1
|
Guranda A, Richter A, Wach J, Güresir E, Vychopen M. PROMISE: Prognostic Radiomic Outcome Measurement in Acute Subdural Hematoma Evacuation Post-Craniotomy. Brain Sci 2025; 15:58. [PMID: 39851426 PMCID: PMC11764422 DOI: 10.3390/brainsci15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Traumatic acute subdural hematoma (aSDH) often requires surgical intervention, such as craniotomy, to relieve mass lesions and pressure. The extent of hematoma evacuation significantly impacts patient outcomes. This study utilizes 3D Slicer software to analyse post-craniotomy hematoma volume changes and evaluate their prognostic significance in aSDH patients. Methods: Among 178 adult patients diagnosed with aSDH from January 2015 to December 2022, 64 underwent hematoma evacuation via craniotomy. Initial scans were performed within 24 h of trauma, followed by routine postoperative scans to assess residual hematoma. We conducted radiomic analysis of preoperative and postoperative volumes, surface area, Feret diameter, sphericity, flatness, and elongation. Clinical parameters, including SOFA score, APACHE score, pupillary response, comorbidities, age, anticoagulation status, and preoperative haematocrit and haemoglobin levels, were also evaluated. Results: Changes in Δ surface area significantly correlated with 30-day outcomes (p = 0.03) and showed moderate predictive accuracy (AUC = 0.65). Patients with a Δ surface area > 30,090 mm2 experienced poorer outcomes (OR = 6.66, p = 0.02). Significant features included preoperative surface area (p = 0.009), Feret diameter (p = 0.0012). In multivariate analysis, only the Feret diameter remained significant (p = 0.01). Conclusions: Postoperative Δ surface area is, among other variables, a strong predictor of 30-day outcomes, while in multivariate analysis, preoperative Feret diameter remains the only independent predictor. Radiomic analysis with 3D Slicer may enhance prognostic accuracy and inform tailored therapeutic strategies.
Collapse
Affiliation(s)
- Alexandru Guranda
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany; (A.R.); (J.W.); (E.G.); (M.V.)
| | | | | | | | | |
Collapse
|
2
|
Inomata T, Nakaya K, Matsuhiro M, Takei J, Shiozaki H, Noda Y. Clinical Use of Hematoma Volume Based On Automated Segmentation of Chronic Subdural Hematoma Using 3D U-Net. Clin Neuroradiol 2024; 34:799-807. [PMID: 38814451 DOI: 10.1007/s00062-024-01428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE To propose a method for calculating hematoma volume based on automatic segmentation of chronic subdural hematoma (CSDH) using 3D U‑net and investigate whether it can be used clinically to predict recurrence. METHODS Hematoma volumes manually measured from pre- and postoperative computed tomography (CT) images were used as ground truth data to train 3D U‑net in 200 patients (400 CT scans). A total of 215 patients (430 CT scans) were used as test data to output segmentation results from the trained 3D U‑net model. The similarity with the ground truth data was evaluated using Dice scores for pre and postoperative separately. The recurrence prediction accuracy was evaluated by obtaining receiver operating characteristic (ROC) curves for the segmentation results. Using a typical mobile PC, the computation time per case was measured and the average time was calculated. RESULTS The median Dice score of the test data were preoperative hematoma volume (Pre-HV): 0.764 and postoperative subdural cavity volume (Post-SCV): 0.741. In ROC analyses assessing recurrence prediction, the area under the curve (AUC) of the manual was 0.755 in Pre-HV, whereas the 3D U‑net was 0.735. In Post-SCV, the manual AUC was 0.779; the 3D U‑net was 0.736. No significant differences were found between manual and 3D U‑net for all results. Using a mobile PC, the average time taken to output the test data results was 30 s per case. CONCLUSION The proposed method is a simple, accurate, and clinically applicable; it can contribute to the widespread use of recurrence prediction scoring systems for CSDH.
Collapse
Affiliation(s)
- Takayuki Inomata
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, 510-0293, Suzuka City, Mie, Japan.
