1
|
Tomova Z, Tomov D, Davcheva D, Uzunova Y. Salivary Chromium and Cobalt Concentrations in Patients with Dental Metallic Restorations-A Pilot Study. Dent J (Basel) 2024; 12:362. [PMID: 39590412 PMCID: PMC11593078 DOI: 10.3390/dj12110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: Metal ions, released from dental alloys due to corrosion, come in contact with the cells of the surrounding tissues and may spread throughout the body via the gastrointestinal system, thus inducing dose-dependent cytopathological effects. This study aimed to assess and compare the salivary cobalt and chromium concentrations in individuals aged 18-65 years with and without dental restorations containing metal alloys. Methods: Participants were divided into two main groups according to the existence of metal alloys in the oral cavity-18 patients had fixed prosthetic restorations made of metal alloys, and 17 patients had no metal objects in their oral cavity. Each main group was subdivided into two subgroups according to the type of saliva sample-with or without additional stimulation. Salivary cobalt and chromium concentrations were measured by inductively coupled plasma mass spectrometry. A non-parametric Mann-Whitney test and Spearman's rank correlation coefficient were applied, and the level of significance was set to p < 0.05. Results: The results showed that the chromium level in non-stimulated saliva was higher in the group of patients with metal dental restorations. No statistical difference was found in cobalt levels. There was no statistical difference in Co or Cr concentrations in stimulated saliva between the studied groups. A positive correlation was found between Cr and Co concentrations in non-stimulated saliva and between cobalt concentrations in stimulated and non-stimulated saliva. Conclusions: Metal alloys in the oral cavity induced elevated chromium levels in non-stimulated saliva, and a correlation between chromium and cobalt ion concentration was found. A detailed examination of patients and their medical history prior to prosthetic treatment is advisable in order to avoid any undesired health effects.
Collapse
Affiliation(s)
- Zlatina Tomova
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 3, Hristo Botev Blvd., 4002 Plovdiv, Bulgaria
| | - Desislav Tomov
- Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, 15-A “Vasil Aprilov” Blvd., 4002 Plovdiv, Bulgaria; (D.T.); (D.D.)
| | - Delyana Davcheva
- Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, 15-A “Vasil Aprilov” Blvd., 4002 Plovdiv, Bulgaria; (D.T.); (D.D.)
- Department of Clinical Laboratory, Faculty of Medicine, Medical University of Plovdiv, 15-A “Vasil Aprilov” Blvd., 4002 Plovdiv, Bulgaria
| | - Yordanka Uzunova
- Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, 15-A “Vasil Aprilov” Blvd., 4002 Plovdiv, Bulgaria; (D.T.); (D.D.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15-A “Vasil Aprilov” Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Tripathi S, Raheem A, Dash M, Kumar P, Elsebahy A, Singh H, Manivasagam G, Nanda HS. Surface engineering of orthopedic implants for better clinical adoption. J Mater Chem B 2024; 12:11302-11335. [PMID: 39412900 DOI: 10.1039/d4tb01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Musculoskeletal disorders are on the rise, and despite advances in alternative materials, treatment for orthopedic conditions still heavily relies on biometal-based implants and scaffolds due to their strength, durability, and biocompatibility in load-bearing applications. Bare metallic implants have been under scrutiny since their introduction, primarily due to their bioinert nature, which results in poor cell-material interaction. This challenge is further intensified by mechanical mismatches that accelerate failure, tribocorrosion-induced material degradation, and bacterial colonization, all contributing to long-term implant failure and posing a significant burden on patient populations. Recent efforts to improve orthopedic medical devices focus on surface engineering strategies that enhance the interaction between cells and materials, creating a biomimetic microenvironment and extending the service life of these implants. This review compiles various physical, chemical, and biological surface engineering approaches currently under research, providing insights into their potential and the challenges associated with their adoption from bench to bedside. Significant emphasis is placed on exploring the future of bioactive coatings, particularly the development of smart coatings like self-healing and drug-eluting coatings, the immunomodulatory effects of functional coatings and biomimetic surfaces to tackle secondary infections, representing the forefront of biomedical surface engineering. The article provides the reader with an overview of the engineering approaches to surface modification of metallic implants, covering both clinical and research perspectives and discussing limitations and future scope.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ahmad Elsebahy
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| |
Collapse
|
3
|
Bertotti K, Mwenge-Wambel J, Sireix C, Hüe O, Jeannin C, Grosgogeat B. Accurate analysis of titanium and PolyEtherEtherKetone materials as an alternative to cobalt-chrome framework in removable partial denture: A systematic review. Dent Mater 2024; 40:1854-1861. [PMID: 39191558 DOI: 10.1016/j.dental.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
STATEMENT OF PROBLEM New materials have emerged in the dental field to replace the cobalt-chrome (CoCr) alloy used for the metal frameworks in removable partial denture (RPD) such as Titanium (Ti) and PolyEtherEtherKetone (PEEK). However, few studies have demonstrated their mechanical and biological performance. PURPOSE The purpose of this systematic review was to compare the performance of Ti and PEEK in RPD using CoCr metal framework as a reference. MATERIAL AND METHODS This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three data bases were analyzed, including PubMed/MEDLINE, Embase and Web of Science before March 2024. Only studies assessing the mechanical and/or biological properties of RPD in Ti, PEEK and CoCr were included. The quality of the studies was assessed by using the software Rayyan. The risks of bias were assessed with the methodological index for nonrandomized studies (MINORS). The mechanical (retention force, fatigue life, deformation strength, machinability, rigidity, porosity and surface roughness) and biological (plaque indices, ion release and biocompatibility) aspects were assessed. RESULTS Among 138 articles identified, only 18 studies were included in this review. Majority had a low to moderate risk of bias. Retention forces and fatigue were significantly lower for Ti and PEEK than for CoCr, and the same was true for Ti rigidity. PEEK showed less deformation. Both materials were suitable for machining. In terms of biological properties, both materials showed adequate biocompatibility for clinical use. CONCLUSION Ti and PEEK seems to be promising as alternative materials to CoCr frameworks for RPD, in terms of both their mechanical and biological performance. However, additional studies are needed to better understand their clinical and long-term limitations to enable the best-informed clinical choice for the patients and the professionals.
Collapse
Affiliation(s)
- Karine Bertotti
- Laboratoire des Multimatériaux et Interfaces, CNRS, LMI UMR 5615, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69622 Villeurbanne, France; Fox3D Dental Solutions, F-47450 Colayrac St Cirq, France.
| | - Julia Mwenge-Wambel
- Laboratoire des Multimatériaux et Interfaces, CNRS, LMI UMR 5615, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69622 Villeurbanne, France; Faculte d'Odontologie, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69008 Lyon, France
| | | | - Olivier Hüe
- École de Médecine Dentaire Marseille, CNRS UMR 7268 ADES, Universite de Aix-Marseille, F-13000 Marseille, France
| | - Christophe Jeannin
- Laboratoire des Multimatériaux et Interfaces, CNRS, LMI UMR 5615, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69622 Villeurbanne, France; Faculte d'Odontologie, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69008 Lyon, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces, CNRS, LMI UMR 5615, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69622 Villeurbanne, France; Faculte d'Odontologie, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69008 Lyon, France
| |
Collapse
|
4
|
Jusufi Osmani Z, Tariba Knežević P, Vučinić D, Alimani Jakupi J, Reka AA, Can M, Kara K, Katić V. Orthodontic Alloy Wires and Their Hypoallergenic Alternatives: Metal Ions Release in pH 6.6 and pH 5.5 Artificial Saliva. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5254. [PMID: 39517530 PMCID: PMC11547483 DOI: 10.3390/ma17215254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Legislative framework addresses the issues of alloy corrosion, demanding the restricted use of probable carcinogenic, mutagenic, and toxic-for-human-reproduction (CMG) metals like nickel, cobalt, and chromium and demanding the development of new biomaterials. The aim of this research was to evaluate and compare the ion release of standard dental alloys and their hypoallergenic equivalents. Six types of orthodontic alloy wires (nickel-titanium (NiTi), coated NiTi, stainless steel (SS), Ni-free SS, and cobalt-chromium (CoCr) and titanium-molybdenum (TMA) were immersed into artificial saliva of pH 5.5 and 6.6. Release of metal ions was measured by inductively coupled plasma-mass spectrometry after 3, 7, 14 and 28 days. The data were analyzed using analysis of variance, and results with p < 0.05 were considered significant. NiTi released more Ti and Ni ions compared to the coated NiTi; SS released more iron, chromium, and nickel compared to the nickel-free SS. CoCr released cobalt in a high concentration and low amounts of chromium, nickel, and molybdenum compared to the molybdenum and titanium released by TMA. Release of metals from dental orthodontic alloys in vitro was overall lower at pH 6.6 and for the hypoallergenic equivalents when compared to standard dental alloys.
