saleh SM. Design a Friendly Nanoscale Chemical Sensor Based on Gold Nanoclusters for Detecting Thiocyanate Ions in Food Industry Applications. BIOSENSORS 2024; 14:223. [PMID: 38785697 PMCID: PMC11118002 DOI: 10.3390/bios14050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The surfactant cetyltrimethylammonium bromide (CTAB) induces the aggregation of gold nanoclusters (GNCs), leading to the development of a proposed fluorometric technique for detecting thiocyanate (SCN-) ions based on an anti-aggregation mechanism. This approach is straightforward to execute, highly sensitive, and selective. A significant quenching effect occurs in fluorescence upon using the aggregation agent CTAB in GNCs synthesis, resulting in a transition from intense red fluorescence to dim red. The decrease in fluorescence intensity of GNCs in the presence of CTAB is caused by the mechanism of fluorescence quenching mediated by aggregation. As the levels of SCN- rise, the fluorescence of CTAB-GNCs increases; this may be detected using spectrofluorometry or by visually inspecting under UV irradiation. The recovery of red fluorescence of CTAB-GNCs in the presence of SCN- enables the precise and discerning identification of SCN- within the concentration range of 2.86-140 nM. The minimum detectable concentration of the SCN- ions was 1 nM. The selectivity of CTAB-GNCs towards SCN- ions was investigated compared to other ions, and it was demonstrated that CTAB-GNCs exhibit exceptional selectivity. Furthermore, we believe that CTAB-GNCs have novel possibilities as favorable sensor candidates for various industrial applications. Our detection technique was validated by analyzing SCN- ions in milk samples, which yielded promising results.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Department of Petroleum Refining and Petrochemical Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
5
|
Talapphet N, Huh CS, Kim MM. Development of gold nanocluster complex for the detection of tumor necrosis factor-alpha based on immunoassay. J Immunol Methods 2024; 527:113648. [PMID: 38373541 DOI: 10.1016/j.jim.2024.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Tumor necrosis factor-alpha, TNF-α, a cytokine recognized as a key regulator of inflammatory responses, is primarily produced by activated monocytes and macrophages. Measuring TNF-α levels serves as a valuable indicator for tracking several diseases and pathological states. Gold nanotechnology has been identified as a highly effective catalyst with unique properties for measuring inflammatory cytokines. This study aimed to synthesize gold nanoclusters (AuNCs) and the AuNCs-streptavidin system, along with their characterizations and spherical morphology. The detection of TNF-α antigen with AuNCs was determined, and a new immunoassay-based AuNCs analytical platform was studied. In this study, it was demonstrated that the synthesized AuNCs and AuNCs-streptavidin showed a bright-yellow appearance with absorption peaks at A600 and A610 nm, respectively. The approximately spherical shape was observed by TEM analysis. The AuNCs demonstrated a sensitivity limit for the detection of the TNF-α antigen, with a linear dose-dependent detection range of less than 1.25 ng/mL. The products of the band sizes and band intensities were proportional to the amount of TNF-α in the range of ∼80 kDa, ∼55 kDa, and ∼ 25 kDa in western blot analysis. The TNF-α in cell lysate was successfully detected using an immunoassay after the activation of RAW264.7 cells with lipopolysaccharide (LPS). This assay may serve as a viable alternative for TNF-α detection with high speed, sensitivity, and qualities, ensuring its broad applications.
Collapse
Affiliation(s)
- Natchanok Talapphet
- Department of Applied Chemistry, Dong-Eui University, Busan 47340, Republic of Korea
| | - Chang Soon Huh
- Department of Applied Chemistry, Dong-Eui University, Busan 47340, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 47340, Republic of Korea.