- Department of Radiological Technology, Fuji City General Hospital, 50 Takashima-cho, 417-8567, Fuji City, Shizuoka, Japan.
| | - Koji Nakaya
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, 510-0293, Suzuka City, Mie, Japan
| | - Mikio Matsuhiro
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, 510-0293, Suzuka City, Mie, Japan
| | - Jun Takei
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, 105-8461, Tokyo, Japan
| | - Hiroto Shiozaki
- Department of Radiological Technology, Fuji City General Hospital, 50 Takashima-cho, 417-8567, Fuji City, Shizuoka, Japan
| | - Yasuto Noda
- Department of Neurosurgery, Fuji City General Hospital, 50 Takashima-cho, 417-8567, Fuji City, Shizuoka, Japan
| |
Collapse
|
3
|
Jiang W, Tian Y, Shen Y. Comment on 'Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis'. Int J Surg 2024; 110:6003-6004. [PMID: 38814316 PMCID: PMC11392111 DOI: 10.1097/js9.0000000000001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Weihua Jiang
- Department of Neurology, The First People’s Hospital of Linping District
| | - Yeqing Tian
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| | - Yenan Shen
- Department of Neurology, The First People’s Hospital of Linping District
| |
Collapse
|
4
|
Hu P, Yan T, Xiao B, Shu H, Sheng Y, Wu Y, Shu L, Lv S, Ye M, Gong Y, Wu M, Zhu X. Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis. Int J Surg 2024; 110:3839-3847. [PMID: 38489547 PMCID: PMC11175741 DOI: 10.1097/js9.0000000000001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Deep learning (DL)-assisted detection and segmentation of intracranial hemorrhage stroke in noncontrast computed tomography (NCCT) scans are well-established, but evidence on this topic is lacking. MATERIALS AND METHODS PubMed and Embase databases were searched from their inception to November 2023 to identify related studies. The primary outcomes included sensitivity, specificity, and the Dice Similarity Coefficient (DSC); while the secondary outcomes were positive predictive value (PPV), negative predictive value (NPV), precision, area under the receiver operating characteristic curve (AUROC), processing time, and volume of bleeding. Random-effect model and bivariate model were used to pooled independent effect size and diagnostic meta-analysis data, respectively. RESULTS A total of 36 original studies were included in this meta-analysis. Pooled results indicated that DL technologies have a comparable performance in intracranial hemorrhage detection and segmentation with high values of sensitivity (0.89, 95% CI: 0.88-0.90), specificity (0.91, 95% CI: 0.89-0.93), AUROC (0.94, 95% CI: 0.93-0.95), PPV (0.92, 95% CI: 0.91-0.93), NPV (0.94, 95% CI: 0.91-0.96), precision (0.83, 95% CI: 0.77-0.90), DSC (0.84, 95% CI: 0.82-0.87). There is no significant difference between manual labeling and DL technologies in hemorrhage quantification (MD 0.08, 95% CI: -5.45-5.60, P =0.98), but the latter takes less process time than manual labeling (WMD 2.26, 95% CI: 1.96-2.56, P =0.001). CONCLUSION This systematic review has identified a range of DL algorithms that the performance was comparable to experienced clinicians in hemorrhage lesions identification, segmentation, and quantification but with greater efficiency and reduced cost. It is highly emphasized that multicenter randomized controlled clinical trials will be needed to validate the performance of these tools in the future, paving the way for fast and efficient decision-making during clinical procedure in patients with acute hemorrhagic stroke.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases
- Jiangxi Health Commission Key Laboratory of Neurological Medicine
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases
- Jiangxi Health Commission Key Laboratory of Neurological Medicine
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Bing Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Hongxin Shu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases
- Jiangxi Health Commission Key Laboratory of Neurological Medicine
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yilei Sheng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases
- Jiangxi Health Commission Key Laboratory of Neurological Medicine
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yanze Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases
- Jiangxi Health Commission Key Laboratory of Neurological Medicine
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Lei Shu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases
- Jiangxi Health Commission Key Laboratory of Neurological Medicine
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Yanyan Gong
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases
- Jiangxi Health Commission Key Laboratory of Neurological Medicine
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
5
|
