1
|
Wejieme N, Vigliola L, Parravicini V, Sellanes J, Wafo E, Zapata-Hernandez G, Bustamante P, Letourneur Y. Widespread presence of metallic compounds and organic contaminants across Pacific coral reef fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177914. [PMID: 39662401 DOI: 10.1016/j.scitotenv.2024.177914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Coral reef fishes represent an invaluable source of macro- and micro-nutrients for tropical coastal populations. However, several potentially toxic compounds may jeopardize their contribution to food security. Concentrations of metallic compounds and trace elements (MTEs), and persistent organic pollutants (POPs, including pesticides and polychlorobiphenyls PCBs), totalizing 36 contaminants, were measured in coral reef fish from several Pacific islands. The objective of this study was to describe the spatial distribution of these compounds and contaminants in order to identify potential variables explaining their distribution at a Pacific-wide scale. To achieve this, we applied Boosted Regression Trees to model species-specific and community-level contaminant and inorganic compound concentrations at the scale of the tropical Pacific Ocean. Overall, using 15 easily accessible explanatory variables, we successfully explained between 60 and 87 % of the global variation, with fish body size being the most important correlate of MTEs and POPs concentrations in reef fish. Our modeling approach allowed us to estimate and map the distribution of the community-level concentration of 19 contaminants and inorganic compounds at the scale of the equatorial and south Pacific Ocean. Spatial patterns varied significantly depending on the compound, with modeled quantities per 100 g of fish flesh generally being higher in the central and southwest Pacific than in the eastern part of the basin. These patterns were influenced by a combination of biological, environmental, anthropogenic and biogeographical variables. Overall, this approach represents an important step toward the estimation of concentrations of the main compounds on the basis of species identity and fishing location. Our results enhance our understanding of the extent of contamination in the Pacific while underscoring the urgent need for long-term and large-scale spatial monitoring of diverse compounds in this region.
Collapse
Affiliation(s)
- Noreen Wejieme
- ENTROPIE (UR-IRD-CNRS-IFREMER-UNC), Université de la Nouvelle-Calédonie, LabEx "Corail", BP R4, 98851 Nouméa, Cedex, New Caledonia
| | - Laurent Vigliola
- ENTROPIE (UR-IRD-CNRS-IFREMER-UNC), Institut de Recherche pour le Développement, LabEx « Corail », BP A5, 101 Promenade Roger Laroque, 98848 Nouméa, New-Caledonia, France
| | - Valeriano Parravicini
- CRIOBE, PSL Research University, USR 3278 EPHE-CNRS-UPVD, LabEx « Corail », Université de Perpignan, Avenue Paul Alduy, 66860 Perpignan, Cedex, France
| | - Javier Sellanes
- Departamento de Biología Marina & Centro ESMOI, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo, Chile
| | - Emmanuel Wafo
- Aix-Marseille Université, INSERM SSA-MCT, Laboratoire Chimie Analytique, Faculté de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille, cedex 05, France
| | - German Zapata-Hernandez
- Departamento de Biología Marina & Centro ESMOI, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo, Chile; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Genova Marine Center, 16126 Genova, Italy
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Yves Letourneur
- ENTROPIE (UR-IRD-CNRS-IFREMER-UNC), Université de la Nouvelle-Calédonie, LabEx "Corail", BP R4, 98851 Nouméa, Cedex, New Caledonia.
| |
Collapse
|
2
|
Talbot E, Jontila JBS, Gonzales BJ, Dolorosa RG, Jose ED, Sajorne R, Sailley S, Kay S, Queirós AM. Incorporating climate-readiness into fisheries management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170684. [PMID: 38320704 DOI: 10.1016/j.scitotenv.2024.170684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tropical oceans are among the first places to exhibit climate change signals, affecting the habitat distribution and abundance of marine fish. These changes to stocks, and subsequent impacts on fisheries production, may have considerable implications for coastal communities dependent on fisheries for food security and livelihoods. Understanding the impacts of climate change on tropical marine fisheries is therefore an important step towards developing sustainable, climate-ready fisheries management measures. We apply an established method of spatial meta-analysis to assess species distribution modelling datasets for key species targeted by the Philippines capture fisheries. We analysed datasets under two global emissions scenarios (RCP4.5 and RCP8.5) and varying degrees of fishing pressure to quantify potential climate vulnerability of the target community. We found widespread responses to climate change in pelagic species in particular, with abundances projected to decline across much of the case study area, highlighting the challenges of maintaining food security in the face of a rapidly changing climate. We argue that sustainable fisheries management in the Philippines in the face of climate change can only be achieved through management strategies that allow for the mitigation of, and adaptation to, pressures already locked into the climate system for the near term. Our analysis may support this, providing fisheries managers with the means to identify potential climate change hotspots, bright spots and refugia, thereby supporting the development of climate-ready management plans.
Collapse
Affiliation(s)
- Elizabeth Talbot
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom.
| | - Jean-Beth S Jontila
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Benjamin J Gonzales
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Roger G Dolorosa
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Edgar D Jose
- College of Arts and Sciences, North Eastern Mindanao State University, Lianga, Surigao Del Sur, Philippines
| | - Recca Sajorne
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Philippines
| | - Sevrine Sailley
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Susan Kay
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Ana M Queirós
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
3
|
Diaz C, Foster NL, Attrill MJ, Bolton A, Ganderton P, Howell KL, Robinson E, Hosegood P. Mesophotic coral bleaching associated with changes in thermocline depth. Nat Commun 2023; 14:6528. [PMID: 37845210 PMCID: PMC10579316 DOI: 10.1038/s41467-023-42279-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
As global temperatures continue to rise, shallow coral reef bleaching has become more intense and widespread. Mesophotic coral ecosystems reside in deeper (30-150 m), cooler water and were thought to offer a refuge to shallow-water reefs. Studies now show that mesophotic coral ecosystems instead have limited connectivity with shallow corals but host diverse endemic communities. Given their extensive distribution and high biodiversity, understanding their susceptibility to warming oceans is imperative. In this multidisciplinary study of an atoll in the Chagos Archipelago in the central Indian Ocean, we show evidence of coral bleaching at 90 m, despite the absence of shallow-water bleaching. We also show that the bleaching was associated with sustained thermocline deepening driven by the Indian Ocean Dipole, which might be further enhanced by internal waves whose influence varied at a sub-atoll scale. Our results demonstrate the potential vulnerability of mesophotic coral ecosystems to thermal stress and highlight the need for oceanographic knowledge to predict bleaching susceptibility and heterogeneity.
Collapse
Affiliation(s)
- Clara Diaz
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Nicola L Foster
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Martin J Attrill
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Adam Bolton
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Peter Ganderton
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Kerry L Howell
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Edward Robinson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Phil Hosegood
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
4
|
Li Q, Fu D, Zhou Y, Li Y, Chen L, Wang Z, Wan Y, Huang Z, Zhao H. Individual and combined effects of herbicide prometryn and nitrate enrichment at environmentally relevant concentrations on photosynthesis, oxidative stress, and endosymbiont community diversity of coral Acropora hyacinthus. CHEMOSPHERE 2023; 339:139729. [PMID: 37543226 DOI: 10.1016/j.chemosphere.2023.139729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/30/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution and pesticides such as photosystem II (PSII) inhibitor herbicides have several detrimental impacts on coral reefs, including breakdown of the symbiosis between host corals and photosynthetic symbionts. Although nitrogen and PSII herbicide pollution separately cause coral bleaching, the combined effects of these stressors at environmentally relevant concentrations on corals have not been assessed. Here, we report the combined effects of nitrate enrichment and PSII herbicide (prometryn) exposure on photosynthesis, oxidative status and endosymbiont community diversity of the reef-building coral Acropora hyacinthus. Coral fragments were exposed in a mesocosm system to nitrate enrichment (9 μmol/L) and two prometryn concentrations (1 and 5 μg/L). The results showed that sustained prometryn exposure in combination with nitrate enrichment stress had significant detrimental impacts on photosynthetic apparatus [the maximum quantum efficiency of photosystem II (Fv/Fm), nonphotochemical quenching (NPQ) and oxidative status in the short term. Nevertheless, the adaptive mechanism of corals allowed the normal physiological state to be recovered following 1 μg/L prometryn and 9 μmol/L nitrate enrichment individual exposure. Moreover, exposure for 9 days was insufficient to trigger a shift in Symbiodiniaceae community. Most importantly, the negative impact of exposure to the combined environmental concentrations of 1 μg/L prometryn and 9 μmol/L nitrate enrichment was found to be significantly greater on the Fv/Fm, quantum yield of non-regulated energy dissipation [Y(NO)], NPQ, and oxidative status of corals compared to the impact of individual stressors. Our results show that interactions between prometryn stress and nitrate enrichment have a synergistic impact on the photosynthetic and oxidative stress responses of corals. This study provides valuable insights into combined effects of nitrate enrichment and PSII herbicides pollution for coral's physiology. Environmental concentrations of PSII herbicides may be more harmful to photosystems and antioxidant systems of corals under nitrate enrichment stress. Thus, future research and management of seawater quality stressors should consider combined impacts on corals rather than just the impacts of individual stressors alone.