Collapse
Affiliation(s)
- Zana Jusufi Osmani
- Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia; (Z.J.O.); (P.T.K.); (D.V.)
| | - Petra Tariba Knežević
- Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia; (Z.J.O.); (P.T.K.); (D.V.)
- Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Davor Vučinić
- Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia; (Z.J.O.); (P.T.K.); (D.V.)
- Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | | | - Arianit A. Reka
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Tetovo, 1220 Tetovo, North Macedonia;
| | - Mustafa Can
- Department of Engineering Sciences, Izmir Katip Celebi University, 35620 Izmir, Turkey;
| | - Koray Kara
- Graphene Application and Research Center, Izmir Katip Celebi University, 35620 Izmir, Turkey;
| | - Višnja Katić
- Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia; (Z.J.O.); (P.T.K.); (D.V.)
- Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Calazans Neto J, Celles CAS, de Andrade CSAF, Afonso CRM, Nagay BE, Barão VAR. Recent Advances and Prospects in β-type Titanium Alloys for Dental Implants Applications. ACS Biomater Sci Eng 2024; 10:6029-6060. [PMID: 39215386 PMCID: PMC11480944 DOI: 10.1021/acsbiomaterials.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Titanium and its alloys, especially Ti-6Al-4V, are widely studied in implantology for their favorable characteristics. However, challenges remain, such as the high modulus of elasticity and concerns about cytotoxicity. To resolve these issues, research focuses on β-type titanium alloys that incorporate elements such as Mo, Nb, Sn, and Ta to improve corrosion resistance and obtain a lower modulus of elasticity compatible with bone. This review comprehensively examines current β titanium alloys, evaluating their mechanical properties, in particular the modulus of elasticity, and corrosion resistance. To this end, a systematic literature search was carried out, where 81 articles were found to evaluate these outcomes. In addition, this review also covers the formation of the alloy, processing methods such as arc melting, and its physical, mechanical, electrochemical, tribological, and biological characteristics. Because β-Ti alloys have a modulus of elasticity closer to that of human bone compared to other metal alloys, they help reduce stress shielding. This is important because the alloy allows for a more even distribution of forces by having a modulus of elasticity more similar to that of bone. In addition, these alloys show good corrosion resistance due to the formation of a noble titanium oxide layer, facilitated by the incorporation of β stabilizers. These alloys also show significant improvements in mechanical strength and hardness. Finally, they also have lower cytotoxicity and bacterial adhesion, depending on the β stabilizer used. However, there are persistent challenges that require detailed research in critical areas, such as optimizing the composition of the alloy to achieve optimal properties in different clinical applications. In addition, it is crucial to study the long-term effects of implants on the human body and to advance the development of cutting-edge manufacturing techniques to guarantee the quality and biocompatibility of implants.
Collapse
Affiliation(s)
- João
V. Calazans Neto
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Cícero A. S. Celles
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catia S. A. F. de Andrade
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Conrado R. M. Afonso
- Department
of Materials Engineering (DEMa), Universidade
Federal de São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Bruna E. Nagay
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A. R. Barão
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
6
|
Timbó ICG, Oliveira MSCS, Regis RR. Effect of sanitizing solutions on cobalt chromium alloys for dental prostheses: A systematic review of in vitro studies. J Prosthet Dent 2024; 132:704-713. [PMID: 36357193 DOI: 10.1016/j.prosdent.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
STATEMENT OF PROBLEM Given the wide use of cobalt chromium (Co-Cr) alloys, especially for removable partial dentures, and the importance of chemical solutions to complement the cleaning of dental prostheses, safe disinfection products should be identified for the regular decontamination of Co-Cr dental prostheses. PURPOSE The purpose of this systematic review of in vitro studies was to determine the effects on the properties of Co-Cr dental alloys of the various chemical agents used to clean dental prostheses. MATERIAL AND METHODS In vitro studies were included based on a literature search conducted in March 2022 in the Medline/PubMed, SCOPUS, Web of Science, Virtual Health Library, and Embase databases. Independent reviewers performed the search, selection, extraction, and analysis of the data. The review was performed based on the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of the included articles was evaluated by using parameters adapted from the Consolidated Standards of Reporting Trials (CONSORT) guidelines, and the risk of bias analysis was performed based on previous studies. RESULTS Among the 15 included studies, the chemical agents evaluated were alkaline peroxides and hypochlorites, mouthwashes containing cetylpyridinium chloride and chlorhexidine, diluted acids, and enzymes. Some peroxides produced increased ion release, surface roughness, and mass loss of the alloys. The hypochlorites were responsible for the greatest surface corrosion, yielding dark stains, rough regions, and depressions. Acetic and peracetic acids and mouthwashes containing chlorhexidine and cetylpyridinium did not produce significant changes in Co-Cr alloys. Most studies presented moderate risk of bias. CONCLUSIONS According to the included studies, mouth rinses containing cetylpyridinium chloride or chlorhexidine and solutions with acetic and peracetic acid could be safely used to chemically sanitize Co-Cr prostheses. Alkaline peroxides should be used with caution, and alkaline hypochlorite solutions should be avoided.
Collapse
Affiliation(s)
- Isabelle C G Timbó
- Postgraduate student, Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, Brazil
| | - Mayara S C S Oliveira
- Postgraduate student, Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, Brazil
| | - Rômulo R Regis
- Adjunct Professor, Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, Brazil.
| |
Collapse
|
7
|
Faramarzi M, Shabgard S, Khalili V, Ege D. Exploring the effect of chlorhexidine concentration on the biocorrosion behavior of Ti6Al4V for dental implants. Microsc Res Tech 2024; 87:1552-1565. [PMID: 38430214 DOI: 10.1002/jemt.24538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Corrosion of dental implants is one of the most critical factors in the failure of implant treatments. Generally, corrosion depends on the type of material used in implants and the chemical composition of the oral environment. Due to the antibacterial activities, mouthwashes and chlorhexidine gels are often used after implant surgery. Ti6Al4V is commonly used in manufacturing dental implants. The present study aims to investigate the corrosion behavior of the Ti6Al4V alloy under different concentrations of chlorhexidine (0.12%, 0.2%,and 2%) during 2- and 24-h immersion. This way corrosion may be minimized while obtaining an antibacterial environment around the implant. In this regard, the electrochemical behavior of the specimens was investigated using polarization and impedance tests, and then their morphology, cross-section and nano-tribological behavior were evaluated using atomic force microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and nano-scratch test. The results show that using chlorhexidine solution with a concentration of 0.12% could yield a lower corrosion rate and material loss after implant surgery. RESEARCH HIGHLIGHTS: Open circuit potential values increase with immersion time, which suggests multistage passivation of the surface during immersion in chlorhexidine. Specimens in 0.12% chlorhexidine show improved thermodynamic corrosion resistance. Nano-scratch testing demonstrates higher scratch resistance for specimens in 0.12% chlorhexidine solution after 2-h immersion. Higher chlorhexidine concentration than 0.12% and longer immersion times decrease the resistance of the formed passive layer.