Qi Z, Jin H, Wang Q, Gan Z, Xiong R, Zhang S, Liu M, Wang J, Ding X, Chen X, Zhang J, Nimsky C, Bopp MHA. The Feasibility and Accuracy of Holographic Navigation with Laser Crosshair Simulator Registration on a Mixed-Reality Display. SENSORS (BASEL, SWITZERLAND) 2024; 24:896. [PMID: 38339612 PMCID: PMC10857152 DOI: 10.3390/s24030896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Addressing conventional neurosurgical navigation systems' high costs and complexity, this study explores the feasibility and accuracy of a simplified, cost-effective mixed reality navigation (MRN) system based on a laser crosshair simulator (LCS). A new automatic registration method was developed, featuring coplanar laser emitters and a recognizable target pattern. The workflow was integrated into Microsoft's HoloLens-2 for practical application. The study assessed the system's precision by utilizing life-sized 3D-printed head phantoms based on computed tomography (CT) or magnetic resonance imaging (MRI) data from 19 patients (female/male: 7/12, average age: 54.4 ± 18.5 years) with intracranial lesions. Six to seven CT/MRI-visible scalp markers were used as reference points per case. The LCS-MRN's accuracy was evaluated through landmark-based and lesion-based analyses, using metrics such as target registration error (TRE) and Dice similarity coefficient (DSC). The system demonstrated immersive capabilities for observing intracranial structures across all cases. Analysis of 124 landmarks showed a TRE of 3.0 ± 0.5 mm, consistent across various surgical positions. The DSC of 0.83 ± 0.12 correlated significantly with lesion volume (Spearman rho = 0.813, p < 0.001). Therefore, the LCS-MRN system is a viable tool for neurosurgical planning, highlighting its low user dependency, cost-efficiency, and accuracy, with prospects for future clinical application enhancements.
Collapse
Affiliation(s)
- Ziyu Qi
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Haitao Jin
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
- NCO School, Army Medical University, Shijiazhuang 050081, China
| | - Qun Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Zhichao Gan
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Ruochu Xiong
- Department of Neurosurgery, Division of Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa 920-8641, Japan;
| | - Shiyu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Minghang Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyue Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyu Ding
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xiaolei Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Jiashu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
6
|
Wu M, Yu K, Zhao Z, Zhu B. Knowledge structure and global trends of machine learning in stroke over the past decade: A scientometric analysis. Heliyon 2024; 10:e24230. [PMID: 38288018 PMCID: PMC10823080 DOI: 10.1016/j.heliyon.2024.e24230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Objective Machine learning (ML) models have been widely applied in stroke prediction, diagnosis, treatment, and prognosis assessment. We aimed to conduct a comprehensive scientometrics analysis of studies related to ML in stroke and reveal its current status, knowledge structure, and global trends. Methods All documents related to ML in stroke were retrieved from the Web of Science database on March 15, 2023. We refined the documents by including only original articles and reviews in the English language. The literature published over the past decade was imported into scientometrics software for influence detection and collaborative network analysis. Results 2389 related publications were included. The annual publication outputs demonstrated explosive growth, with an average growth rate of 63.99 %. Among the 90 countries/regions involved, the United States (729 articles) and China (636 articles) were the most productive countries. Frontiers in Neurology was the most prolific journal with 94 articles. 234 highly cited articles, each with more than 31 citations, were detected. Keyword analysis revealed a total of 5333 keywords, with a predominant focus on the application of ML models in the early diagnosis, classification, and prediction of "acute ischemic stroke" and "atrial fibrillation-related stroke". The keyword "classification" had the first and longest burst, spanning from 2013 to 2018. 'Upport vector machine' got the strongest burst strength with 6.2. Keywords such as 'mechanical thrombectomy', 'expression', and 'prognosis' experienced bursts in 2022 and have continued to be prominent. Conclusion The applications of ML in stroke are increasingly diverse and extensive, with researchers showing growing interest over the past decade. However, the clinical application of ML in stroke is still in its early stages, and several limitations and challenges need to be addressed for its widespread adoption in clinical practice.