Collapse
Affiliation(s)
- Qiuli Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Dinghui Fu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Yanyu Zhou
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Liang Chen
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Zhaofan Wang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Yinglang Wan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Zhang J, Huang Z, Li Y, Fu D, Li Q, Pei L, Song Y, Chen L, Zhao H, Kao SJ. Synergistic/antagonistic effects of nitrate/ammonium enrichment on fatty acid biosynthesis and translocation in coral under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162834. [PMID: 36924962 DOI: 10.1016/j.scitotenv.2023.162834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Superimposed on ocean warming, nitrogen enrichment caused by human activity puts corals under even greater pressure. Biosynthesis of fatty acids (FA) is crucial for coral holobiont survival. However, the responses of FA biosynthesis pathways to nitrogen enrichment under heat stress in coral hosts and Symbiodiniaceae remain unknown, as do FA translocation mechanisms in corals. Herein, we used the thermosensitive coral species Acropora hyacinthus to investigate changes in FA biosynthesis pathways and polyunsaturated FA translocation of coral hosts and Symbiodiniaceae with respect to nitrate and ammonium enrichment under heat stress. Heat stress promoted pro-inflammatory FA biosynthesis in coral hosts and inhibited FA biosynthesis in Symbiodiniaceae. Nitrate enrichment inhibited anti-inflammatory FA biosynthesis in Symbiodiniaceae, and promoted pro-inflammatory FA biosynthesis in coral hosts and translocation to Symbiodiniaceae, leading to bleaching after 14 days of culture. Intriguingly, ammonium enrichment promoted anti-inflammatory FA biosynthesis in Symbiodiniaceae and translocation to hosts, allowing corals to better endure heat stress. We constructed schematic diagrams of the shift in FA biosynthesis and translocation in and between A. hyacinthus and its Symbiodiniaceae under heat stress, heat and nitrate co-stress, and heat and ammonium co-stress. The findings provide insight into the mechanisms of coral bleaching under environmental stress from a fatty acid perspective.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yuanchao Li
- Hainan Academy of Marine and Fishery Sciences, Haikou 571126, China
| | - Dinghui Fu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Qipei Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yanwei Song
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Liang Chen
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
6
|
Maggioni F, Bell JJ, Pujo-Pay M, Shaffer M, Cerrano C, Lemonnier H, Letourneur Y, Rodolfo-Metalpa R. Sponge organic matter recycling: Reduced detritus production under extreme environmental conditions. MARINE POLLUTION BULLETIN 2023; 190:114869. [PMID: 37023545 DOI: 10.1016/j.marpolbul.2023.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Sponges are a key component of coral reef ecosystems and play an important role in carbon and nutrient cycles. Many sponges are known to consume dissolved organic carbon and transform this into detritus, which moves through detrital food chains and eventually to higher trophic levels via what is known as the sponge loop. Despite the importance of this loop, little is known about how these cycles will be impacted by future environmental conditions. During two years (2018 and 2020), we measured the organic carbon, nutrient recycling, and photosynthetic activity of the massive HMA, photosymbiotic sponge Rhabdastrella globostellata at the natural laboratory of Bouraké in New Caledonia, where the physical and chemical composition of seawater regularly change according to the tide. We found that while sponges experienced acidification and low dissolved oxygen at low tide in both sampling years, a change in organic carbon recycling whereby sponges stopped producing detritus (i.e., the sponge loop) was only found when sponges also experienced higher temperature in 2020. Our findings provide new insights into how important trophic pathways may be affected by changing ocean conditions.
Collapse
Affiliation(s)
- Federica Maggioni
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa 98800, New Caledonia; Labex ICONA International CO(2) Natural Analogues Network, JSPS, Japan.
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Mireille Pujo-Pay
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, F-66650 Banyuls-sur-Mer, France
| | - Megan Shaffer
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Carlo Cerrano
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Ancona, Italy
| | - Hugues Lemonnier
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa 98800, New Caledonia
| | - Yves Letourneur
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa 98800, New Caledonia
| | - Riccardo Rodolfo-Metalpa
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa 98800, New Caledonia; Labex ICONA International CO(2) Natural Analogues Network, JSPS, Japan
| |
Collapse
|
7
|
Thirukanthan CS, Azra MN, Lananan F, Sara’ G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J. The Evolution of Coral Reef under Changing Climate: A Scientometric Review. Animals (Basel) 2023; 13:ani13050949. [PMID: 36899805 PMCID: PMC10000160 DOI: 10.3390/ani13050949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.
Collapse
Affiliation(s)
- Chandra Segaran Thirukanthan
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang 83352, Indonesia
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Gianluca Sara’
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo, 90133 Palermo, Italy
| | - Inga Grinfelde
- Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vite Rudovica
- Department of Analytical Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | | | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 31-261 Krakow, Poland
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| |
Collapse
|
8
|
Contrasting hydrodynamic regimes of submerged pinnacle and emergent coral reefs. PLoS One 2022; 17:e0273092. [PMID: 35972945 PMCID: PMC9380949 DOI: 10.1371/journal.pone.0273092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Hydrodynamics on coral reefs vary with depth, reef morphology and seascape position. Differences in hydrodynamic regimes strongly influence the structure and function of coral reef ecosystems. Submerged coral reefs on steep-sided, conical bathymetric features like seamounts experience enhanced water circulation as a result of interactions between currents and the abrupt physical structure. There may also be similar interactions between smaller pinnacles and regional water currents in offshore locations (crests > 10 m), while shallow reefs (crests <10 m) may be more subject to surface currents driven by wind, waves and tide. Here we tested whether coral pinnacles experienced stronger and more variable currents compared to emergent reefs at the same depth in both nearshore and offshore positions. Current speeds and temperature were monitored for 12 months at 11 reefs, representing the three different reef categories: submerged offshore pinnacles, emergent offshore reefs and emergent nearshore reefs. We found different patterns in current speeds and temperature among reef types throughout the year and between seasons. Submerged pinnacles exhibited stronger, more variable current speeds compared to both near and offshore emergent reefs. We found seasonal changes in current speeds for pinnacle and nearshore reefs but no variation in current strength on offshore reefs. Whilst instantaneous current directions did reflect the seascape position of individual sites, there was no difference in the directional variability of current speeds between reef types. Annual daily average temperatures at all reef types were not strongly seasonal, changing by less than 2 °C throughout the year. Daily temperature ranges at specific sites however, exhibited considerable variability (annual range of up to 6.5 °C), particularly amongst offshore emergent reefs which experienced the highest temperatures despite greater exposure to regional-scale circulation patterns. Additionally, we found a consistent mismatch between satellite sea surface temperatures and in-situ temperature data, which was on average 2 °C cooler throughout the annual study period. Our results suggest that distinct hydrodynamic processes occur on smaller submerged structures that are physically analogous to seamounts. Our findings highlight important nuances in environmental processes that occur on morphologically distinct coral reef habitats and these are likely to be important drivers for the community dynamics of organisms that inhabit these reefs.
Collapse
|
9
|
Giddens J, Kobayashi DR, Mukai GNM, Asher J, Birkeland C, Fitchett M, Hixon MA, Hutchinson M, Mundy BC, O’Malley JM, Sabater M, Scott M, Stahl J, Toonen R, Trianni M, Woodworth-Jefcoats PA, Wren JLK, Nelson M. Assessing the vulnerability of marine life to climate change in the Pacific Islands region. PLoS One 2022; 17:e0270930. [PMID: 35802686 PMCID: PMC9269963 DOI: 10.1371/journal.pone.0270930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Our changing climate poses growing challenges for effective management of marine life, ocean ecosystems, and human communities. Which species are most vulnerable to climate change, and where should management focus efforts to reduce these risks? To address these questions, the National Oceanic and Atmospheric Administration (NOAA) Fisheries Climate Science Strategy called for vulnerability assessments in each of NOAA’s ocean regions. The Pacific Islands Vulnerability Assessment (PIVA) project assessed the susceptibility of 83 marine species to the impacts of climate change projected to 2055. In a standard Rapid Vulnerability Assessment framework, this project applied expert knowledge, literature review, and climate projection models to synthesize the best available science towards answering these questions. Here we: (1) provide a relative climate vulnerability ranking across species; (2) identify key attributes and factors that drive vulnerability; and (3) identify critical data gaps in understanding climate change impacts to marine life. The invertebrate group was ranked most vulnerable and pelagic and coastal groups not associated with coral reefs were ranked least vulnerable. Sea surface temperature, ocean acidification, and oxygen concentration were the main exposure drivers of vulnerability. Early Life History Survival and Settlement Requirements was the most data deficient of the sensitivity attributes considered in the assessment. The sensitivity of many coral reef fishes ranged between Low and Moderate, which is likely underestimated given that reef species depend on a biogenic habitat that is extremely threatened by climate change. The standard assessment methodology originally developed in the Northeast US, did not capture the additional complexity of the Pacific region, such as the diversity, varied horizontal and vertical distributions, extent of coral reef habitats, the degree of dependence on vulnerable habitat, and wide range of taxa, including data-poor species. Within these limitations, this project identified research needs to sustain marine life in a changing climate.