Collapse
Affiliation(s)
- Masoumeh Faramarzi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Shabgard
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Khalili
- Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum, Germany
| | - Duygu Ege
- Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
8
|
Klimek L, Makówka M, Sobczyk-Guzenda A, Kula Z. Characteristics of Si (C,N) Silicon Carbonitride Layers on the Surface of Ni-Cr Alloys Used in Dental Prosthetics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2450. [PMID: 38793515 PMCID: PMC11122782 DOI: 10.3390/ma17102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Chromium- and cobalt-based alloys, as well as chrome-nickel steels, are most used in dental prosthetics. Unfortunately, these alloys, especially nickel-based alloys, can cause allergic reactions. A disadvantage of these alloys is also insufficient corrosion resistance. To improve the properties of these alloys, amorphous Si (C,N) coatings were deposited on the surfaces of metal specimens. This paper characterizes coatings of silicon carbide nitrides, deposited by the magnetron sputtering method on the surface of nickel-chromium alloys used in dental prosthetics. Depending on the deposition parameters, coatings with varying carbon to nitrogen ratios were obtained. The study analyzed their structure and chemical and phase composition. In addition, a study of surface wettability and surface roughness was performed. Based on the results obtained, it was found that amorphous coatings of Si (C,N) type with thicknesses of 2 to 4.5 µm were obtained. All obtained coatings increase the value of surface free energy. The study showed that Si (C,N)-type films can be used in dental prosthetics as protective coatings.
Collapse
Affiliation(s)
- Leszek Klimek
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, B. Stefanowskiego 1/15, 90-924 Lodz, Poland; (L.K.); (M.M.); (A.S.-G.)
| | - Marcin Makówka
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, B. Stefanowskiego 1/15, 90-924 Lodz, Poland; (L.K.); (M.M.); (A.S.-G.)
| | - Anna Sobczyk-Guzenda
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, B. Stefanowskiego 1/15, 90-924 Lodz, Poland; (L.K.); (M.M.); (A.S.-G.)
| | - Zofia Kula
- Department of Dental Technology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland
| |
Collapse
|
9
|
Machado MIP, Gomes AM, Zambuzzi WF. Hypoxia modulates the phenotype of mechanically stressed endothelial cells responding to CoCr-enriched medium. J Trace Elem Med Biol 2024; 82:127341. [PMID: 38091868 DOI: 10.1016/j.jtemb.2023.127341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024]
Abstract
Given the importance of the endothelial cell phenotype in dental peri-implant healing processes, the aim of this study was to better assess the involvement of endothelial cells responding to cobalt-chromium (CoCr)-enriched medium. Biologically, cobalt is widely used molecule to induce chemical experimental hypoxia because it stabilizes hypoxia inducible factors (HIF1α). The aplication of hypoxia models provides better experimental condition to allow its impact on cellular metabolism, by looking for biochemical and molecular issues. Thus, this study looks for understaing whether CoCr-based materials are able to modulate endothelial cells considering the hypoxic effect prmoted by cobalt. Firstly, our data shows there is a siginificant effect on endothelial phenotype by modulating the expression of VEGF and eNOS genes, whith low requirement of genes related with proteasome intracellular complex. Importantly, the data were validated using classical chemical modulators of hypoxia signaling [chrysin (5,7-dihydroxyflavone) and Dimethyloxalylglycine (DMOG)] in functional assays. Altogether, these data validate the hypothesis that hipoxya is important to maintain the phenotype of endothelial cells, and it is properly interesting during the tissue regeneration surrounding implants and so compromising osseointegration process. Finally, it is important to mention that the cobalt released from CoCr devices might contribute with an sufficient microenvironment surrounding implanted devices and it paviments new roads looking for more bioactive surfaces of implantable materials in human health.
Collapse
Affiliation(s)
- Mariana Issler Pinheiro Machado
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970 Botucatu, São Paulo, Brazil
| | - Anderson Moreira Gomes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970 Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970 Botucatu, São Paulo, Brazil.
| |
Collapse
|
10
|
Alinezhad Z, Hashemi M, Tavakoly Sany SB. Concentration of heavy metals in pasteurized and sterilized milk and health risk assessment across the globe: A systematic review. PLoS One 2024; 19:e0296649. [PMID: 38315713 PMCID: PMC10843077 DOI: 10.1371/journal.pone.0296649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Although milk and dairy products are almost complete food, they can contain toxic heavy elements with potential hazards for consumers. This review aims to provide a comprehensive report on the occurrence, concentration, and health risks of selected heavy metals in pasteurized and sterilized milk recorded worldwide. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was used to develop this systematic review. Databases included the Web of Knowledge, Scopus, Scientific Information Database, Google Scholar, and PubMed from inception until January 2023. Keywords related to the terms "Heavy metals", "Arsenic" and "Pasteurized and sterilized milk" and "Risk Assessment" were used. The potential health risks to human health from milk daily consumption were estimated using extracted data on heavy metals concentration based on metal estimated daily intake, target hazard quotient, and carcinogenic risk. RESULTS A total of 48 potentially relevant articles with data on 981 milk samples were included in the systematic review. Atomic Absorption Spectroscopy, atomic absorption spectroscopy, inductively coupled plasma-mass spectrometry, and inductively coupled plasma-optical emission spectrometry were the most common valid methods to measure heavy metals in milk samples. Following the initial evaluation, Cu, Cd, Zn, and Pb were the most contaminants, which exceeded the maximum permissible criteria in 94%, 67%, 62%, and 46% of the milk samples tested. Relying on target hazard quotient and carcinogenic risk results, milk consumers in 33(68.75%) and 7 (14.5%) studies were exposed to moderate to high levels of carcinogenic and non-carcinogenic risk, respectively. The highest level of risk is due to the consumption of pasteurized and sterilized milk detected in Pakistan, Brazil, Egypt, Slovakia, and Turkey. CONCLUSION The elevated levels of heavy metals in milk samples, especially Pb and Cd is a public health concern; therefore, maximum control and strict regulations must be adopted to decrease heavy metals contaminants in the dairy industry. Further studies are required to develop safe milk processing and handling methods for the decontamination of heavy metals in milk and its products.
Collapse
Affiliation(s)
- Zahra Alinezhad
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health, Safety, Environment Management, School of Health Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Cumbo E, Gallina G, Messina P, Bilello G, Isaqali Karobari M, Scardina GA. Soldering in Dentistry: An Updated Technical Review. J Clin Med 2024; 13:809. [PMID: 38337503 PMCID: PMC10856638 DOI: 10.3390/jcm13030809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION The need to permanently join two or more pieces of metal using heat is a frequent condition in various fields of medicine such as dentistry. Welding, brazing and soldering are permanent joining techniques between different metals that require in-depth background knowledge in order to obtain predictable results. AIM This review examines the different methods of joining metals using heat and their fields of application. DISCUSSION It is possible to create permanent metal joints in various phases of the creation of final products that will be used on the patient. In several cases, welds are also made directly by the manufacturer during industrial processing. In dentistry, dental laboratories perform complex welds mainly on dental prostheses and orthodontic appliances during the production process. It is also possible to obtain intraoral welding carried out by the clinician inside the patient's oral cavity. Welding can be carried out using combustible gases, electric current, infrared light and laser light through different technical procedures which must be chosen according to the specific needs and the metals to be joined. CONCLUSIONS It is useful for the dentist and dental technician to know the different welding methods, including those carried out in the factory by the manufacturer, to better understand the physical properties and mechanical resistance of the components marketed for the construction of prostheses and orthodontic appliances. The enormous variety of conditions in which those who practice welding can find themselves therefore presupposes in-depth knowledge in this field in order to apply the most suitable technique.