Collapse
Affiliation(s)
- Mingfen Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
7
|
Su L, Liu S, Long Y, Chen C, Chen K, Chen M, Chen Y, Cheng Y, Cui Y, Ding Q, Ding R, Duan M, Gao T, Gu X, He H, He J, Hu B, Hu C, Huang R, Huang X, Jiang H, Jiang J, Lan Y, Li J, Li L, Li L, Li W, Li Y, Lin J, Luo X, Lyu F, Mao Z, Miao H, Shang X, Shang X, Shang Y, Shen Y, Shi Y, Sun Q, Sun W, Tang Z, Wang B, Wang H, Wang H, Wang L, Wang L, Wang S, Wang Z, Wang Z, Wei D, Wu J, Wu Q, Xing X, Yang J, Yang X, Yu J, Yu W, Yu Y, Yuan H, Zhai Q, Zhang H, Zhang L, Zhang M, Zhang Z, Zhao C, Zheng R, Zhong L, Zhou F, Zhu W. Chinese experts' consensus on the application of intensive care big data. Front Med (Lausanne) 2024; 10:1174429. [PMID: 38264049 PMCID: PMC10804886 DOI: 10.3389/fmed.2023.1174429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024] Open
Abstract
The development of intensive care medicine is inseparable from the diversified monitoring data. Intensive care medicine has been closely integrated with data since its birth. Critical care research requires an integrative approach that embraces the complexity of critical illness and the computational technology and algorithms that can make it possible. Considering the need of standardization of application of big data in intensive care, Intensive Care Medicine Branch of China Health Information and Health Care Big Data Society, Standard Committee has convened expert group, secretary group and the external audit expert group to formulate Chinese Experts' Consensus on the Application of Intensive Care Big Data (2022). This consensus makes 29 recommendations on the following five parts: Concept of intensive care big data, Important scientific issues, Standards and principles of database, Methodology in solving big data problems, Clinical application and safety consideration of intensive care big data. The consensus group believes this consensus is the starting step of application big data in the field of intensive care. More explorations and big data based retrospective research should be carried out in order to enhance safety and reliability of big data based models of critical care field.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Liu
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaodong Chen
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Kai Chen
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yisong Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yating Cui
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Ding
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaohua Gu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongli He
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jiawei He
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Huang
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Huizhen Jiang
- Department of Information Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jiang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Yunping Lan
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jun Li
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Linfeng Li
- Medical Data Research Institute, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenxiong Li
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yongzai Li
- Information Network Center, QiLu Hospital, ShanDong University, Jinan, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xufei Luo
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lyu
- Department of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopu Shang
- Department of Information Management, Beijing Jiaotong University, Beijing, China
| | - Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Shen
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Yinghuan Shi
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Qihang Sun
- British Chinese Society of Health Informatics, Beijing, China
| | - Weijun Sun
- Faculty of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Tang
- Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Emergency and Intensive Care Unit Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Haijun Wang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luhao Wang
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Sicong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhanwen Wang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Zhong Wang
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wei
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Jianfeng Wu
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xuezhong Xing
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jin Yang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Xianghong Yang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuan Yu
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Yuan
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Qian Zhai