| |
Collapse
|
6
|
Singh KR, Natarajan A, Pandey SS. Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach. ACS APPLIED BIO MATERIALS 2023; 6:4549-4571. [PMID: 37852204 DOI: 10.1021/acsabm.3c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu 641004, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
7
|
Shen Q, Hossain F, Fang C, Shu T, Zhang X, Law JLM, Logan M, Houghton M, Tyrrell DL, Joyce MA, Serpe MJ. Bovine Serum Albumin-Protected Gold Nanoclusters for Sensing of SARS-CoV-2 Antibodies and Virus. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37314985 DOI: 10.1021/acsami.3c03705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An approach to assess severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (and past infection) was developed. For virus detection, the SARS-CoV-2 virus nucleocapsid protein (NP) was targeted. To detect the NP, antibodies were immobilized on magnetic beads to capture the NPs, which were subsequently detected using rabbit anti-SARS-CoV-2 nucleocapsid antibodies and alkaline phosphatase (AP)-conjugated anti-rabbit antibodies. A similar approach was used to assess SARS-CoV-2-neutralizing antibody levels by capturing spike receptor-binding domain (RBD)-specific antibodies utilizing RBD protein-modified magnetic beads and detecting them using AP-conjugated anti-human IgG antibodies. The sensing mechanism for both assays is based on cysteamine etching-induced fluorescence quenching of bovine serum albumin-protected gold nanoclusters where cysteamine is generated in proportion to the amount of either SARS-CoV-2 virus or anti-SARS-CoV-2 receptor-binding domain-specific immunoglobulin antibodies (anti-RBD IgG antibodies). High sensitivity can be achieved in 5 h 15 min for the anti-RBD IgG antibody detection and 6 h 15 min for virus detection, although the assay can be run in "rapid" mode, which takes 1 h 45 min for the anti-RBD IgG antibody detection and 3 h 15 min for the virus. By spiking the anti-RBD IgG antibodies and virus in serum and saliva, we demonstrate that the assay can detect the anti-RBD IgG antibodies with a limit of detection (LOD) of 4.0 and 2.0 ng/mL in serum and saliva, respectively. For the virus, we can achieve an LOD of 8.5 × 105 RNA copies/mL and 8.8 × 105 RNA copies/mL in serum and saliva, respectively. Interestingly, this assay can be easily modified to detect myriad analytes of interest.
Collapse
Affiliation(s)
- Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Faisal Hossain
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Changhao Fang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tong Shu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - John Lok Man Law
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael Logan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael Houghton
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
Suo Z, Niu X, Wei M, Jin H, He B. Latest strategies for rapid and point of care detection of mycotoxins in food: A review. Anal Chim Acta 2023; 1246:340888. [PMID: 36764774 DOI: 10.1016/j.aca.2023.340888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Mycotoxins contaminated in agricultural products are often highly carcinogenic and genotoxic to humans. With the streamlining of the food industry chain and the improvement of food safety requirements, the traditional laboratory testing mode is constantly challenged due to the expensive equipment, complex operation steps, and lag in testing results. Therefore, rapid detection methods are urgently needed in the food safety system. This review focuses on the latest strategies that can achieve rapid and on-site testing, with particular attention to the nanomaterials integrated biosensors. To provide researchers with the latest trends and inspiration in the field of rapid detection, we summarize several strategies suitable for point of care testing (POCT) of mycotoxins, including enzyme-linked immunoassay (ELISA), lateral flow assay (LFA), fluorescence, electrochemistry, and colorimetry assay. POCT-based strategies are all developing towards intelligence and portability, especially when combined with smartphones, making it easier to read signals for intuitive access and analysis of test data. Detection performance of the devices has also improved considerably with the integration of biosensors and nanomaterials.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xingyuan Niu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Bera N, Kiran Nandi P, Hazra R, Sarkar N. Aggregation induced emission of surface ligand controlled gold nanoclusters employing imidazolium surface active ionic liquid and pH sensitivity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Zhou J, Gui Y, Lv X, He J, Xie F, Li J, Cai J. Nanomaterial-Based Fluorescent Biosensor for Food Safety Analysis. BIOSENSORS 2022; 12:1072. [PMID: 36551039 PMCID: PMC9775463 DOI: 10.3390/bios12121072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues have become a major threat to public health and have garnered considerable attention. Rapid and effective detection methods are crucial for ensuring food safety. Recently, nanostructured fluorescent materials have shown considerable potential for monitoring the quality and safety of food because of their fascinating optical characteristics at the nanoscale. In this review, we first introduce biomaterials and nanomaterials for food safety analysis. Subsequently, we perform a comprehensive analysis of food safety using fluorescent biosensors based on nanomaterials, including mycotoxins, heavy metals, antibiotics, pesticide residues, foodborne pathogens, and illegal additives. Finally, we provide new insights and discuss future approaches for the development of food safety detection, with the aim of improving fluorescence detection methods for the practical application of nanomaterials to ensure food safety and protect human health.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Gui
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuqin Lv
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjie Li
- Institute of System and Engineering, Beijing 100010, China