Collapse
Affiliation(s)
- Jonatha Giddens
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
- National Geographic Society Exploration Technology Lab, Washington, DC, United States of America
| | - Donald R. Kobayashi
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, Hawaiʻi, United States of America
- * E-mail:
| | - Gabriella N. M. Mukai
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Jacob Asher
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
- The Red Sea Development Company, Riyadh, KSA
| | - Charles Birkeland
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Mark Fitchett
- Western Pacific Regional Fishery Management Council, Honolulu, Hawaiʻi, United States of America
| | - Mark A. Hixon
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Melanie Hutchinson
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Bruce C. Mundy
- Ocean Research Explorations, Honolulu, Hawaiʻi, United States of America
| | - Joseph M. O’Malley
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, Hawaiʻi, United States of America
| | - Marlowe Sabater
- Western Pacific Regional Fishery Management Council, Honolulu, Hawaiʻi, United States of America
| | - Molly Scott
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Jennifer Stahl
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Rob Toonen
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawaiʻi, United States of America
| | - Michael Trianni
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, Hawaiʻi, United States of America
| | - Phoebe A. Woodworth-Jefcoats
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, Hawaiʻi, United States of America
| | - Johanna L. K. Wren
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, Honolulu, Hawaiʻi, United States of America
| | - Mark Nelson
- Office of Science and Technology, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
10
|
Meunier V, Bonnet S, Camps M, Benavides M, Dubosc J, Rodolfo-Metalpa R, Houlbrèque F. Ingestion of Diazotrophs Makes Corals More Resistant to Heat Stress. Biomolecules 2022; 12:biom12040537. [PMID: 35454126 PMCID: PMC9027526 DOI: 10.3390/biom12040537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/27/2023] Open
Abstract
Over the past decade, coral bleaching events have continued to recur and intensify. During bleaching, corals expel millions of their symbionts, depriving the host from its main food source. One mechanism used by corals to resist bleaching consists in exploiting food sources other than autotrophy. Among the food sources available in the reefs, dinitrogen (N2)-fixing prokaryotes or planktonic diazotrophs (hereafter called ‘PD’) have the particularity to reduce atmospheric dinitrogen (N2) and release part of this nitrogen (diazotroph-derived nitrogen or DDN) in bioavailable form. Here, we submitted coral colonies of Stylophora pistillata, fed or not with planktonic diazotrophs, to a temperature stress of up to 31 ± 0.5 °C and measured their physiological responses (photosynthetic efficiency, symbiont density, and growth rates). Heat-unfed colonies died 8 days after the heat stress while heat-PD-fed corals remained alive after 10 days of heat stress. The supply of PD allowed corals to maintain minimal chlorophyll concentration and symbiont density, sustaining photosynthetic efficiency and stimulating coral growth of up to 48% compared to unfed ones. By providing an alternative source of bioavailable nitrogen and carbon, this specific planktonic diazotroph feeding may have a profound potential for coral bleaching recovery.
Collapse
Affiliation(s)
- Valentine Meunier
- ENTROPIE UMR 9220 (CNRS, IRD, UR, UNC, IFREMER) Institut de Recherche pour le Développement, Nouméa 98848, New Caledonia; (R.R.-M.); (F.H.)
- Correspondence:
| | - Sophie Bonnet
- Aix-Marseille University, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (S.B.); (M.C.); (M.B.)
| | - Mercedes Camps
- Aix-Marseille University, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (S.B.); (M.C.); (M.B.)
| | - Mar Benavides
- Aix-Marseille University, CNRS, IRD, MIO UM 110, 13288 Marseille, France; (S.B.); (M.C.); (M.B.)
| | - Jeff Dubosc
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Noumea 98807, New Caledonia;
| | - Riccardo Rodolfo-Metalpa
- ENTROPIE UMR 9220 (CNRS, IRD, UR, UNC, IFREMER) Institut de Recherche pour le Développement, Nouméa 98848, New Caledonia; (R.R.-M.); (F.H.)
| | - Fanny Houlbrèque
- ENTROPIE UMR 9220 (CNRS, IRD, UR, UNC, IFREMER) Institut de Recherche pour le Développement, Nouméa 98848, New Caledonia; (R.R.-M.); (F.H.)
| |
Collapse
|
11
|
Lang BJ, Donelson JM, Caballes CF, Doll PC, Pratchett MS. Metabolic Responses of Pacific Crown-of-Thorns Sea Stars ( Acanthaster sp.) to Acute Warming. THE BIOLOGICAL BULLETIN 2021; 241:347-358. [PMID: 35015619 DOI: 10.1086/717049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractClimate change and population irruptions of crown-of-thorns sea stars (Acanthaster sp.) are two of the most pervasive threats to coral reefs. Yet there has been little consideration regarding the synergies between ocean warming and the coral-feeding sub-adult and adult stages of this asteroid. Here we explored the thermosensitivity of the aforementioned life stages by assessing physiological responses to acute warming. Thermal sensitivity was assessed based on the maximal activity of enzymes involved in aerobic (citrate synthase) and anaerobic (lactate dehydrogenase) metabolic pathways, as well as the standard metabolic rate of sub-adult and adult sea stars. In both life stages, citrate synthase activity declined with increasing temperature from 15 °C to 40 °C, with negligible activity occurring >35 °C. On the other hand, lactate dehydrogenase activity increased with temperature from 20 °C to 45 °C, indicating a greater reliance on anaerobic metabolism in a warmer environment. The standard metabolic rate of sub-adult sea stars increased with temperature throughout the testing range (24 °C to 36 °C). Adult sea stars exhibited evidence of thermal stress, with metabolic depression occurring from 33 °C. Here, we demonstrate that crown-of-thorns sea stars are sensitive to warming but that adults, and especially sub-adults, may have some resilience to short-term marine heatwaves in the near future.
Collapse
|
12
|
Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web. Sci Rep 2021; 11:20950. [PMID: 34697332 PMCID: PMC8545934 DOI: 10.1038/s41598-021-00348-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/11/2021] [Indexed: 11/08/2022] Open
Abstract
We studied the food web structure and functioning of a coral reef ecosystem in the Marquesas Islands, French Polynesia, characterized by low coral cover, high sea surface temperature and meso- to eutrophic waters. The Marquesas constitute a relevant ecosystem to understand the functioning of low diversity reefs that are also subject to global change. A multi-tracer assessment of organic matter pathways was run to delineate ecosystem functioning, using analysis of fatty acids, bulk and compound specific stable isotope analysis and stable isotopes mixing models. Macroalgae and phytoplankton were the two major food sources fueling this food web with, however, some marked seasonal variations. Specifically, zooplankton relied on phytoplankton-derived organic matter and herbivorous fishes on macroalgae-derived organic matter to a much higher extent in summer than in winter (~ 75% vs. ~ 15%, and ~ 70 to 75% vs. ~ 5 to 15%, respectively) . Despite remarkably high δ15N values for all trophic compartments, likely due to local dynamics in the nitrogen stock, trophic levels of consumers were similar to those of other coral reef ecosystems. These findings shed light on the functioning of low coral cover systems, which are expected to expand worldwide under global change.
Collapse
|
13
|
Nyboer EA, Lin HY, Bennett JR, Gabriel J, Twardek W, Chhor AD, Daly L, Dolson S, Guitard E, Holder P, Mozzon CM, Trahan A, Zimmermann D, Kesner-Reyes K, Garilao C, Kaschner K, Cooke SJ. Global assessment of marine and freshwater recreational fish reveals mismatch in climate change vulnerability and conservation effort. GLOBAL CHANGE BIOLOGY 2021; 27:4799-4824. [PMID: 34289527 DOI: 10.1111/gcb.15768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Recreational fisheries contribute substantially to the sociocultural and economic well-being of coastal and riparian regions worldwide, but climate change threatens their sustainability. Fishery managers require information on how climate change will impact key recreational species; however, the absence of a global assessment hinders both directed and widespread conservation efforts. In this study, we present the first global climate change vulnerability assessment of recreationally targeted fish species from marine and freshwater environments (including diadromous fishes). We use climate change projections and data on species' physiological and ecological traits to quantify and map global climate vulnerability and analyze these patterns alongside the indices of socioeconomic value and conservation effort to determine where efforts are sufficient and where they might fall short. We found that over 20% of recreationally targeted fishes are vulnerable to climate change under a high emission scenario. Overall, marine fishes had the highest number of vulnerable species, concentrated in regions with sensitive habitat types (e.g., coral reefs). However, freshwater fishes had higher proportions of species at risk from climate change, with concentrations in northern Europe, Australia, and southern Africa. Mismatches in conservation effort and vulnerability were found within all regions and life-history groups. A key pattern was that current conservation effort focused primarily on marine fishes of high socioeconomic value rather than on the freshwater and diadromous fishes that were predicted to be proportionately more vulnerable. While several marine regions were notably lacking in protection (e.g., Caribbean Sea, Banda Sea), only 19% of vulnerable marine species were without conservation effort. By contrast, 72% of freshwater fishes and 33% of diadromous fishes had no measures in place, despite their high vulnerability and cultural value. The spatial and taxonomic analyses presented here provide guidance for the future conservation and management of recreational fisheries as climate change progresses.