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Hao Zhang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Meng Zhang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunguang Zhao
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lei Zhong
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiguo Zhu
- Department of General Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Brossard C, Grèze J, de Busschère JA, Attyé A, Richard M, Tornior FD, Acquitter C, Payen JF, Barbier EL, Bouzat P, Lemasson B. Prediction of therapeutic intensity level from automatic multiclass segmentation of traumatic brain injury lesions on CT-scans. Sci Rep 2023; 13:20155. [PMID: 37978266 PMCID: PMC10656472 DOI: 10.1038/s41598-023-46945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The prediction of the therapeutic intensity level (TIL) for severe traumatic brain injury (TBI) patients at the early phase of intensive care unit (ICU) remains challenging. Computed tomography images are still manually quantified and then underexploited. In this study, we develop an artificial intelligence-based tool to segment brain lesions on admission CT-scan and predict TIL within the first week in the ICU. A cohort of 29 head injured patients (87 CT-scans; Dataset1) was used to localize (using a structural atlas), segment (manually or automatically with or without transfer learning) 4 or 7 types of lesions and use these metrics to train classifiers, evaluated with AUC on a nested cross-validation, to predict requirements for TIL sum of 11 points or more during the 8 first days in ICU. The validation of the performances of both segmentation and classification tasks was done with Dice and accuracy scores on a sub-dataset of Dataset1 (internal validation) and an external dataset of 12 TBI patients (12 CT-scans; Dataset2). Automatic 4-class segmentation (without transfer learning) was not able to correctly predict the apparition of a day of extreme TIL (AUC = 60 ± 23%). In contrast, manual quantification of volumes of 7 lesions and their spatial location provided a significantly better prediction power (AUC = 89 ± 17%). Transfer learning significantly improved the automatic 4-class segmentation (DICE scores 0.63 vs 0.34) and trained more efficiently a 7-class convolutional neural network (DICE = 0.64). Both validations showed that segmentations based on transfer learning were able to predict extreme TIL with better or equivalent accuracy (83%) as those made with manual segmentations. Our automatic characterization (volume, type and spatial location) of initial brain lesions observed on CT-scan, publicly available on a dedicated computing platform, could predict requirements for high TIL during the first 8 days after severe TBI. Transfer learning strategies may improve the accuracy of CNN-based segmentation models.Trial registrations Radiomic-TBI cohort; NCT04058379, first posted: 15 august 2019; Radioxy-TC cohort; Health Data Hub index F20220207212747, first posted: 7 February 2022.
Collapse
Affiliation(s)
- Clément Brossard
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Jules Grèze
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Jules-Arnaud de Busschère
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Arnaud Attyé
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Marion Richard
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Florian Dhaussy Tornior
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Clément Acquitter
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Jean-François Payen
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Pierre Bouzat
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France
| | - Benjamin Lemasson
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institut Neurosciences (GIN), U1216, Eq. "Neuroimagerie Fonctionnelle et Perfusion Cérébrale", 38700, Grenoble, France.
| |
Collapse
|
9
|
Jiang B, Ozkara BB, Creeden S, Zhu G, Ding VY, Chen H, Lanzman B, Wolman D, Shams S, Trinh A, Li Y, Khalaf A, Parker JJ, Halpern CH, Wintermark M. Validation of a deep learning model for traumatic brain injury detection and NIRIS grading on non-contrast CT: a multi-reader study with promising results and opportunities for improvement. Neuroradiology 2023; 65:1605-1617. [PMID: 37269414 DOI: 10.1007/s00234-023-03170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE This study aimed to assess and externally validate the performance of a deep learning (DL) model for the interpretation of non-contrast computed tomography (NCCT) scans of patients with suspicion of traumatic brain injury (TBI). METHODS This retrospective and multi-reader study included patients with TBI suspicion who were transported to the emergency department and underwent NCCT scans. Eight reviewers, with varying levels of training and experience (two neuroradiology attendings, two neuroradiology fellows, two neuroradiology