Collapse
Affiliation(s)
- Enzo Cumbo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90133 Palermo, Italy; (E.C.); (G.G.); (P.M.); (G.B.)
| | - Giuseppe Gallina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90133 Palermo, Italy; (E.C.); (G.G.); (P.M.); (G.B.)
| | - Pietro Messina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90133 Palermo, Italy; (E.C.); (G.G.); (P.M.); (G.B.)
| | - Giuseppa Bilello
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90133 Palermo, Italy; (E.C.); (G.G.); (P.M.); (G.B.)
| | - Mohmed Isaqali Karobari
- Dental Research Unit, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India;
| | - Giuseppe Alessandro Scardina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90133 Palermo, Italy; (E.C.); (G.G.); (P.M.); (G.B.)
| |
Collapse
|
12
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Prevalence of Cobalt in the Environment and Its Role in Biological Processes. BIOLOGY 2023; 12:1335. [PMID: 37887045 PMCID: PMC10604320 DOI: 10.3390/biology12101335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
13
|
Rakotoaridina K, Delrieu J, Pages P, Vergé T, Nasr K, Canceill T. Evaluation of Poly(etheretherketone) Post's Mechanical Strength in Comparison with Three Metal-Free Biomaterials: An In Vitro Study. Polymers (Basel) 2023; 15:3583. [PMID: 37688208 PMCID: PMC10489626 DOI: 10.3390/polym15173583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
The thinking about metallic replacement has begun in a global context of reducing metallic alloys' use in odontology. Among the materials proposed for their replacement, poly(etheretherketone) may present interesting properties, especially in removable dentures' frames. The purpose of this study is to evaluate fracture resistance of PEEK posts-and-cores compared to non-metallic CAD/CAM materials and fiber glass posts. Forty extracted maxillary central incisors were prepared to receive posts. Samples were divided into four groups depending on whether they had been reconstructed with LuxaCam® PEEK, Enamic®, Numerys GF® or LuxaPost®. Samples were submitted to an oblique compressive test and results were statistically analyzed with ANOVA and Student's tests (or non-parametric tests depending on the conditions). Glass fiber posts and Numerys GF® reveal a significantly higher fracture resistance than LuxaCam® PEEK and Enamic®. No exclusively dental fracture has been noted for the Enamic group, which significantly distinguishes these samples from the three other groups. In our study, it appears that the conception of posts and cores with hybrid ceramic never conducts to a unique tooth fracture. By weighting the results according to the materials used, our data, obtained for the first time on this type of PEEK block, cannot confirm the possibility of using PEEK for inlay-core conception, excepted for specific cases when the material is considered in a patient presenting allergies or systemic disease contraindicating resin or metal.
Collapse
Affiliation(s)
- Kévin Rakotoaridina
- Département Odontologie, Faculté de Santé, Hôpitaux de Toulouse, Université Paul Sabatier, 3 Chemin des Maraichers, 31062 Toulouse Cedex 9, France
| | - Julien Delrieu
- Département Odontologie, Faculté de Santé, Hôpitaux de Toulouse, Université Paul Sabatier, 3 Chemin des Maraichers, 31062 Toulouse Cedex 9, France
| | - Paul Pages
- Département Odontologie, Faculté de Santé, Hôpitaux de Toulouse, Université Paul Sabatier, 3 Chemin des Maraichers, 31062 Toulouse Cedex 9, France
| | - Thierry Vergé
- Département Odontologie, Faculté de Santé, Hôpitaux de Toulouse, Université Paul Sabatier, 3 Chemin des Maraichers, 31062 Toulouse Cedex 9, France
| | - Karim Nasr
- Département Odontologie, Faculté de Santé, Hôpitaux de Toulouse, Université Paul Sabatier, 3 Chemin des Maraichers, 31062 Toulouse Cedex 9, France
| | - Thibault Canceill
- Département Odontologie, Faculté de Santé, Hôpitaux de Toulouse, Université Paul Sabatier, 3 Chemin des Maraichers, 31062 Toulouse Cedex 9, France
- CNRS UMR 5085, INPT, Faculté de Pharmacie, CIRIMAT, Université Toulouse III Paul Sabatier, 35 Chemin des Maraichers, 31062 Toulouse Cedex 9, France
| |
Collapse
|
14
|
Tomova Z, Vlahova A, Zlatev S, Stoeva I, Tomov D, Davcheva D, Hadzhigaev V. Clinical Evaluation of Corrosion Resistance, Ion Release, and Biocompatibility of CoCr Alloy for Metal-Ceramic Restorations Produced by CAD/CAM Technologies. Dent J (Basel) 2023; 11:166. [PMID: 37504232 PMCID: PMC10378696 DOI: 10.3390/dj11070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND CAD/CAM technologies facilitate using powder CoCr alloys to produce metal-ceramic dental restorations. However, base alloys may induce oxidative stress in the oral cavity due to corrosion and ion release. This study evaluated resistance to corrosion and release of metal ions from 3D printed CoCr dental alloy and their effect on oral oxidative stress. METHODS Metal-ceramic crowns with 3D printed copings from CoCr alloy EOS CobaltChrome SP2 (EOS, Germany) were fabricated for 35 patients. Inductively coupled plasma mass spectrometry (ICP-MS) was used for measuring the concentration of Co and Cr ions in non-stimulated saliva before prosthetic treatment (BPT), at 2 h and 7 days after the dental treatment (APT2, APT7, respectively). Open circuit potentials (Eocp) were evaluated at APT2 and APT7. Estimating oral oxidative stress, measurements of 8-isoprostaglandin F2-alpha were conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) at stages BPT, APT2, and APT7. RESULTS Salivary Co level increased at APT2 and decreased to the initial levels at APT7. No statistical difference was found between the levels of 8-isoPGF2-alpha measured, and between the Eocp measurements at APT2 and APT7. CONCLUSIONS The studied alloy showed stable corrosion resistance and the metal ion release did not induce oral oxidative stress.
Collapse
Affiliation(s)
- Zlatina Tomova
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 3, Hristo Botev blvd, 4002 Plovdiv, Bulgaria
| | - Angelina Vlahova
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 3, Hristo Botev blvd, 4002 Plovdiv, Bulgaria
| | - Stefan Zlatev
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 3, Hristo Botev blvd, 4002 Plovdiv, Bulgaria
| | - Ilyana Stoeva
- Department of Diagnostic Imaging, Dental Allergology and Physiotherapy, Faculty of Dental Medicine, Medical University of Plovdiv, 3, Hristo Botev blvd, 4002 Plovdiv, Bulgaria
| | - Desislav Tomov
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15-A "Vasil Aprilov" blvd, 4002 Plovdiv, Bulgaria
| | - Delyana Davcheva
- Department of Clinical Laboratory, Faculty of Pharmacy, University Multi-Profile Hospital for Active Treatment St. George Plovdiv, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, 15-A "Vasil Aprilov" blvd, 4002 Plovdiv, Bulgaria
| | - Viktor Hadzhigaev
- Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, 3, Hristo Botev blvd, 4002 Plovdiv, Bulgaria
| |
Collapse
|
15
|
Carek A, Slokar Benić L, Bubalo V, Kosović N. Microscopic and Mechanical Characterization of Co-Cr Dental Alloys Joined by the TIG Welding Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103890. [PMID: 37241516 DOI: 10.3390/ma16103890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Due to their good mechanical and other properties, cobalt-chromium alloys (Co-Cr) are often used in prosthetic therapy. The metal structures of prosthetic works can be damaged and break, and depending on the extent of the damage, they can be re-joined. Tungsten inert gas welding (TIG) produces a high-quality weld with a composition very close to that of the base material. Therefore, in this work, six commercially available Co-Cr dental alloys were joined by TIG welding, and their mechanical properties were evaluated to determine the quality of the TIG process as a technology for joining metallic dental materials and the suitability of the Co-Cr alloys used for TIG welding. Microscopic observations were made for this purpose. Microhardness was measured using the Vickers method. The flexural strength was determined on a mechanical testing machine. The dynamic tests were carried out on a universal testing machine. The mechanical properties were determined for welded and non-welded specimens, and the results were statistically evaluated. The results show the correlation between the investigated mechanical properties and the process TIG. Indeed, characteristics of the welds have an effect on the measured properties. Considering all the results obtained, the TIG-welded I-BOND NF and Wisil M alloys showed the cleanest and most uniform weld and, accordingly, satisfactory mechanical properties, highlighting that they withstood the maximum number of cycles under dynamic load.