Collapse
Affiliation(s)
| | - Hsien-Yung Lin
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Joseph R Bennett
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| | - Joseph Gabriel
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - William Twardek
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Auston D Chhor
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Lindsay Daly
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Dolson
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Eric Guitard
- Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada
| | - Peter Holder
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | | | - Cristina Garilao
- GEOMAR Helmholtz, Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | - Kristin Kaschner
- Abteilung für Biometri und Umweltsystemanalyse, University of Freiburg, Freiburg, Germany
| | - Steven J Cooke
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
14
|
Nolan MKB, Schmidt-Roach S, Davis AR, Aranda M, Howells EJ. Widespread bleaching in the One Tree Island lagoon (Southern Great Barrier Reef) during record-breaking temperatures in 2020. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:590. [PMID: 34417871 PMCID: PMC8379602 DOI: 10.1007/s10661-021-09330-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The global marine environment has been impacted significantly by climate change. Ocean temperatures are rising, and the frequency, duration and intensity of marine heatwaves are increasing, particularly affecting coral reefs. Coral bleaching events are becoming more common, with less recovery time between events. Anomalous temperatures at the start of 2020 caused widespread bleaching across the Great Barrier Reef (GBR), extending to southern, previously less affected reefs such as One Tree Island. Here, nine video transects were conducted at One Tree Island, in the Capricorn Bunker Group, and analysed for community composition and diversity, and the extent of bleaching across taxa. Average live hard coral cover across the area was 11.62%, and almost half of this was identified as severely bleached. This bleaching event is concerning as it occurred in an area previously considered a potential refuge for corals and associated fauna from the risks of climate warming. Due to the global impacts of COVID-19 during 2020, this report provides one of potentially few monitoring efforts of coral bleaching.
Collapse
Affiliation(s)
- Megan K B Nolan
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Sebastian Schmidt-Roach
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Andrew R Davis
- Centre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Manuel Aranda
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Emily J Howells
- Centre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
15
|
McClure EC, Hoey AS, Sievers KT, Abesamis RA, Russ GR. Relative influence of environmental factors and fishing on coral reef fish assemblages. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:976-990. [PMID: 32939886 DOI: 10.1111/cobi.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Understanding whether assemblages of species respond more strongly to bottom-up (availability of trophic resources or habitats) or top-down (predation pressure) processes is important for effective management of resources and ecosystems. We determined the relative influence of environmental factors and predation by humans in shaping the density, biomass, and species richness of 4 medium-bodied (10-40 cm total length [TL]) coral reef fish groups targeted by fishers (mesopredators, planktivores, grazer and detritivores, and scrapers) and the density of 2 groups not targeted by fishers (invertivores, small fish ≤10 cm TL) in the central Philippines. Boosted regression trees were used to model the response of each fish group to 21 predictor variables: 13 habitat variables, 5 island variables, and 3 fishing variables (no-take marine reserve [NTMR] presence or absence, NTMR size, and NTMR age). Targeted and nontargeted fish groups responded most strongly to habitat variables, then island variables. Fishing (NTMR) variables generally had less influence on fish groups. Of the habitat variables, live hard coral cover, structural complexity or habitat complexity index, and depth had the greatest effects on density, biomass, and species richness of targeted fish groups and on the density of nontargeted fishes. Of the island variables, proximity to the nearest river and island elevation had the most influence on fish groups. The NTMRs affected only fishes targeted by fishers; NTMR size positively correlated with density, biomass, and species richness of targeted fishes, particularly mesopredatory, and grazing and detritivorous fishes. Importantly, NTMRs as small as 15 ha positively affected medium-bodied fishes. This finding provides reassurance for regions that have invested in small-scale community-managed NTMRs. However, management strategies that integrate sound coastal land-use practices to conserve adjacent reef fish habitat, strategic NTMR placement, and establishment of larger NTMRs will be crucial for maintaining biodiversity and fisheries.
Collapse
Affiliation(s)
- Eva C McClure
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Rivers Institute - Coast and Estuaries, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Andrew S Hoey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Katie T Sievers
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Rene A Abesamis
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Silliman University Angelo King Center for Research and Environmental Management, Silliman University, Dumaguete, 6200, Philippines
| | - Garry R Russ
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
16
|
Cheung P, Nozawa Y, Miki T. Ecosystem engineering structures facilitate ecological resilience: A coral reef model. Ecol Res 2021. [DOI: 10.1111/1440-1703.12230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pak‐Yin Cheung
- Institute of Oceanography National Taiwan University Taipei Taiwan
- Biodiversity Research Center Academia Sinica Taipei Taiwan
| | - Yoko Nozawa
- Biodiversity Research Center Academia Sinica Taipei Taiwan
| | - Takeshi Miki
- Institute of Oceanography National Taiwan University Taipei Taiwan
- Research Center for Environmental Changes Academia Sinica Taipei Taiwan
- Ecology and Environmental Engineering Course, Faculty of Advanced Science and Technology Ryukoku University Otsu Shiga Japan
| |
Collapse
|
17
|
Keshavmurthy S, Beals M, Hsieh HJ, Choi KS, Chen CA. Physiological plasticity of corals to temperature stress in marginal coral communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143628. [PMID: 33248756 DOI: 10.1016/j.scitotenv.2020.143628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Adaptation and/or acclimatization through various mechanisms have been suggested to help some tropical coral species to overcome temperature-induced bleaching that is intensifying with climate change; however, while much research has been done on the physiological responses of tropical and subtropical corals to stress, little is known about these responses in corals in marginal environments-e.g., high-latitude and non-reefal communities. In this study, we examined the thermal-tolerant physiology of the flowerpot coral, Alveopora japonica, endemic to the high-latitude Jeju Island (33.39°N), South Korea and Oulastrea crispata and Coelastrea aspera from the subtropical non-reefal coral community on the Penghu Islands (23.34°N), Taiwan. Analysis of physiological parameters; photochemical efficiency, Chlorophyll pigment, Symbiodiniaceae cell number and host soluble proteins - showed that A. japonica can survive through a wide range of temperature stresses (10-32 °C) over a period of 8 days without showing signs of bleaching. In addition, corals O. crispata and C. aspera withstood temperature stresses of up to 33 °C and repeated temperature fluctuations without bleaching. Our results indicate that, under large seasonal variations and asymmetrical daily fluctuations in temperature, corals currently living in marginal environments could have thermal plasticity, allowing them to survive in the future climate change scenarios. This study reiterates the importance of studying the eco-physiology of corals that are generally ignored because of their neutral or positive responses to stress.
Collapse
Affiliation(s)
| | - Morgan Beals
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu 880, Taiwan
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK 21 PLUS), Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Taiwan International Graduate Program-Biodiversity, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan; Department of Life Sciences, Tunghai University, Taichung 404, Taiwan.
| |
Collapse
|
18
|
Koester A, Migani V, Bunbury N, Ford A, Sanchez C, Wild C. Early trajectories of benthic coral reef communities following the 2015/16 coral bleaching event at remote Aldabra Atoll, Seychelles. Sci Rep 2020; 10:17034. [PMID: 33046828 PMCID: PMC7550576 DOI: 10.1038/s41598-020-74077-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
Documenting post-bleaching trajectories of coral reef communities is crucial to understand their resilience to climate change. We investigated reef community changes following the 2015/16 bleaching event at Aldabra Atoll, where direct human impact is minimal. We combined benthic data collected pre- (2014) and post-bleaching (2016–2019) at 12 sites across three locations (lagoon, 2 m depth; seaward west and east, 5 and 15 m depth) with water temperature measurements. While seaward reefs experienced relative hard coral reductions of 51–62%, lagoonal coral loss was lower (− 34%), probably due to three-fold higher daily water temperature variability there. Between 2016 and 2019, hard coral cover did not change on deep reefs which remained dominated by turf algae and Halimeda, but absolute cover on shallow reefs increased annually by 1.3% (east), 2.3% (west) and 3.0% (lagoon), reaching, respectively, 54%, 68% and 93% of the pre-bleaching cover in 2019. Full recovery at the shallow seaward locations may take at least five more years, but remains uncertain for the deeper reefs. The expected increase in frequency and severity of coral bleaching events is likely to make even rapid recovery as observed in Aldabra’s lagoon too slow to prevent long-term reef degradation, even at remote sites.
Collapse
Affiliation(s)
- Anna Koester
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany.
| | - Valentina Migani
- Institute for Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 5, 28359, Bremen, Germany
| | - Nancy Bunbury
- Seychelles Islands Foundation, PO Box 853, Victoria, Mahé, Seychelles.,Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Amanda Ford
- School of Marine Studies, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji
| | - Cheryl Sanchez
- Seychelles Islands Foundation, PO Box 853, Victoria, Mahé, Seychelles
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| |
Collapse
|
19
|
Koval G, Rivas N, D'Alessandro M, Hesley D, Santos R, Lirman D. Fish predation hinders the success of coral restoration efforts using fragmented massive corals. PeerJ 2020; 8:e9978. [PMID: 33062430 PMCID: PMC7534677 DOI: 10.7717/peerj.9978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
As coral reefs continue to decline globally, coral restoration practitioners have explored various approaches to return coral cover and diversity to decimated reefs. While branching coral species have long been the focus of restoration efforts, the recent development of the microfragmentation coral propagation technique has made it possible to incorporate massive coral species into restoration efforts. Microfragmentation (i.e., the process of cutting large donor colonies into small fragments that grow fast) has yielded promising early results. Still, best practices for outplanting fragmented corals of massive morphologies are continuing to be developed and modified to maximize survivorship. Here, we compared outplant success among four species of massive corals (Orbicella faveolata, Montastraea cavernosa, Pseudodiploria clivosa, and P. strigosa) in Southeast Florida, US. Within the first week following coral deployment, predation impacts by fish on the small (<5 cm2) outplanted colonies resulted in both the complete removal of colonies and significant tissue damage, as evidenced by bite marks. In our study, 8–27% of fragments from four species were removed by fish within one week, with removal rates slowing down over time. Of the corals that remained after one week, over 9% showed signs of fish predation. Our findings showed that predation by corallivorous fish taxa like butterflyfishes (Chaetodontidae), parrotfishes (Scaridae), and damselfishes (Pomacentridae) is a major threat to coral outplants, and that susceptibility varied significantly among coral species and outplanting method. Moreover, we identify factors that reduce predation impacts such as: (1) using cement instead of glue to attach corals, (2) elevating fragments off the substrate, and (3) limiting the amount of skeleton exposed at the time of outplanting. These strategies are essential to maximizing the efficiency of outplanting techniques and enhancing the impact of reef restoration.