residents, one neurosurgery attending, and one neurosurgery resident), independently evaluated NCCT head scans. The same scans were evaluated using the version 5.0 of the DL model icobrain tbi. The establishment of the ground truth involved a thorough assessment of all accessible clinical and laboratory data, as well as follow-up imaging studies, including NCCT and magnetic resonance imaging, as a consensus amongst the study reviewers. The outcomes of interest included neuroimaging radiological interpretation system (NIRIS) scores, the presence of midline shift, mass effect, hemorrhagic lesions, hydrocephalus, and severe hydrocephalus, as well as measurements of midline shift and volumes of hemorrhagic lesions. Comparisons using weighted Cohen's kappa coefficient were made. The McNemar test was used to compare the diagnostic performance. Bland-Altman plots were used to compare measurements. RESULTS One hundred patients were included, with the DL model successfully categorizing 77 scans. The median age for the total group was 48, with the omitted group having a median age of 44.5 and the included group having a median age of 48. The DL model demonstrated moderate agreement with the ground truth, trainees, and attendings. With the DL model's assistance, trainees' agreement with the ground truth improved. The DL model showed high specificity (0.88) and positive predictive value (0.96) in classifying NIRIS scores as 0-2 or 3-4. Trainees and attendings had the highest accuracy (0.95). The DL model's performance in classifying various TBI CT imaging common data elements was comparable to that of trainees and attendings. The average difference for the DL model in quantifying the volume of hemorrhagic lesions was 6.0 mL with a wide 95% confidence interval (CI) of - 68.32 to 80.22, and for midline shift, the average difference was 1.4 mm with a 95% CI of - 3.4 to 6.2. CONCLUSION While the DL model outperformed trainees in some aspects, attendings' assessments remained superior in most instances. Using the DL model as an assistive tool benefited trainees, improving their NIRIS score agreement with the ground truth. Although the DL model showed high potential in classifying some TBI CT imaging common data elements, further refinement and optimization are necessary to enhance its clinical utility.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | | | - Sean Creeden
- Deparment of Neuroradiology, University of Illinois College of Medicine Peoria, Peoria, IL, USA
| | - Guangming Zhu
- Department of Neurology, The University of Arizona, Tucson, AZ, USA
| | - Victoria Y Ding
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hui Chen
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan Lanzman
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Dylan Wolman
- Department of Neuroimaging and Neurointervention, Stanford University, Stanford, CA, USA
| | - Sara Shams
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
- Institution for Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Austin Trinh
- Department of Neuroimaging and Neurointervention, Stanford University, Stanford, CA, USA
| | - Ying Li
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Alexander Khalaf
- Department of Neuroimaging and Neurointervention, Stanford University, Stanford, CA, USA
| | - Jonathon J Parker
- Device-Based Neuroelectronics Laboratory, Mayo Clinic, Phoenix, AZ, USA
- Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Casey H Halpern
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Abdollahifard S, Farrokhi A, Mowla A. Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis. J Neurointerv Surg 2023; 15:995-1000. [PMID: 36418163 DOI: 10.1136/jnis-2022-019627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study aimed to investigate the application of deep learning (DL) models for the detection of subdural hematoma (SDH). METHODS We conducted a comprehensive search using relevant keywords. Articles extracted were original studies in which sensitivity and/or specificity were reported. Two different approaches of frequentist and Bayesian inference were applied. For quality and risk of bias assessment we used Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). RESULTS We analyzed 22 articles that included 1,997,749 patients. In the first step, the frequentist method showed a pooled sensitivity of 88.8% (95% confidence interval (CI): 83.9% to 92.4%) and a specificity of 97.2% (95% CI 94.6% to 98.6%). In the second step, using Bayesian methods including 11 studies that reported sensitivity and specificity, a sensitivity rate of 86.8% (95% CI: 77.6% to 92.9%) at a specificity level of 86.9% (95% CI: 60.9% to 97.2%) was achieved. The risk of bias assessment was not remarkable using QUADAS-2. CONCLUSION DL models might be an appropriate tool for detecting SDHs with a reasonably high sensitivity and specificity.