Collapse
Affiliation(s)
- Andreja Carek
- School of Dental Medicine, University of Zagreb, Ivana Gundulića 5, 10000 Zagreb, Croatia
| | - Ljerka Slokar Benić
- Faculty of Metallurgy, University of Zagreb, Aleja Narodnih Heroja 3, 44000 Sisak, Croatia
| | - Vatroslav Bubalo
- Dubrava University Hospital, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Nika Kosović
- School of Dental Medicine, University of Zagreb, Ivana Gundulića 5, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Carek A, Slokar Benić L, Bubalo V. Metal Ions Release from Welded Co-Cr Dental Alloys. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093398. [PMID: 37176278 PMCID: PMC10180356 DOI: 10.3390/ma16093398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Cobalt-chromium alloys (Co-Cr) are widely used in dentistry due to their excellent mechanical properties and corrosion resistance. Since prosthetic materials must be permanently stable in the oral cavity, it is very important to determine the release of ions from alloys in the oral cavity. In dentistry today, metals and alloys are mainly joined by laser and tungsten inert gas (TIG) welding. Therefore, in this work, the release of metal ions from six different Co-Cr alloys joined by these two welding methods was quantified to determine the effects of the welding method on an ion release. Static immersion tests, atomic absorption spectrometry and statistical analysis were performed for this purpose. The results showed that laser-welded alloys release a lower amount of metal ions compared to TIG-welded alloys.
Collapse
Affiliation(s)
- Andreja Carek
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
17
|
Mace A, Gilbert JL. Low cycle fretting and fretting corrosion properties of low carbon CoCrMo and additively manufactured CoCrMoW alloys for dental and orthopedic applications. J Biomed Mater Res B Appl Biomater 2023. [PMID: 37081711 DOI: 10.1002/jbm.b.35258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/08/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
Additive manufacturing (AM) of CoCrMo metallic implants is growing in the orthopedic and dental fields. This is due to the traditional alloy's excellent corrosion resistance and mechanical properties. AM processes like selective laser melting (SLM) require less time, materials, and waste than casting or subtractive manufacturing complex-geometry structures (bridges, partial dentures, etc.). The objective of this work was to investigate the low cycle tribological and tribocorrosion characteristics of AM CoCrMoW alloys compared to wrought LC CoCrMo (ASTM F-1537) to assess this AM alloy's performance. Fretting and tribocorrosion testing was performed in air (wear only), PBS (wear + corrosion), and PBS with 10 mM H2 O2 (wear + corrosion + inflammation) by a single diamond asperity. No variation between alloys in volume of material removed (p = .12), volume of plastic deformation (p = .13), and scratch depth (p = .84) showed that AM was substantially similar in wear resistance to LC in air and PBS. AM exhibited significantly higher fretting currents (p < .01) at loads up to 100 mN ( I AM PBS $$ {I}_{\mathrm{AM}}^{\mathrm{PBS}} $$ = 57 nA and I AM H 2 O 2 $$ {I}_{\mathrm{AM}}^{H_2{O}_2} $$ = 49 nA) than LC CoCrMo ( I LC PBS $$ {I}_{\mathrm{LC}}^{\mathrm{PBS}} $$ = 30 nA) and ( I LC H 2 O 2 $$ {I}_{\mathrm{LC}}^{H_2{O}_2} $$ = 29 nA). In PBS, wear track depth linearly correlates to fretting current, averaged over 100 cycles. Additionally, fretting currents of both alloys were significantly lower in simulated inflammatory conditions compared to PBS alone. AM alloy has generally similar wear and tribocorrosion resistance to wrought LC CoCrMo and would be ideal for patient specific dentistry or orthopedics where precise, complex geometries are required.
Collapse
Affiliation(s)
- Annsley Mace
- Department of Bioengineering, Clemson University - MUSC Bioengineering Program, Charleston, South Carolina, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University - MUSC Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
18
|
Poca A, De Peretti Della Rocca K, Nasr K, Ducassé R, Canceill T. Effects of Translucency and Thickness of Lithium Disilicate-Reinforced Glass-Ceramic Veneers on the Degree of Conversion of a Purely Light-Curing Bonding Resin: An In Vitro Study. Polymers (Basel) 2023; 15:polym15071617. [PMID: 37050231 PMCID: PMC10097364 DOI: 10.3390/polym15071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The objective of this study was to evaluate the variations in the degree of conversion (DC) of a light-curing composite resin when the thickness or the translucency of lithium disilicate-enriched glass-ceramic veneers are modified. IPS e. max® CAD blocks of the MT-A2, LT-A2 and MO1 types were cut to obtain four slices with thicknesses ranging from 0.6 mm to 1 mm. A strictly light-curing composite resin (G-aenial Universal Injectable) was injected in the empty part of a silicone mold so that the veneer could then be inserted under digital pressure to the stop. A 40 s light cure (1400 mW/cm2) was then performed. Resin samples were analyzed using Fourier transform infrared (FTIR) spectroscopy. When the degree of translucency of the ceramic was modified, a decrease in the resin conversion rate was noted, but with a non-significant global p-value (p = 0.062). Interestingly, the degree of conversion of the light-curing composite resin was also modified when the ceramic’s thickness increased, especially when it was over 1 mm (DC0.6 > DC0.7 > DC0.8 > DC1; p < 0.0001). This confirms that the degree of conversion of a bonding material is very dependent on the ceramic’s thickness. Contradictory data are, however, found in the literature, where there are reports of an absence of a difference between the DC obtained with thicknesses of ceramics of 0.7 and 2 mm.
Collapse
|
19
|
Usman K, Kang D, Jeong G, Alam K, Raveendran A, Ser J, Jang W, Cho H. The Surface Properties of Implant Materials by Deposition of High-Entropy Alloys (HEAs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1123. [PMID: 36986017 PMCID: PMC10054136 DOI: 10.3390/nano13061123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
High-entropy alloys (HEAs) contain more than five alloying elements in a composition range of 5-35% and with slight atomic size variation. Recent narrative studies on HEA thin films and their synthesis through deposition techniques such as sputtering have highlighted the need for determining the corrosion behaviors of such alloys used as biomaterials, for example, in implants. Coatings composed of biocompatible elements such as titanium, cobalt, chrome, nickel, and molybdenum at the nominal composition of Co30Cr20Ni20Mo20Ti10 were synthesized by means of high-vacuum radiofrequency magnetron (HVRF) sputtering. In scanning electron microscopy (SEM) analysis, the coating samples deposited with higher ion densities were thicker than those deposited with lower ion densities (thin films). The X-ray diffraction (XRD) results of the thin films heat treated at higher temperatures, i.e., 600 and 800 °C, revealed a low degree of crystallinity. In thicker coatings and samples without heat treatment, the XRD peaks were amorphous. The samples coated at lower ion densities, i.e., 20 µAcm-2, and not subjected to heat treatment yielded superior results in terms of corrosion and biocompatibility among all the samples. Heat treatment at higher temperatures led to alloy oxidation, thus compromising the corrosion property of the deposited coatings.