Collapse
Affiliation(s)
- Gammon Koval
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - Nicolas Rivas
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - Martine D'Alessandro
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - Dalton Hesley
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - Rolando Santos
- Department of Earth and Environment, Florida International University, Miami, FL, United States of America
| | - Diego Lirman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
20
|
Underwood JN, Richards Z, Berry O, Oades D, Howard A, Gilmour JP. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north-west Australia. Evol Appl 2020; 13:2404-2421. [PMID: 33005230 PMCID: PMC7513722 DOI: 10.1111/eva.13033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Management strategies designed to conserve coral reefs threatened by climate change need to incorporate knowledge of the spatial distribution of inter- and intra-specific genetic diversity. We characterized patterns of genetic diversity and connectivity using single nucleotide polymorphisms (SNPs) in two reef-building corals to explore the eco-evolutionary processes that sustain populations in north-west Australia. Our sampling focused on the unique reefs of the Kimberley; we collected the broadcast spawning coral Acropora aspera (n = 534) and the brooding coral Isopora brueggemanni (n = 612) across inter-archipelago (tens to hundreds of kilometres), inter-reef (kilometres to tens of kilometres) and within-reef (tens of metres to a few kilometres) scales. Initial analysis of A. aspera identified four highly divergent lineages that were co-occurring but morphologically similar. Subsequent population analyses focused on the most abundant and widespread lineage, Acropora asp-c. Although the overall level of geographic subdivision was greater in the brooder than in the spawner, fundamental similarities in patterns of genetic structure were evident. Most notably, limits to gene flow were observed at scales <35 kilometres. Further, we observed four discrete clusters and a semi-permeable barrier to dispersal that were geographically consistent between species. Finally, sites experiencing bigger tides were more connected to the metapopulation and had greater gene diversity than those experiencing smaller tides. Our data indicate that the inshore reefs of the Kimberley are genetically isolated from neighbouring oceanic bioregions, but occasional dispersal between inshore archipelagos is important for the redistribution of evolutionarily important genetic diversity. Additionally, these results suggest that networks of marine reserves that effectively protect reefs from local pressures should be spaced within a few tens of kilometres to conserve the existing patterns of demographic and genetic connectivity.
Collapse
Affiliation(s)
- Jim N Underwood
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| | - Zoe Richards
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Oliver Berry
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- CSIRO Oceans and Atmosphere Indian Oceans Marine Research Centre, Crawley Perth WA Australia
| | - Daniel Oades
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - Azton Howard
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - James P Gilmour
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| |
Collapse
|
21
|
Thomson DP, Babcock RC, Haywood MDE, Vanderklift MA, Pillans RD, Bessey C, Cresswell AK, Orr M, Boschetti F, Wilson SK. Zone specific trends in coral cover, genera and growth-forms in the World-Heritage listed Ningaloo Reef. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105020. [PMID: 32858265 DOI: 10.1016/j.marenvres.2020.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
On coral reefs, changes in the cover and relative abundance of hard coral taxa often follow disturbance. Although the ecological responses of common coral taxa have been well documented, little is known about the ecological responses of uncommon coral taxa or of coral morphological groups across multiple adjacent reef zones. We used Multivariate Auto-Regressive State-Space modelling to assess the rate and direction of change of hard coral cover across a variety of coral genera, growth forms, and susceptibility to bleaching and physical damage covering multiple reef zones at northern Ningaloo Reef in Western Australia. Trends were assessed between 2007 and 2016, during which multiple episodic disturbances occurred including cyclones and a heatwave. We provide evidence of zone specific trends, not only in total hard coral cover, but also in taxonomic and morphological groups of corals at Ningaloo Reef. Declines in total coral cover on the reef flat corresponded with declines in fast growing corals, particularly Acropora. In contrast, total coral cover on the reef slope and inshore (lagoon) did not undergo significant change, despite divergent trajectories of individual genera. Importantly, we also show that changes in the composition of coral assemblages can be detected using a morphological based approach when changes are not evident using a taxonomic approach. Therefore, we recommend that future assessments of coral reef trends incorporate not just standard metrics such as total coral cover, but also metrics that provide for detailed descriptions of trends in common and uncommon taxa and morphological groups across multiple reef zones.
Collapse
Affiliation(s)
- Damian P Thomson
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, University of Western Australia, M097, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Russell C Babcock
- CSIRO Oceans and Atmosphere, GPO Box 2583, Brisbane, Qld, 4001, Australia
| | - Michael DE Haywood
- CSIRO Oceans and Atmosphere, GPO Box 2583, Brisbane, Qld, 4001, Australia
| | - Mathew A Vanderklift
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, University of Western Australia, M097, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Richard D Pillans
- CSIRO Oceans and Atmosphere, GPO Box 2583, Brisbane, Qld, 4001, Australia
| | - Cindy Bessey
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, University of Western Australia, M097, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Anna K Cresswell
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, University of Western Australia, M097, 35 Stirling Highway, Crawley, WA, 6009, Australia; School of Biological Sciences, University of Western Australia, Crawley, WA, Australia; Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Melanie Orr
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, University of Western Australia, M097, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Fabio Boschetti
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, University of Western Australia, M097, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Shaun K Wilson
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, W.A., 6151, Australia; Oceans Institute, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
22
|
Evans RD, Wilson SK, Fisher R, Ryan NM, Babcock R, Blakeway D, Bond T, Dorji P, Dufois F, Fearns P, Lowe RJ, Stoddart J, Thomson DP. Early recovery dynamics of turbid coral reefs after recurring bleaching events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110666. [PMID: 32510431 DOI: 10.1016/j.jenvman.2020.110666] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The worlds' coral reefs are declining due to the combined effects of natural disturbances and anthropogenic pressures including thermal coral bleaching associated with global climate change. Nearshore corals are receiving increased anthropogenic stress from coastal development and nutrient run-off. Considering forecast increases in global temperatures, greater understanding of drivers of recovery on nearshore coral reefs following widespread bleaching events is required to inform management of local stressors. The west Pilbara coral reefs, with cross-shelf turbidity gradients coupled with a large nearby dredging program and recent history of repeated coral bleaching due to heat stress, represent an opportune location to study recovery from multiple disturbances. Mean coral cover at west Pilbara reefs was monitored from 2009 to 2018 and declined from 45% in 2009 to 5% in 2014 following three heat waves. Recruitment and juvenile abundance of corals were monitored from 2014 to 2018 and were combined with biological and physical data to identify which variables enhanced or hindered early-stage coral recovery of all hard corals and separately for the acroporids, the genera principally responsible for recovery in the short-term (<7 years). From 2014 to 2018, coral cover increased from 5 to 10% but recovery varied widely among sites (0-13%). Hard coral cover typically recovered most at shallower sites that had higher abundance of herbivorous fish, less macroalgae, and lower turbidity. Similarly, acroporid corals recovered most at sites with lower turbidity and macroalgal cover. Juvenile acroporid densities were a good indicator of recovery at least two years after they were recorded. However, recruitment to settlement tiles was not a good predictor of total coral or acroporid recovery. This study shows that coral recovery can be slower in areas of high turbidity and the rate may be reduced by local pressures, such as dredging. Management should focus on improving or maintaining local water quality to increase the likelihood of coral recovery under climate stress. Further, in turbid environments, juvenile coral density predicts early coral recovery better than recruits on tiles and may be a more cost-effective technique for monitoring recovery potential.
Collapse
Affiliation(s)
- Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia.