Collapse
Affiliation(s)
- Saeed Abdollahifard
- Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Neuromodulation and Pain, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirmohammad Farrokhi
- Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Neuromodulation and Pain, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Mowla
- Neurological Surgery, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Agarwal S, Wood DA, Modat M, Booth TC. Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis. J Neurointerv Surg 2023; 15:1056-1057. [PMID: 37258226 DOI: 10.1136/jnis-2023-020218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Affiliation(s)
- Siddharth Agarwal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - David A Wood
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Kaya İ, Gençtürk TH, Gülağız FK. A revolutionary acute subdural hematoma detection based on two-tiered artificial intelligence model. ULUS TRAVMA ACIL CER 2023; 29:858-871. [PMID: 37563894 PMCID: PMC10560802 DOI: 10.14744/tjtes.2023.76756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/22/2023] [Accepted: 04/23/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The article was planned to make the first evaluation in terms of acute subdural hemorrhages, thinking that it can help in appropriate pathologies by tomography interpretation with the artificial intelligence (AI) method, at least in a way to quickly warn the responsible doctor. METHODS A two-level AI-based hybrid method was developed. The proposed model uses the mask-region convolutional neural network (Mask R-CNN) technique, which is a deep learning model, in the hemorrhagic region's mask generation stage, and a problem-specific, optimized support vector machines (SVM) technique which is a machine learning model in the binary classification stage. Furthermore, the bee colony algorithm was used for the optimization of SVM algorithms' parameters. RESULTS In the first stage, the mean average precision (mAP) value was obtained as 0.754 when the intercept over union (IOU) value was taken as 0.5 with the Mask R-CNN architecture used. At the same time, when a 5-fold cross-validation was applied, the mAP value was obtained 0.736. With the hyperparameter optimization for both Mask R-CNN and the SVM algorithm, the accuracy of the two-level classification process was obtained as 96.36%. Furthermore, final false-negative rate and false-positive rate values were obtained as 6.20%, and 2.57%, respectively. CONCLUSION With the proposed model, both the detection of hemorrhage and the presentation of the suspicious area to the physician were performed more successfully on two dimensional (2D) images with low cost and high accuracy compared to similar studies and today's interpretations with telemedicine techniques.
Collapse
Affiliation(s)
- İsmail Kaya
- Department of Neurosurgery, Niğde Ömer Halisdemir University, Faculty of Medicine, Niğde-Türkiye
| | - Tuğrul Hakan Gençtürk
- Department of Computer Engineering, Kocaeli University, Faculty of Engineering, Kocaeli-Türkiye
| | - Fidan Kaya Gülağız
- Department of Computer Engineering, Kocaeli University, Faculty of Engineering, Kocaeli-Türkiye
| |
Collapse
|
13
|
Rajaei F, Cheng S, Williamson CA, Wittrup E, Najarian K. AI-Based Decision Support System for Traumatic Brain Injury: A Survey. Diagnostics (Basel) 2023; 13:diagnostics13091640. [PMID: 37175031 PMCID: PMC10177859 DOI: 10.3390/diagnostics13091640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the major causes of disability and mortality worldwide. Rapid and precise clinical assessment and decision-making are essential to improve the outcome and the resulting complications. Due to the size and complexity of the data analyzed in TBI cases, computer-aided data processing, analysis, and decision support systems could play an important role. However, developing such systems is challenging due to the heterogeneity of symptoms, varying data quality caused by different spatio-temporal resolutions, and the inherent noise associated with image and signal acquisition. The purpose of this article is to review current advances in developing artificial intelligence-based decision support systems for the diagnosis, severity assessment, and long-term prognosis of TBI complications.