Collapse
Affiliation(s)
- Khalid Usman
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Doori Kang
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Geonwoo Jeong
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Khurshed Alam
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Athira Raveendran
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinhui Ser
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woohyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hoonsung Cho
- School of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
20
|
Rezaie F, Farshbaf M, Dahri M, Masjedi M, Maleki R, Amini F, Wirth J, Moharamzadeh K, Weber FE, Tayebi L. 3D Printing of Dental Prostheses: Current and Emerging Applications. JOURNAL OF COMPOSITES SCIENCE 2023; 7:80. [PMID: 38645939 PMCID: PMC11031267 DOI: 10.3390/jcs7020080] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Revolutionary fabrication technologies such as three-dimensional (3D) printing to develop dental structures are expected to replace traditional methods due to their ability to establish constructs with the required mechanical properties and detailed structures. Three-dimensional printing, as an additive manufacturing approach, has the potential to rapidly fabricate complex dental prostheses by employing a bottom-up strategy in a layer-by-layer fashion. This new technology allows dentists to extend their degree of freedom in selecting, creating, and performing the required treatments. Three-dimensional printing has been narrowly employed in the fabrication of various kinds of prostheses and implants. There is still an on-demand production procedure that offers a reasonable method with superior efficiency to engineer multifaceted dental constructs. This review article aims to cover the most recent applications of 3D printing techniques in the manufacturing of dental prosthetics. More specifically, after describing various 3D printing techniques and their advantages/disadvantages, the applications of 3D printing in dental prostheses are elaborated in various examples in the literature. Different 3D printing techniques have the capability to use different materials, including thermoplastic polymers, ceramics, and metals with distinctive suitability for dental applications, which are discussed in this article. The relevant limitations and challenges that currently limit the efficacy of 3D printing in this field are also reviewed. This review article has employed five major scientific databases, including Google Scholar, PubMed, ScienceDirect, Web of Science, and Scopus, with appropriate keywords to find the most relevant literature in the subject of dental prostheses 3D printing.
Collapse
Affiliation(s)
- Fereshte Rezaie
- Department of Endodontic, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz P.O. Box 5163639888, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz P.O. Box 5163639888, Iran
| | - Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz P.O. Box 5163639888, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 6468571468, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran P.O. Box 33535111, Iran
| | - Fatemeh Amini
- School of Dentistry, Shahed University of Medical Sciences, Tehran P.O. Box 5163639888, Iran
| | - Jonathan Wirth
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai P.O. Box 505055, United Arab Emirates
| | - Franz E. Weber
- Center for Dental Medicine/Cranio-Maxillofacial and Oral Surgery, Oral Biotechnology and Bioengineering, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
21
|
Saha S, Roy S. Metallic Dental Implants Wear Mechanisms, Materials, and Manufacturing Processes: A Literature Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010161. [PMID: 36614500 PMCID: PMC9821388 DOI: 10.3390/ma16010161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
OBJECTIVES From the treatment of damaged teeth to replacing missing teeth, dental biomaterials cover the scientific interest of many fields. Dental biomaterials are one of the implants whose effective life depends vastly on their material and manufacturing techniques. The purpose of this review is to summarize the important aspects for metallic dental implants from biomedical, mechanical and materials science perspectives. The review article will focus on five major aspects as mentioned below. Tooth anatomy: Maximizing the implant performance depends on proper understanding of human tooth anatomy and the failure behavior of the implants. Major parts from tooth anatomy including saliva characteristics are explored in this section. Wear mechanisms: The prominent wear mechanisms having a high impact on dental wear are abrasive, adhesive, fatigue and corrosion wear. To imitate the physiological working condition of dental implants, reports on the broad range of mastication force and various composition of artificial saliva have been included in this section, which can affect the tribo-corrosion behavior of dental implants. Dental implants classifications: The review paper includes a dedicated discussion on major dental implants types and their details for better understanding their applicability and characteristics. Implant materials: As of today, the most established dental implant materials are SS316L, cobalt chrome alloy and titanium. Detailed discussion on their material properties, microstructures, phase transformations and chemical compositions have been discussed here. Manufacturing techniques: In terms of different production methods, the lost wax casting method as traditional manufacturing is considered. Selective Laser Melting (SLM) and Directed Energy Deposition (DED) as additive manufacturing techniques (AM) have been discussed. For AM, the relationships between process-property-performance details have been explored briefly. The effectiveness of different manufacturing techniques was compared based on porosity distribution, mechanical and biomechanical properties. SUMMARY Despite having substantial research available on dental implants, there is a lack of systematic reviews to present a holistic viewpoint combining state-of-the-art from biomedical, mechanical, materials science and manufacturing perspectives. This review article attempts to combine a wide variety of analyzing approaches from those interdisciplinary fields to deliver deeper insights to researchers both in academia and industry to develop next-generation dental implants.
Collapse
|
22
|
Davoodi E, Montazerian H, Mirhakimi AS, Zhianmanesh M, Ibhadode O, Shahabad SI, Esmaeilizadeh R, Sarikhani E, Toorandaz S, Sarabi SA, Nasiri R, Zhu Y, Kadkhodapour J, Li B, Khademhosseini A, Toyserkani E. Additively manufactured metallic biomaterials. Bioact Mater 2022; 15:214-249. [PMID: 35386359 PMCID: PMC8941217 DOI: 10.1016/j.bioactmat.2021.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted. After introducing metal AM processes, biocompatible metals adapted for integration with AM machines are presented. Then, we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including, topology optimization techniques, as well as unit cell patterns based on lattice networks, and triply periodic minimal surface. Here, the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed. Subsequently, the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters. We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation. Finally, we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Anooshe Sadat Mirhakimi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Isfahan 84156-83111, Iran
| | - Masoud Zhianmanesh
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Osezua Ibhadode
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shahriar Imani Shahabad
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Reza Esmaeilizadeh
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Einollah Sarikhani
- Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, California 92093, United States
| | - Sahar Toorandaz
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shima A. Sarabi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California 90095, United States
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Javad Kadkhodapour
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Tehran 16785-163, Iran
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart 70569, Germany
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Manufacturing Systems Engineering and Management, California State University, Northridge, California 91330, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
Grosgogeat B, Vaicelyte A, Gauthier R, Janssen C, Le Borgne M. Toxicological Risks of the Cobalt-Chromium Alloys in Dentistry: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175801. [PMID: 36079183 PMCID: PMC9457507 DOI: 10.3390/ma15175801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/27/2023]
Abstract
Background: The toxicological risk of Co-Cr dental alloys is actually a sensitive subject with the European regulatory changes, namely regulation (EU) 2017/745 and annex VI to the CLP regulation (EC) 1972/2008. Objectives: The objective of this review is to conduct a rigorous analysis of the cytocompatibility of cobalt-chromium (Co-Cr) dental alloys. Considering various parameters such as cytotoxicity, type IV hypersensitivity reaction, sensitization, and irritation, we investigated evidence of toxicity of Co-Cr in human dental applications. Data sources: Specific search strategies were performed in three electronic databases, namely Medline, Embase, and Web of Science, using a main restriction in the search regarding the publication date (1995-2022). Study selection: Out of a total of 836 articles, only 21 studies were selected and analyzed according to PRISMA methodology. Results: Among them, 10 in vitro studies using human samples and 11 in vivo studies on human patients were distinguished. Most of the in vitro studies confirmed that Co-Cr alloys have a good cytocompatibility compared to Ni alloys. Regarding the in vivo studies, it appeared that Co-Cr could rarely cause sensitization, irritation, and allergic reactions. Reactions were mainly observed for people allergic to Co or Cr. Nevertheless, titanium-based materials showed better results. Conclusions: This study proposes a new state of the art on Co-Cr dental alloys and will thus be very useful for carrying out additional studies. Relevance: This review will help practitioners in their daily clinical choice.