| | - Jie Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Fluorescence Quenching of Tyrosine-Ag Nanoclusters by Metal Ions: Analytical and Physicochemical Assessment. Int J Mol Sci 2022; 23:ijms23179775. [PMID: 36077173 PMCID: PMC9456322 DOI: 10.3390/ijms23179775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Abstract
A new synthesis method is described for the first time to produce silver nanoclusters (AgNCs) by using the tyrosine (Tyr) amino acid. Several important parameters (e.g., molar ratios, initial pH, reaction time etc.) were optimized to reach the highest yield. The formed Tyr-AgNCs show characteristic blue emission at λem = 410 nm, and two dominant fluorescence lifetime components were deconvoluted (τ1 ~ 3.7 and τ2 ~ 4.9 ns). The NCs contained metallic cores stabilized by dityrosine. For possible application, the interactions with several metal ions from the tap water and wastewater were investigated. Among the studied cations, four different ions (Cu2+, Ni2+, Fe3+, and Rh3+) had a dominant effect on the fluorescence of NCs. Based on the detected quenching processes, the limit of detection of the metal ions was determined. Static quenching (formation of a non-luminescent complex) was observed in all cases by temperature-dependent measurements. The calculated thermodynamic parameters showed that the interactions are spontaneous ranked in the following order of strength: Cu2+ > Fe3+ > Rh3+ > Ni2+. Based on the sign and relations of the standard enthalpy (ΔH°) and entropy changes (ΔS°), the dominant forces were also identified.
Collapse
|
13
|
Abstract
Gold nanoclusters (AuNCs) have become a promising material for bioimaging detection because of their tunable photoluminescence, large Stokes shift, low photobleaching, and good biocompatibility. Last decade, great efforts have been made to develop AuNCs for enhanced imaging contrast and multimodal imaging. Herein, an updated overview of recent advances in AuNCs was present for visible fluorescence (FL) imaging, near-infrared fluorescence (NIR-FL) imaging, two-photon near-infrared fluorescence (TP-NIR-FL) imaging, computed tomography (CT) imaging, positron emission tomography (PET) imaging, magnetic resonance imaging (MRI), and photoacoustic (PA) imaging. The justification of AuNCs applied in bioimaging mentioned above applications was discussed, the performance location of different AuNCs were summarized and highlighted in an unified parameter coordinate system of corresponding bioimaging, and the current challenges, research frontiers, and prospects of AuNCs in bioimaging were discussed. This review will bring new insights into the future development of AuNCs in bio-diagnostic imaging.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, Wuhan 430070, China
| | - Wenrui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
14
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
15
|
Yang C, Li T, Yang Q, Guo Y, Tao T. One-step hydrothermal synthesis of fluorescent silicon nanoparticles for sensing sulfide ions and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121048. [PMID: 35219270 DOI: 10.1016/j.saa.2022.121048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
We have presented a hydrothermal approach for synthesizing fluorescent silicon nanoparticles (F-SiNPs) with yellow-green emission. The obtained F-SiNPs exhibited excellent stability and good biocompatibility. By virtue of the specific reaction between S2- and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), colorimetric assay of S2- was realized with a good linear range of 0-100 μM. The colorimetric detection system could be further combined with F-SiNPs to construct a probe for fluorescence turn-off sensing S2- in aqueous solution due to inner filter effect. In the fluorescent detection system, a good linearity with S2- concentration in the range of 0-50 μM was accomplished. And as low as 0.1 μM S2- was successfully detected. Moreover, the F-SiNPs displayed low cytotoxicity and good biocompatibility, and was further utilized for cell imaging. These results demonstrated the promising applications of F-SiNPs in S2- analysis and bioimaging.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ting Li
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qin Yang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
16
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
17
|
Ratiometric Fluorescence Probe of Vesicle-like Carbon Dots and Gold Clusters for Quantitation of Cholesterol. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a facile method for the preparation of vesicle-like carbon dots (VCDs) via dry-heating of surfactant solutions. Like most reported CDs, the VCDs possess interesting fluorescence properties. Entrapment of enzymes and gold nanoclusters (AuNCs) inside the VCDs allows for the development of fluorescent probes for the quantitation of various substrates, with the advantages of high sensitivity and selectivity. The AuNCs act as a probe, and the VCDs as an internal standard confine the AuNCs, enzyme, and analyte to provide high local concentrations to enhance the assay sensitivity. In this study, we employed cholesterol oxidase (ChOX) as a model enzyme for the quantitation of cholesterol. The as-formed hydrogen peroxide through the enzyme reaction inside the VCDs causes fluorescence quenching of AuNCs (excitation/emission wavelengths of 320/670 nm), but not that of the VCDs (excitation/emission wavelengths of 320/400 nm). To improve the sensitivity and linearity, the fluorescence ratios of AuNCs/VCDs are plotted against analyte concentration. The present ratiometric fluorescent method allows for the detection of hydrogen peroxide over the concentration range of 1–100 μM, with a detection limit of 0.673 μM, and cholesterol concentrations ranging from 5 to 100 μM, with a detection limit of 2.8 μM. The practicality of this fluorescent method has been further validated by evaluating cholesterol levels in human serum samples with sufficient accuracy and recovery, revealing its great prospective in diagnosis and biomedical applications.