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Rebecca Fisher
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Nicole M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | | | - Todd Bond
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Passang Dorji
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Francois Dufois
- IFREMER, DYNECO/DHYSED, ZI Pointe du Diable, 29280, Plouzané, France
| | - Peter Fearns
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Ryan J Lowe
- School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Jim Stoddart
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; MScience Pty Ltd, Perth, WA, Australia
| | - Damian P Thomson
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| |
Collapse
|
23
|
Quimpo TJR, Cabaitan PC, Hoey AS. Detachment of
Porites cylindrica
nubbins by herbivorous fishes. Restor Ecol 2020. [DOI: 10.1111/rec.13091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Timothy J. R. Quimpo
- The Marine Science Institute, College of ScienceUniversity of the Philippines, Diliman Quezon City 1101 Philippines
| | - Patrick C. Cabaitan
- The Marine Science Institute, College of ScienceUniversity of the Philippines, Diliman Quezon City 1101 Philippines
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef StudiesJames Cook University Townsville QLD 4811 Australia
| |
Collapse
|
24
|
Kang JH, Jang JE, Kim JH, Kim S, Keshavmurthy S, Agostini S, Reimer JD, Chen CA, Choi KS, Park SR, Lee HJ. The Origin of the Subtropical Coral Alveopora japonica (Scleractinia: Acroporidae) in High-Latitude Environments. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Ceccarelli DM, Evans RD, Logan M, Mantel P, Puotinen M, Petus C, Russ GR, Williamson DH. Long-term dynamics and drivers of coral and macroalgal cover on inshore reefs of the Great Barrier Reef Marine Park. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02008. [PMID: 31550393 DOI: 10.1002/eap.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Quantifying the role of biophysical and anthropogenic drivers of coral reef ecosystem processes can inform management strategies that aim to maintain or restore ecosystem structure and productivity. However, few studies have examined the combined effects of multiple drivers, partitioned their impacts, or established threshold values that may trigger shifts in benthic cover. Inshore fringing reefs of the Great Barrier Reef Marine Park (GBRMP) occur in high-sediment, high-nutrient environments and are under increasing pressure from multiple acute and chronic stressors. Despite world-leading management, including networks of no-take marine reserves, relative declines in hard coral cover of 40-50% have occurred in recent years, with localized but persistent shifts from coral to macroalgal dominance on some reefs. Here we use boosted regression tree analyses to test the relative importance of multiple biophysical drivers on coral and macroalgal cover using a long-term (12-18 yr) data set collected from reefs at four island groups. Coral and macroalgal cover were negatively correlated at all island groups, and particularly when macroalgal cover was above 20%. Although reefs at each island group had different disturbance-and-recovery histories, degree heating weeks (DHW) and routine wave exposure consistently emerged as common drivers of coral and macroalgal cover. In addition, different combinations of sea-surface temperature, nutrient and turbidity parameters, exposure to high turbidity (primary) floodwater, depth, grazing fish density, farming damselfish density, and management zoning variously contributed to changes in coral and macroalgal cover at each island group. Clear threshold values were apparent for multiple drivers including wave exposure, depth, and degree heating weeks for coral cover, and depth, degree heating weeks, chlorophyll a, and cyclone exposure for macroalgal cover, however, all threshold values were variable among island groups. Our findings demonstrate that inshore coral reef communities are typically structured by broadscale climatic perturbations, superimposed upon unique sets of local-scale drivers. Although rapidly escalating climate change impacts are the largest threat to coral reefs of the GBRMP and globally, our findings suggest that proactive management actions that effectively reduce chronic stressors at local scales should contribute to improved reef resistance and recovery potential following acute climatic disturbances.
Collapse
Affiliation(s)
- Daniela M Ceccarelli
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, 6151, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Murray Logan
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland, 4810, Australia
| | - Philippa Mantel
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland, 4810, Australia
| | - Caroline Petus
- TropWATER, James Cook University, Townsville, Queensland, 4811, Australia
| | - Garry R Russ
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
26
|
Wang JT, Wang YT, Keshavmurthy S, Meng PJ, Chen CA. The coral Platygyra verweyi exhibits local adaptation to long-term thermal stress through host-specific physiological and enzymatic response. Sci Rep 2019; 9:13492. [PMID: 31530828 PMCID: PMC6748984 DOI: 10.1038/s41598-019-49594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Climate change threatens coral survival by causing coral bleaching, which occurs when the coral's symbiotic relationship with algal symbionts (Symbiodiniaceae) breaks down. Studies on thermal adaptation focus on symbionts because they are accessible both in vitro and in hospite. However, there is little known about the physiological and biochemical response of adult corals (without Symbiodiniaceae) to thermal stress. Here we show acclimatization and/or adaptation potential of menthol-bleached aposymbiotic coral Platygyra verweyi in terms of respiration breakdown temperature (RBT) and malate dehydrogenase (MDH) enzyme activity in samples collected from two reef sites with contrasting temperature regimes: a site near a nuclear power plant outlet (NPP-OL, with long-term temperature perturbation) and Wanlitong (WLT) in southern Taiwan. Aposymbiotic P. verweyi from the NPP-OL site had a 3.1 °C higher threshold RBT than those from WLT. In addition, MDH activity in P. verweyi from NPP-OL showed higher thermal resistance than those from WLT by higher optimum temperatures and the activation energy required for inactivating the enzyme by heat. The MDH from NPP-OL also had two times higher residual activity than that from WLT after incubation at 50 °C for 1 h. The results of RBT and thermal properties of MDH in P. verweyi demonstrate potential physiological and enzymatic response to a long-term and regular thermal stress, independent of their Symbiodiniaceae partner.
Collapse
Affiliation(s)
- Jih-Terng Wang
- Department of Biotechnology, Tajen University, Pingtung, 907, Taiwan.
| | - Yi-Ting Wang
- Department of Biotechnology, Tajen University, Pingtung, 907, Taiwan
| | | | - Pei-Jei Meng
- National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
- Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung, 944, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Oceanography, National Taiwan University, Taipei, 108, Taiwan.
- Department of Life Science, Tunghai University, Taichung, 404, Taiwan.
| |
Collapse
|
27
|
Fey P, Bustamante P, Bosserelle P, Espiau B, Malau A, Mercader M, Wafo E, Letourneur Y. Does trophic level drive organic and metallic contamination in coral reef organisms? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:208-221. [PMID: 30831362 DOI: 10.1016/j.scitotenv.2019.02.311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Metallic and organic pollutants constitute a serious threat for coral reef ecosystems, potentially affecting a great number of species interacting within complex trophodynamic processes. Pesticides, PCBs and trace elements were measured on coral reef communities of three Pacific islands (Moorea, Wallis and New Caledonia) in relation with δ15N values, a proxy of trophic level. Several potential sources of organic matter, benthic invertebrates and fish belonging to various trophic strategies were sampled at each island. Wallis and New Caledonia displayed, respectively, the highest concentrations of pesticides and trace elements. In the three islands, most trace element concentrations (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and V) decreased when δ15N was rising (i.e. bioreduction), whereas Hg and Se biomagnified with increasing δ15N values. Only few trace elements in some islands did not show any significant trend in relation with δ15N (i.e., Ag in New Caledonia, Zn in Wallis and As plus Zn in Moorea). PCBs concentrations showed a significant bioreduction in New Caledonia and in Moorea, but a significant biomagnification in Wallis. Aldrin and heptachlor were the only pesticides to show a similar significant bioreduction in the three islands. Other pesticides, such as chlordecone, diazinon, endosulfan I and II, heptachlor-epoxide A and B, lindane and pp'-DDE displayed contrasted patterns (e.g. chlordecone significantly biomagnified in New Caledonia, significantly bioreduced in Wallis and did not displayed any significant trend in Moorea). Finally, for unclear reasons, Moorea displayed only negative significant correlations between δ15N and all pesticides (except pp'-DDT). Our results highlight that trophic level, here assessed through δ15N values, is a good predictor of metallic trace elements biomagnification or bioreduction in coral reef organisms. However, at large spatial scale, trophic level relevance to predict pesticides and PCBs biomagnification or bioreduction should be considered with caution and studied in close relation with local characteristics.
Collapse
Affiliation(s)
- P Fey
- Université de la Nouvelle-Calédonie, Institut de Sciences Exactes et Appliquées, EA 7484, LabEx "CORAIL", BP R4, 98851 Nouméa Cedex, New Caledonia
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - P Bosserelle
- Pacific Community (SPC), Fisheries, Aquaculture and Marine Ecosystem division, BP D5, 98848 Nouméa Cedex, New Caledonia; Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), LabEx "CORAIL" USR 3278 CNRS-EPHE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - B Espiau
- Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), LabEx "CORAIL" USR 3278 CNRS-EPHE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - A Malau
- Service de l'Environnement de Wallis et Futuna, BP 294, 98600 Mata Utu, Wallis and Futuna
| | - M Mercader
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110 CNRS-UPVD, 52 avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - E Wafo
- Laboratoire de Chimie Analytique, Aix-Marseille Université, INSERM, SSA, IRBA, MCT, 13005 Marseille, France
| | - Y Letourneur
- Université de la Nouvelle-Calédonie, Institut de Sciences Exactes et Appliquées, EA 7484, LabEx "CORAIL", BP R4, 98851 Nouméa Cedex, New Caledonia.
| |
Collapse
|
28
|
Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat Commun 2019; 10:2346. [PMID: 31138792 PMCID: PMC6538670 DOI: 10.1038/s41467-019-10288-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/24/2019] [Indexed: 02/01/2023] Open
Abstract
Understanding pressure pathways and their cumulative impacts is critical for developing effective environmental policy. For coral reefs, wide spread bleaching resulting from global warming is occurring concurrently with local pressures, such as increases in suspended sediments through coastal development. Here we examine the relative importance of suspended sediment pressure pathways for dredging impacts on corals and evidence for synergistic or antagonistic cumulative effects between suspended sediments and thermal stress. We show that low to moderate reductions in available light associated with dredging may lead to weak antagonistic (less than expected independently) cumulative effects. However, when sediment loads are high any reductions in mortality associated with reduced bleaching are outweighed by increased mortality associated with severe low light periods and high levels of sediment deposition and impacts become synergistic (greater than what would occur independently). The findings suggest efforts to assess global cumulative impacts need to consider how pressures interact to impact ecosystems, and that the cumulative outcome may vary across the range of realised pressure fields.