Collapse
Affiliation(s)
- Brigitte Grosgogeat
- Laboratoire des Multimatériaux et des Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Univ Lyon, 69008 Lyon, France
- Hospices Civils de Lyon, Service d′Odontologie, 69007 Lyon, France
- Faculté d′Odontologie, Université Claude Bernard Lyon 1, Univ Lyon, 69008 Lyon, France
| | - Alina Vaicelyte
- Laboratoire des Multimatériaux et des Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Univ Lyon, 69008 Lyon, France
| | - Rémy Gauthier
- CNRS, INSA de Lyon, UCBL, MATEIS UMR CNRS 5510, Lyon, Bât. Saint Exupéry, 23 Av. Jean Capelle, 69621 Villeurbanne, France
| | - Christine Janssen
- Institut de Formation en Masso-Kinésithérapie pour Déficients de la Vue (IFMK DV), 69373 Lyon, France
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France
| |
Collapse
|
24
|
Simultaneously Embedding Indomethacin and Electrodeposition of Polypyrrole on Various CoCr Alloys from Ionic Liquids. MATERIALS 2022; 15:ma15134714. [PMID: 35806838 PMCID: PMC9267949 DOI: 10.3390/ma15134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022]
Abstract
The aim of the present investigation is the electrochemical deposition of polypyrrole films from choline chloride-based ionic liquids at various potential, period times and simultaneously an indomethacin embedding and release. The electrodeposition films were performed on CoCr commercial type Wirobond C (WBC) and, Heraenium CE (Hera) using as electroprocedures for deposition cyclic voltammetry and chronoamperometry. The morphology of obtained films was investigated using scanning electron microscopy (SEM). An FT-IR investigation of CoCr alloys before and after electrodeposition was able to identify the presence of polymer and drug. The research included an evaluation of the hydrophilic character of all studied samples and their electrochemical characterization in Tanni Zuchi artificial saliva. In the electrochemical study, the following methods have been used: open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization. Indomethacin release from the polymeric film was determined using UV-VIS spectra. Based on Fick’s law of diffusion and indomethacin release profile, a kinetic law for release was established and discussed.
Collapse
|
25
|
Elsayed S, Sherief DI, Selim MM, Alian GA. Strength of Polyether Ether Ketone Composite as a Major Connector Material for Removable Partial Dentures. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PEEK composite was tested mechanically as a maxillary removable partial denture (RPD) framework material instead of cast cobalt chromium alloy. Methods: Partial edentulous upper jaw cast was scanned using structured-light 3D scanner, palatal strap (PS) designs for RPD were designed by a designing dental laboratory software. CAD/CAM machine fabricated PSs patterns using their designs’ STL software files. PSs were made from poly-ether-ether ketone (PEEK) reinforced by ceramic fillers using thermal injection press technique and Co-Cr alloy using centrifugal casting, each material group was subdivided into two subgroups according to storage conditions (stored and non-stored subgroups), storage took place in deionized water for about 180 days at 37.5 ± 2 o C. All specimens were subjected to fracture resistance test using universal testing machine then maximum compression load (MCL) result values were subjected to statistical analysis. PEEK composite specimens were scanned by field emission microscope (FEM) and energy dispersive spectroscopy. Storage water of PEEK composite was analyzed using atomic absorption spectroscopy (AAS). Results: In either stored or non-stored subgroups of PEEK composite straps they showed significant lower mean MCL values than corresponding alloy subgroups (p=0.0001). FEM scanning showed fillers agglomerations in non-stored PEEK composite and their nearly absence from stored PEEK composite specimens. AAS detected Al element in PEEK composite storage water. Conclusion: Mechanically thermally injected ceramic reinforced PEEK composite could not replace cast Co-Cr alloy as PSs material for maxillary RPD. Biocompatibility concerns raised in this study due to suspected Al leaching and ceramic fillers dissolution from PEEK composite matrix.
Collapse
|
26
|
Gautam S, Bhatnagar D, Bansal D, Batra H, Goyal N. Recent advancements in nanomaterials for biomedical implants. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Effect of Cobalt and Chromium Ions on the Chlorhexidine Digluconate as Seen by Intermolecular Diffusion. Int J Mol Sci 2021; 22:ijms222413266. [PMID: 34948060 PMCID: PMC8706250 DOI: 10.3390/ijms222413266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Metal ions such as cobalt (II) and chromium (III) might be present in the oral cavity, as a consequence of the corrosion of Co-Cr dental alloys. The diffusion of such metal ions into the organism, carried by saliva, can cause health problems as a consequence of their toxicity, enhanced by a cumulative effect in the body. The effect of the chlorhexidine digluconate, which is commonly used in mouthwash formulations, on the transport of these salts is evaluated in this paper by using the Taylor dispersion technique, which will allow an assessment of how the presence of chlorhexidine digluconate (either in aqueous solution or in a commercial formulation) may affect the diffusion of metal ions. The ternary mutual diffusion coefficients of metal ions (Co and Cr) in the presence of chlorhexidine digluconate, in an artificial saliva media, were measured. Significant coupled diffusion of CoCl2 (and CrCl3) and chlorhexidine digluconate is observed by analysis of the non-zero values of the cross-diffusion coefficients, D12 and D21. The observed interactions between metal ions and chlorhexidine digluconate suggest that the latter might be considered as an advantageous therapeutic agent, once they contribute to the reduction of the concentration of those ions inside the mouth.
Collapse
|
29
|
Surface Roughness Analysis and Prediction with an Artificial Neural Network Model for Dry Milling of Co-Cr Biomedical Alloys. MATERIALS 2021; 14:ma14216361. [PMID: 34771885 PMCID: PMC8585254 DOI: 10.3390/ma14216361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/29/2023]
Abstract
The aim of this paper is to conduct an experimental study in order to obtain a roughness (Ra) prediction model for dry end-milling (with an AlTiCrSiN PVD-coated tool) of the Co–28Cr–6Mo and Co–20Cr–15W–10Ni biomedical alloys, a model that can contribute to more quickly obtaining the desired surface quality and shortening the manufacturing process time. An experimental plan based on the central composite design method was adopted to determine the influence of the axial depth of cut, feed per tooth and cutting speed process parameters (input variables) on the Ra surface roughness (response variable) which was recorded after machining for both alloys. To develop the prediction models, statistical techniques were used first and three prediction equations were obtained for each alloy, the best results being achieved using response surface methodology. However, for obtaining a higher accuracy of prediction, ANN models were developed with the help of an application made in LabView for roughness (Ra) prediction. The primary results of this research consist of the Co–28Cr–6Mo and Co–20Cr–15W–10Ni prediction models and the developed application. The modeling results show that the ANN model can predict the surface roughness with high accuracy for the considered Co–Cr alloys.
Collapse
|
30
|
Djošić M, Janković A, Mišković-Stanković V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5391. [PMID: 34576615 PMCID: PMC8472014 DOI: 10.3390/ma14185391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023]
Abstract
Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue. Problems arise due to the simple fact that any surface that promotes biointegration and facilitates osteointegration may also provide a good platform for the rapid growth of bacterial colonies. Infected implant surfaces easily lead to biofilm formation that poses a major healthcare concern since it could have destructive effects and ultimately endanger the patients' life. As of late, research has centered on designing coatings that would eliminate possible infection but neglected to aid bone mineralization. Other strategies yielded surfaces that could promote osseointegration but failed to prevent microbial susceptibility. Needless to say, in order to assure prolonged implant functionality, both coating functions are indispensable and should be addressed simultaneously. This review summarizes progress in designing multifunctional implant coatings that serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.