Collapse
|
18
|
Abbas G, Maqbool S, Shahzad MK, Afzaal M, Daud MU, Fatima NG, Ghuffar A. Analysis of gold nanospheres, nano ellipsoids, nanorods, and effect of core-shell structures for hyperthermia treatment. RSC Adv 2022; 12:9292-9298. [PMID: 35424852 PMCID: PMC8985326 DOI: 10.1039/d2ra00618a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/05/2022] [Indexed: 12/29/2022] Open
Abstract
Hyperthermia (HT) is a technique for treating malignancies by raising the temperature of the defected tissues. This technique has been used as a treatment to raise tumor area temperatures between 42 °C to 48 °C. Hyperthermia penetrates deeper malignant cells by heating the region of interest when magnetic nanoparticles (MNPs) are exposed to an externally induced magnetic field of the incident wave. In this work, numerical analysis was used to examine the temporal and spatial temperature distributions within a tumor. The temperature field was analyzed using the mass transfer and diffusion theories in the interstitial tissue. A bio-heating module in COMSOL Multi-Physics was used for different types of gold nanoparticles (AuNPs) including nanorods, nanospheres, and nano-ellipsoids with different shapes. The objective of this study is to analyze the use of AuNPs for hyperthermia. The results show that AuNPs achieve a maximum temperature for Au nanorods as compared to nano ellipsoids and nanospheres. The Au NPs achieve thermal equilibrium after 0.5 μs and are effective for hyperthermia treatment. The results describe the effect of nanoparticle shape and surface coating on thermal absorption around the nanoparticle in hyperthermia. The significance of Au NPs for hyperthermia is explained. It is expected that this study will be helpful in the future for hyperthermia treatment.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Physics, Riphah International University Faisalabad Campus Pakistan
| | - Saba Maqbool
- Department of Physics, Riphah International University Faisalabad Campus Pakistan
| | - Muhammad Khuram Shahzad
- Department of Physics, Khawaja Fareed University of Engineering & Information Technology Rahim Yar Khan Pakistan
| | - Muhammad Afzaal
- Department of Physics, Riphah International University Faisalabad Campus Pakistan
| | - Muhammad Usama Daud
- Department of Physics, Riphah International University Faisalabad Campus Pakistan
| | - Nazma Goher Fatima
- Department of Physics, Riphah International University Faisalabad Campus Pakistan
| | - Abdul Ghuffar
- Department of Physics, Riphah International University Faisalabad Campus Pakistan
| |
Collapse
|
19
|
Zeng C, Xie C, Zhang M, Cao C, Guo L, Wang M, Zhuang Q, Wang Y. Isonicotinamide-Stabilized Gold Nanoclusters as Fluorescent Probes for the Determination of 2,4,6-Trinitrophenol. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1970177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chao Zeng
- College of Chemistry, Nanchang University, Nanchang, China
| | - Chenxia Xie
- College of Chemistry, Nanchang University, Nanchang, China
| | - Min Zhang
- College of Chemistry, Nanchang University, Nanchang, China
| | - Chengdu Cao
- College of Chemistry, Nanchang University, Nanchang, China
| | - Luohua Guo
- College of Chemistry, Nanchang University, Nanchang, China
| | - Miao Wang
- College of Chemistry, Nanchang University, Nanchang, China
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang, China
| | - Yong Wang
- College of Chemistry, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Wang Y, Bürgi T. Ligand exchange reactions on thiolate-protected gold nanoclusters. NANOSCALE ADVANCES 2021; 3:2710-2727. [PMID: 34046556 PMCID: PMC8130898 DOI: 10.1039/d1na00178g] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/02/2021] [Indexed: 05/08/2023]
Abstract