Collapse
|
29
|
Kubicek A, Breckling B, Hoegh-Guldberg O, Reuter H. Climate change drives trait-shifts in coral reef communities. Sci Rep 2019; 9:3721. [PMID: 30842480 PMCID: PMC6403357 DOI: 10.1038/s41598-019-38962-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
Climate change is expected to have profound, partly unforeseeable effects on the composition of functional traits of complex ecosystems, such as coral reefs, and some ecosystem properties are at risk of disappearing. This study applies a novel spatially explicit, individual-based model to explore three critical life history traits of corals: heat tolerance, competitiveness and growth performance under various environmental settings. Building upon these findings, we test the adaptation potential required by a coral community in order to not only survive but also retain its diversity by the end of this century under different IPCC climate scenarios. Even under the most favourable IPCC scenario (Representative Concentration Pathway, RCP 2.6), model results indicate that shifts in the trait space are likely and coral communities will mainly consist of small numbers of temperature-tolerant and fast-growing species. Species composition of coral communities is likely to be determined by heat tolerance, with competitiveness most likely playing a subordinate role. To sustain ~15% of current coral cover under a 2 °C temperature increase by the end of the century (RCP 4.5), coral systems would have to accommodate temperature increases of 0.1-0.15 °C per decade, assuming that periodic extreme thermal events occurred every 8 years. These required adaptation rates are unprecedented and unlikely, given corals' life-history characteristics.
Collapse
Affiliation(s)
- Andreas Kubicek
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Broder Breckling
- Department Landscape Ecology, University of Vechta, 49364, Vechta, Germany
- University of Bremen, Faculty of Biology and Chemistry, 28359, Bremen, Germany
| | - Ove Hoegh-Guldberg
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Global Change Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Hauke Reuter
- Department Theoretical Ecology and Modelling, Leibniz Center for Tropical Marine Research (ZMT), 28359, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, 28359, Bremen, Germany
| |
Collapse
|
30
|
Cross-Shelf Differences in the Response of Herbivorous Fish Assemblages to Severe Environmental Disturbances. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11020023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-shelf differences in coral reef benthic and fish assemblages are common, yet it is unknown whether these assemblages respond uniformly to environmental disturbances or whether local conditions result in differential responses of assemblages at different shelf positions. Here, we compare changes in the taxonomic and functional composition, and associated traits, of herbivorous reef fish assemblages across a continental shelf, five years before and six months after two severe cyclones and a thermal bleaching event that resulted in substantial and widespread loss of live hard coral cover. Each shelf position maintained a distinct taxonomic assemblage of fishes after disturbances, but the assemblages shared fewer species among shelf positions. There was a substantial loss of species richness following disturbances within each shelf position. Total biomass of the herbivorous fish assemblage increased after disturbances on mid- and outer-shelf reefs, but not on inner-shelf reefs. Using trait-based analyses, we found there was a loss of trait richness at each shelf position, but trait specialisation and originality increased on inner-shelf reefs. This study highlights the pervasiveness of extreme environmental disturbances on ecological assemblages. Whilst distinct cross-shelf assemblages can remain following environmental disturbances, assemblages have reduced richness and are potentially more vulnerable to chronic localised stresses.
Collapse
|
31
|
Wismer S, Tebbett SB, Streit RP, Bellwood DR. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1487-1498. [PMID: 30308835 DOI: 10.1016/j.scitotenv.2018.09.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
Record-breaking temperatures between 2015 and 2016 led to unprecedented pan-tropical bleaching of scleractinian corals. On the Great Barrier Reef (GBR), the effects were most pronounced in the remote, northern region, where over 90% of reefs exhibited bleaching. Mass bleaching that results in widespread coral mortality represents a major disturbance event for reef organisms, including reef fishes. Using 133 replicate 1 m2 quadrats, we quantified short-term changes in coral communities and spatially associated reef fish assemblages, at Lizard Island, Australia, in response to the 2016 mass bleaching event. Quadrats were spatially matched, permitting repeated sampling of fish and corals in the same areas: before, during and 6 months after mass bleaching. As expected, we documented a significant decrease in live coral cover. Subsequent decreases in fish abundance were primarily driven by coral-associated damselfishes. However, these losses, were relatively minor (37% decrease), especially compared to the magnitude of Acropora loss (>95% relative decrease). Furthermore, at a local, 1 m2 scale, we documented a strong spatial mismatch between fish and coral loss. Post-bleaching fish losses were not highest in quadrats that experienced the greatest loss of live coral. Nor were fish losses associated with a proliferation of cyanobacteria. Several sites did, however, exhibit increases in fish abundance suggesting substantial spatial movements. These results challenge common assumptions and emphasize the need for caution when ascribing causality to observed patterns of fish loss at larger spatial scales. Our results highlight the potential for short-term resilience to climate change, in fishes, through local migration and habitat plasticity.
Collapse
Affiliation(s)
- Sharon Wismer
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Robert P Streit
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
32
|
Cross-shelf Heterogeneity of Coral Assemblages in Northwest Australia. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Understanding the spatial and temporal distribution of coral assemblages and the processes structuring those patterns is fundamental to managing reef assemblages. Cross-shelf marine systems exhibit pronounced and persistent gradients in environmental conditions; however, these gradients are not always reliable predictors of coral distribution or the degree of stress that corals are experiencing. This study used information from government, industry and scientific datasets spanning 1980–2017, to explore temporal trends in coral cover in the geographically complex system of the Dampier Archipelago, northwest Australia. Coral composition at 15 sites surveyed in 2017 was also modelled against environmental and spatial variables (including turbidity, degree heat weeks, wave exposure, and distance to land/mainland/isobath) to assess their relative importance in structuring coral assemblages. High spatial and temporal heterogeneity was observed in coral cover and recovery trajectories, with reefs located an intermediate distance from the shore maintaining high cover over the past 20 years. The abundance of some prominent genera in 2017 (Acropora, Porites, and Turbinaria spp.) decreased with the distance from the mainland, suggesting that inshore processes play an important role in dictating the distribution of these genera. The atypical distributions of these key reef-building corals and spatial heterogeneity of historical recovery trajectories highlight the risks in making assumptions regarding cross-shelf patterns in geographically complex systems.
Collapse
|
33
|
Kirk NL, Howells EJ, Abrego D, Burt JA, Meyer E. Genomic and transcriptomic signals of thermal tolerance in heat‐tolerant corals (
Platygyra daedalea
) of the Arabian/Persian Gulf. Mol Ecol 2018; 27:5180-5194. [DOI: 10.1111/mec.14934] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Nathan L. Kirk
- Department of Integrative BiologyOregon State University Corvallis Oregon
| | - Emily J. Howells
- Center for Genomics and Systems BiologyNew York University Abu Dhabi Abu Dhabi UAE
| | - David Abrego
- Department of Natural Science and Public HealthZayed University Abu Dhabi UAE
| | - John A. Burt
- Center for Genomics and Systems BiologyNew York University Abu Dhabi Abu Dhabi UAE
| | - Eli Meyer
- Department of Integrative BiologyOregon State University Corvallis Oregon
| |
Collapse
|
34
|
Underwood JN, Travers MJ, Snow M, Puotinen M, Gouws G. Cryptic lineages in the Wolf Cardinalfish living in sympatry on remote coral atolls. Mol Phylogenet Evol 2018; 132:183-193. [PMID: 30528081 DOI: 10.1016/j.ympev.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/11/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Coral reef health and biodiversity is under threat worldwide due to rapid climate change. However, much of the inter- and intra-specific diversity of coral reefs are undescribed even in well studied taxa such as fish. Delimiting previously unrecognised diversity is important for understanding the processes that generate and sustain biodiversity in coral reef ecosystems and informing strategies for their conservation and management. Many taxa that inhabit geographically isolated coral reefs rely on self-recruitment for population persistence, providing the opportunity for the evolution of unique genetic lineages through divergent selection and reproductive isolation. Many such lineages in corals and fish are morphologically similar or indistinguishable. Here, we report the discovery and characterisation of cryptic lineages of the Wolf Cardinalfish, Cheilodipterus artus, from the coral atolls of northwest Australia using multiple molecular markers from mitochondrial (CO1 and D-loop) and nuclear (microsatellites) DNA. Concordant results from all markers identified two highly divergent lineages that are morphologically cryptic and reproductively isolated. These lineages co-occurred at daytime resting sites, but the relative abundance of each lineage was strongly correlated with wave exposure. It appears, therefore, that fish from each lineage are better adapted to different microhabitats. Such cryptic and ecologically based diversity appears to be common in these atolls and may well aid resilience of these systems. Our results also highlight that underwater surveys based on visual identification clearly underestimate biodiversity, and that a taxonomic revision of the Cheilodipterus genus is necessary.