Collapse
Affiliation(s)
- Marija Djošić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia;
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Vesna Mišković-Stanković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| |
Collapse
|
31
|
Bechir F, Bataga SM, Ungureanu E, Vranceanu DM, Pacurar M, Bechir ES, Cotrut CM. Experimental Study Regarding the Behavior at Different pH of Two Types of Co-Cr Alloys Used for Prosthetic Restorations. MATERIALS 2021; 14:ma14164635. [PMID: 34443157 PMCID: PMC8402223 DOI: 10.3390/ma14164635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Cobalt-chromium (Co-Cr) alloys are widely utilized in dentistry. The salivary pH is a significant factor, which affects the characteristics and the behavior of dental alloys through corrosion. This study aimed to evaluate the corrosion behavior in artificial saliva with different pH values (3, 5.7, and 7.6) of two commercial Co-Cr dental alloys manufactured by casting and by milling. Corrosion resistance was determined by the polarization resistance technique, and the tests were carried out at 37 ± 1 °C, in Carter Brugirard artificial saliva. After the electrochemical parameters, it can be stated that the cast Co-Cr alloy has the lowest corrosion current density, the highest polarization resistance, and the lowest speed of corrosion in artificial saliva with pH = 7.6. In the case of milled Co-Cr alloy, the same behavior was observed, but in artificial saliva with pH = 5.7, it recorded the most electropositive values of open circuit potential and corrosion potential. Although both cast and milled Co-Cr alloys presented a poorer corrosion resistance in artificial saliva with a more acidic pH value, the milled Co-Cr alloy had better corrosion behavior, making this alloy a better option for the prosthetic treatment of patients suffering from GERD.
Collapse
Affiliation(s)
- Farah Bechir
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania; (F.B.); (M.P.)
| | - Simona Maria Bataga
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania;
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.U.); (D.M.V.); (C.M.C.)
| | - Diana Maria Vranceanu
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.U.); (D.M.V.); (C.M.C.)
| | - Mariana Pacurar
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania; (F.B.); (M.P.)
| | - Edwin Sever Bechir
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania; (F.B.); (M.P.)
- Correspondence: ; Tel.: +40-72-339-6969
| | - Cosmin Mihai Cotrut
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.U.); (D.M.V.); (C.M.C.)
| |
Collapse
|
32
|
A Combined Strategy to Improve the Performance of Dental Alloys Using a New CoCrNbMoZr Alloy with Mn and Si Coated via an Anodic Oxidation Procedure. METALS 2021. [DOI: 10.3390/met11071017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the paper is based on a combined approach to improve dental alloy performance using a new Ni-free Co–Cr composition with Mo, Nb and Zr and coated with an anodic oxidation film. The coated and uncoated samples were surface characterized by performing SEM (scanning electronic microscopy), XRD (X-rays diffraction) contact angle measurements and corrosion studies with open circuit potential, potentiodynamic polarization and EIS (impedance electrochemical spectroscopy) procedures. The SEM equipment with an EDX (Energy-dispersive X-ray spectroscopy) module indicated the sample morphology and the XRD investigations established the formation of the oxides. The electrochemical procedures were performed in Ericsson artificial saliva for coated samples in various conditions. Based on all the experiments, including the decrease in the hydrophobic character of the uncoated samples and the decrease in the hydrophilic values of the anodized alloys, the improved performance of the coated samples was established as a conclusion.
Collapse
|
33
|
Framework Materials for Full-Arch Implant-Supported Rehabilitations: A Systematic Review of Clinical Studies. MATERIALS 2021; 14:ma14123251. [PMID: 34204681 PMCID: PMC8231547 DOI: 10.3390/ma14123251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
The purpose of this systematic review was to investigate the clinical outcomes of frameworks made of different materials in patients with implant-supported full-arch prostheses. A literature search was conducted on MEDLINE, Scopus and Cochrane Library, until the 1st of March 2021, with the following search terms: framework or substructure combined with "dental implants". The outcomes evaluated were: implant and prosthesis survival, bone resorption, biological and technical complications. The Cochrane Handbook for Systematic Reviews of Interventions was employed to assess the risk of bias in randomized clinical trials. The Newcastle-Ottawa quality assessment scale was used for non-randomized studies. In total, 924 records were evaluated for title and abstract, and 11 studies were included in the review: 4 clinical randomized trials and 7 cohort studies. The framework materials investigated were: gold alloy, titanium, silver-palladium alloy, zirconia and polymers including acrylic resin and carbon-fiber-reinforced composites. High implant and prosthetic cumulative survival rates were recorded by all included studies. Various materials and different fabrication techniques are now available as alternatives to traditional cast metal frameworks, for full-arch implant-supported rehabilitations. Further long-term studies are needed to validate the use of these materials and clarify their specific clinical indications and manufacturing protocols to optimize their clinical outcomes.
Collapse
|
34
|
Rangrazi A, Mirmortazavi A, Imani R, Nodehi D. Effect of Ozone on Corrosion Behavior of a Cobalt–Chromium Alloy Used in Removable Partial Denture Framework: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2021. [DOI: 10.1177/23202068211015748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim: The aim of this study was to evaluate the effect of the ozonated water on corrosion of a cobalt–chromium (Co-Cr)-based alloy, which is applied for the fabrication of metal frameworks of removable partial dentures. Materials and Methods: In this in vitro study, a total of 30 disk-shaped samples of a Co-Cr alloy were papered and randomly divided into two groups of 15 specimens. In group 1 (control), the specimens were stored in distilled water (DW), and in group 2, the specimens were stored in ozonated water. Around 90 immersions were performed, and the weight change of each specimen was determined. The ion release was analyzed using an inductively coupled plasma-optical emission spectrophotometer. The potentiodynamic polarization test was performed for each group to assess the corrosion resistance of the Co-Cr alloy. The statistical analysis was performed using SPSS version 22. Data were analyzed by independent samples’ t-test. Results: The results showed no significant difference between the weight changes of the two groups. The test using an inductively coupled plasma-optical emission spectrophotometer demonstrated no significant difference between the groups in Co and Cr ions release. In the potentiodynamic polarization test, both groups present similar corrosion behavior, and ozonated water has no deleterious effect on the corrosion resistance and passive range of the Co-Cr alloy compared to DW. Conclusion: As compared to DW, ozonated water has no significant deleterious effect on the corrosion resistance of the Co-Cr frameworks and can be used for cleaning the removable partial dentures.
Collapse
Affiliation(s)
| | - Amirtaher Mirmortazavi
- Department of Prosthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Imani
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Nodehi
- Department of Prosthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
A Comparative Electrochemical and Morphological Investigation on the Behavior of NiCr and CoCr Dental Alloys at Various Temperatures. METALS 2021. [DOI: 10.3390/met11020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of our study is to compare the behavior of two reprocessed dental alloys (NiCr and CoCr) at different temperatures considering the idea that food and drinks in the oral cavity create various compositions at different pH levels; the novelty is the investigation of temperature effect on corrosion parameters and ion release of dental alloys. Electrochemical stability was studied together with morphology, elemental composition and ions release determination. The results obtained are in good concordance: electrochemistry studies reveal that the corrosion rate is increasing by increasing the temperature. From SEM coupled with EDS, the oxide film formed on the surface of the alloys is stable at low temperatures and a trend to break after 310K. ICP-MS results evidence that in accordance with increasing temperature, the quantities of ions released from the alloys immersed in artificial saliva also increase, though they still remain small, less than 20 ppm.
Collapse
|