As a versatile post-synthesis modification method, ligand exchange reaction exhibits great potential to extend the space of accessible nanoclusters. In this review, we summarized this process for thiolate-protected gold nanoclusters. In order to better understand this reaction we will first provide the necessary background on the synthesis and structure of various gold clusters, such as Au25(SR)18, Au38(SR)24, and Au102(SR)44. The previous investigations illustrated that ligand exchange is enabled by the chemical properties and flexible gold-sulfur interface of nanoclusters. It is generally believed that ligand exchange follows a SN2-like mechanism, which is supported both by experiments and calculations. More interesting, several studies show that ligand exchange takes place at preferred sites, i.e. thiolate groups -SR, on the ligand shell of nanoclusters. With the help of ligand exchange reactions many functionalities could be imparted to gold nanoclusters including the introduced of chirality to achiral nanoclusters, size transformation and phase transfer of nanoclusters, and the addition of fluorescence or biological labels. Ligand exchange was also used to amplify the enantiomeric excess of an intrinsically chiral cluster. Ligand exchange reaction accelerates the prosperity of the nanocluster field, and also extends the diversity of precise nanoclusters.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
21
|
Shao C, Xiong S, Cao X, Zhang C, Luo T, Liu G. Dithiothreitol-capped red emitting copper nanoclusters as highly effective fluorescent nanoprobe for cobalt (II) ions sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Fluorescent Labeling of Hyaluronic Acid-Chitosan Nanocarriers by Protein-Stabilized Gold Nanoclusters. CRYSTALS 2020. [DOI: 10.3390/cryst10121113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In medical research the visualization of drug carrier accumulation and release of the loaded drugs in vivo is an important field. In this work, two protein-stabilized gold nanoclusters (Au NCs) as effective fluorescent reporters (FRs) were investigated for labeling of biocompatible chitosan-modified hyaluronic acid based nanocarriers having two different structures. The colloid stability of the labeled carriers was studied by dynamic light scattering and Zeta potential measurements, while the changes in the fluorescence of the lysozyme- (LYZ) and bovine serum albumin (BSA)-stabilized Au NCs were analyzed by spectrofluorimetry and confocal fluorescent microscopy. We found that the labeling was effective with a wide range of marker:carrier mass ratios, and the fluorescence of the NCs and the colloid stability of the complexes were retained. Labeling during preparation and subsequent labeling were compared, and based on composition (nanocluster:carrier mass ratio) and structure of the complex systems we preferred the latter method, as it left the Au NCs free for further modifications. Considering both marker:carrier mass ratios and emission intensities, the LYZ-stabilized Au NCs proved to be better labels. The core-shell type carrier formulations showed increased fluorescence with LYZ-stabilized NCs, presumably from aggregation induced emission.
Collapse
|
23
|
Red-Emitting Hybrid Based on Eu 3+-dbm Complex Anchored on Silica Nanoparticles Surface by Carboxylic Acid for Biomarker Application. MATERIALS 2020; 13:ma13235494. [PMID: 33276560 PMCID: PMC7731015 DOI: 10.3390/ma13235494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Luminescent organic-inorganic hybrids containing lanthanides (Ln3+) have been prominent for applications such as luminescent bio-probes in biological assays. In this sense, a luminescent hybrid based on dense silica (SiO2) nanospheres decorated with Eu3+ β-diketonate complexes using dibenzoylmethane (Hdbm) as a luminescent antenna was developed by using a hierarchical organization in four steps: (i) anchoring of 3-aminopropyltriethoxysilane (APTES) organosilane on the SiO2 surface, (ii) formation of a carboxylic acid ligand, (iii) coordination of Eu3+ to the carboxylate groups and (iv) coordination of dbm- to Eu3+. The hybrid structure was elucidated through the correlation of thermogravimetry, silicon nuclear magnetic resonance and photoluminescence. Results indicate that the carboxylic acid-Eu3+-dbm hybrid was formed on the surface of the particles with no detectable changes on their size or shape after all the four steps (average size of 32 ± 7 nm). A surface charge of -27.8 mV was achieved for the hybrid, assuring a stable suspension in aqueous media. The Eu3+ complex provides intense red luminescence, characteristic of Eu3+5D0→7FJ electronic transitions, with an intrinsic emission quantum yield of 38%, even in an aqueous suspension. Therefore, the correlation of luminescence, structure, particle morphology and fluorescence microscopy images make the hybrid promising for application in bioimaging.
Collapse
|