Collapse
Affiliation(s)
- Jim N Underwood
- Australian Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA 6009, Australia.
| | - Michael J Travers
- Australian Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA 6009, Australia; Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, PO Box 20, North Beach, Western Australia 6920, Australia
| | - Michael Snow
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, PO Box 20, North Beach, Western Australia 6920, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA 6009, Australia
| | - Gavin Gouws
- National Research Foundation - South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa
| |
Collapse
|
35
|
Underwood JN, Richards ZT, Miller KJ, Puotinen ML, Gilmour JP. Genetic signatures through space, time and multiple disturbances in a ubiquitous brooding coral. Mol Ecol 2018; 27:1586-1602. [DOI: 10.1111/mec.14559] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jim N. Underwood
- Indian Oceans Marine Research Centre Australian Institute of Marine Science Crawley WA Australia
| | - Zoe T. Richards
- Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Perth WA Australia
| | - Karen J. Miller
- Indian Oceans Marine Research Centre Australian Institute of Marine Science Crawley WA Australia
| | - Marji L. Puotinen
- Indian Oceans Marine Research Centre Australian Institute of Marine Science Crawley WA Australia
| | - James P. Gilmour
- Indian Oceans Marine Research Centre Australian Institute of Marine Science Crawley WA Australia
| |
Collapse
|
36
|
Zinke J, Gilmour JP, Fisher R, Puotinen M, Maina J, Darling E, Stat M, Richards ZT, McClanahan TR, Beger M, Moore C, Graham NAJ, Feng M, Hobbs JPA, Evans SN, Field S, Shedrawi G, Babcock RC, Wilson SK. Gradients of disturbance and environmental conditions shape coral community structure for south-eastern Indian Ocean reefs. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12714] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jens Zinke
- Section Paleontology; Freie Universität Berlin; Berlin Germany
- UWA Oceans Institute; Australian Institute of Marine Science; Crawley WA Australia
- Department of Environment and Agriculture; Curtin University of Technology; Bentley WA Australia
- UWA Oceans Institute; University of Western Australia; Crawley WA Australia
| | - James P. Gilmour
- UWA Oceans Institute; Australian Institute of Marine Science; Crawley WA Australia
- UWA Oceans Institute; University of Western Australia; Crawley WA Australia
| | - Rebecca Fisher
- UWA Oceans Institute; Australian Institute of Marine Science; Crawley WA Australia
- UWA Oceans Institute; University of Western Australia; Crawley WA Australia
| | - Marji Puotinen
- UWA Oceans Institute; Australian Institute of Marine Science; Crawley WA Australia
- UWA Oceans Institute; University of Western Australia; Crawley WA Australia
| | - Joseph Maina
- Australian Research Council Centre of Excellence for Environmental Decisions; School of Biological Sciences; The University of Queensland; Brisbane Qld Australia
- Department of Environmental Sciences; Macquarie University; Sydney NSW Australia
| | - Emily Darling
- Wildlife Conservation Society; Marine Programs; Bronx NY USA
- Department of Biology; The University of North Carolina; Chapel Hill NC USA
| | - Michael Stat
- Department of Environment and Agriculture; Curtin University of Technology; Bentley WA Australia
| | - Zoe T. Richards
- Department of Environment and Agriculture; Curtin University of Technology; Bentley WA Australia
- Department of Aquatic Zoology; Western Australian Museum; Welshpool WA Australia
| | | | - Maria Beger
- Australian Research Council Centre of Excellence for Environmental Decisions; School of Biological Sciences; The University of Queensland; Brisbane Qld Australia
- School of Biology; Faculty of Biological Sciences; University of Leeds; Leeds UK
| | - Cordelia Moore
- UWA Oceans Institute; Australian Institute of Marine Science; Crawley WA Australia
- Department of Environment and Agriculture; Curtin University of Technology; Bentley WA Australia
| | - Nicholas A. J. Graham
- Australian Research Council Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld Australia
- Lancaster Environment Centre; Lancaster University; Lancaster UK
| | - Ming Feng
- CSIRO Oceans and Atmosphere; Floreat WA Australia
| | - Jean-Paul A. Hobbs
- Department of Environment and Agriculture; Curtin University of Technology; Bentley WA Australia
| | - Scott N. Evans
- Western Australian Fisheries and Marine Research Laboratories; Department of Fisheries; Government of Western Australia; North Beach WA Australia
| | - Stuart Field
- Section Paleontology; Freie Universität Berlin; Berlin Germany
- Department of Parks and Wildlife; Perth WA Australia
| | | | | | - Shaun K. Wilson
- UWA Oceans Institute; University of Western Australia; Crawley WA Australia
- Department of Parks and Wildlife; Perth WA Australia
| |
Collapse
|
37
|
Hempson TN, Graham NAJ, MacNeil MA, Hoey AS, Wilson SK. Ecosystem regime shifts disrupt trophic structure. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:191-200. [PMID: 29035010 DOI: 10.1002/eap.1639] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/19/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability.
Collapse
Affiliation(s)
- Tessa N Hempson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Nicholas A J Graham
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - M Aaron MacNeil
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- Department of Biology, Ocean Frontier Institute, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Queensland, 4810, Australia
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Marine Science Program, 17 Dick Perry Avenue, Kensington, Perth, Western Australia, 6151, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
38
|
Pratchett MS, Thompson CA, Hoey AS, Cowman PF, Wilson SK. Effects of Coral Bleaching and Coral Loss on the Structure and Function of Reef Fish Assemblages. ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_11] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
McCormick MI, Barry RP, Allan BJM. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci Rep 2017; 7:16937. [PMID: 29208978 PMCID: PMC5717098 DOI: 10.1038/s41598-017-17197-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023] Open
Abstract
Habitat degradation alters the chemical landscape through which information about community dynamics is transmitted. Olfactory information is crucial for risk assessment in aquatic organisms as predators release odours when they capture prey that lead to an alarm response in conspecific prey. Recent studies show some coral reef fishes are unable to use alarm odours when surrounded by dead-degraded coral. Our study examines the spatial and temporal dynamics of this alarm odour-nullifying effect, and which substratum types may be responsible. Field experiments showed that settlement-stage damselfish were not able to detect alarm odours within 2 m downcurrent of degraded coral, and that the antipredator response was re-established 20-40 min after transferral to live coral. Laboratory experiments indicate that the chemicals from common components of the degraded habitats, the cyanobacteria, Okeania sp., and diatom, Pseudo-nitzschia sp.prevented an alarm odour response. The same nullifying effect was found for the common red algae, Galaxauria robusta, suggesting that the problem is of a broader nature than previously realised. Those fish species best able to compensate for a lack of olfactory risk information at key times will be those potentially most resilient to the effects of coral degradation that operate through this mechanism.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Randall P Barry
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
40
|
McCormick MI, Allan BJM. Interspecific differences in how habitat degradation affects escape response. Sci Rep 2017; 7:426. [PMID: 28348362 PMCID: PMC5428724 DOI: 10.1038/s41598-017-00521-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Degradation of habitats is widespread and a leading cause of extinctions. Our study determined whether the change in the chemical landscape associated with coral degradation affected the way three fish species use olfactory information to optimize their fast-start escape response. Water from degraded coral habitats affected the fast-start response of the three closely-related damselfishes, but its effect differed markedly among species. The Ward's damselfish (Pomacentrus wardi) was most affected by water from degraded coral, and displayed shorter distances covered in the fast-start and slower escape speeds compared to fish in water from healthy coral. In the presence of alarm odours, which indicate an imminent threat, the Ambon damsel (P. amboinensis) displayed enhanced fast-start performance in water from healthy coral, but not when in water from degraded coral. In contrast, while the white-tailed damsel (P. chrysurus) was similarly primed by its alarm odour, the elevation of fast start performance was not altered by water from degraded coral. These species-specific responses to the chemistry of degraded water and alarm odours suggest differences in the way alarm odours interact with the chemical landscape, and differences in the way species balance information about threats, with likely impacts on the survival of affected species in degraded habitats.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies and Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD 4811, Australia.
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies and Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
41
|
Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR. Population genetics of reef coral endosymbionts (Symbiodinium
, Dinophyceae). Mol Ecol 2017; 26:2640-2659. [DOI: 10.1111/mec.14055] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Affiliation(s)
- D. J. Thornhill
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies; Auburn University; 101 Rouse Life Sciences Building Auburn AL 36849 USA
| | - E. J. Howells
- Center for Genomics and Systems Biology; New York University Abu Dhabi; PO Box 129188 Abu Dhabi United Arab Emirates
| | - D. C. Wham
- Department of Biology; Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - T. D. Steury
- School of Forestry and Wildlife Sciences; Auburn University; 3301 Forestry and Wildlife Building Auburn AL 36849 USA
| | - S. R. Santos
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies; Auburn University; 101 Rouse Life Sciences Building Auburn AL 36849 USA
| |
Collapse
|
42
|
Perry CT, Morgan KM. Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Sci Rep 2017; 7:40581. [PMID: 28084450 PMCID: PMC5233991 DOI: 10.1038/srep40581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/07/2016] [Indexed: 11/26/2022] Open
Abstract
Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO3 m−2 yr−1) to strongly net negative (mean −2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to −0.4 mm yr−1. Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability.
Collapse
Affiliation(s)
- C T Perry
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, United Kingdom
| | - K M Morgan
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, United Kingdom
| |
Collapse
|