Collapse
Affiliation(s)
- Flora Rajaei
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuyang Cheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig A Williamson
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Wittrup
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Data-Driven Drug Development and Treatment Assessment (DATA), University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Sheth SA, Giancardo L, Colasurdo M, Srinivasan VM, Niktabe A, Kan P. Machine learning and acute stroke imaging. J Neurointerv Surg 2023; 15:195-199. [PMID: 35613840 PMCID: PMC10523646 DOI: 10.1136/neurintsurg-2021-018142] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/08/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND In recent years, machine learning (ML) has had notable success in providing automated analyses of neuroimaging studies, and its role is likely to increase in the future. Thus, it is paramount for clinicians to understand these approaches, gain facility with interpreting ML results, and learn how to assess algorithm performance. OBJECTIVE To provide an overview of ML, present its role in acute stroke imaging, discuss methods to evaluate algorithms, and then provide an assessment of existing approaches. METHODS In this review, we give an overview of ML techniques commonly used in medical imaging analysis and methods to evaluate performance. We then review the literature for relevant publications. Searches were run in November 2021 in Ovid Medline and PubMed. Inclusion criteria included studies in English reporting use of artificial intelligence (AI), machine learning, or similar techniques in the setting of, and in applications for, acute ischemic stroke or mechanical thrombectomy. Articles that included image-level data with meaningful results and sound ML approaches were included in this discussion. RESULTS Many publications on acute stroke imaging, including detection of large vessel occlusion, detection and quantification of intracranial hemorrhage and detection of infarct core, have been published using ML methods. Imaging inputs have included non-contrast head CT, CT angiograph and MRI, with a range of performances. We discuss and review several of the most relevant publications. CONCLUSIONS ML in acute ischemic stroke imaging has already made tremendous headway. Additional applications and further integration with clinical care is inevitable. Thus, facility with these approaches is critical for the neurointerventional clinician.
Collapse
Affiliation(s)
- Sunil A Sheth
- Department of Neurology, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Luca Giancardo
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marco Colasurdo
- Department of Neurosurgery, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Neuroradiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Arash Niktabe
- Department of Neurology, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Peter Kan
- Department of Neurosurgery, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
15
|
Hibi A, Jaberipour M, Cusimano MD, Bilbily A, Krishnan RG, Aviv RI, Tyrrell PN. Automated identification and quantification of traumatic brain injury from CT scans: Are we there yet? Medicine (Baltimore) 2022; 101:e31848. [PMID: 36451512 PMCID: PMC9704869 DOI: 10.1097/md.0000000000031848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The purpose of this study was to conduct a systematic review for understanding the availability and limitations of artificial intelligence (AI) approaches that could automatically identify and quantify computed tomography (CT) findings in traumatic brain injury (TBI). METHODS Systematic review, in accordance with PRISMA 2020 and SPIRIT-AI extension guidelines, with a search of 4 databases (Medline, Embase, IEEE Xplore, and Web of Science) was performed to find AI studies that automated the clinical tasks for identifying and quantifying CT findings of TBI-related abnormalities. RESULTS A total of 531 unique publications were reviewed, which resulted in 66 articles that met our inclusion criteria. The following components for identification and quantification regarding TBI were covered and automated by existing AI studies: identification of TBI-related abnormalities; classification of intracranial hemorrhage types; slice-, pixel-, and voxel-level localization of hemorrhage; measurement of midline shift; and measurement of hematoma volume. Automated identification of obliterated basal cisterns was not investigated in the existing AI studies. Most of the AI algorithms were based on deep neural networks that were trained on 2- or 3-dimensional CT imaging datasets. CONCLUSION We identified several important TBI-related CT findings that can be automatically identified and quantified with AI. A combination of these techniques may provide useful tools to enhance reproducibility of TBI identification and quantification by supporting radiologists and clinicians in their TBI assessments and reducing subjective human factors.
Collapse
Affiliation(s)
- Atsuhiro Hibi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Majid Jaberipour
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Cusimano
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, St Michael’s Hospital, University of Toronto, Toronto, Canada
| | - Alexander Bilbily
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Rahul G. Krishnan
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard I. Aviv
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pascal N. Tyrrell
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Colasurdo M, Leibushor N, Robledo A, Vasandani V, Luna ZA, Rao AS, Garcia R, Srinivasan VM, Sheth SA, Avni N, Madziva M, Berejick M, Sirota G, Efrati A, Meisel A, Shaltoni H, Kan P. Automated detection and analysis of subdural hematomas using a machine learning algorithm. J Neurosurg 2022; 138:1077-1084. [PMID: 36461839 DOI: 10.3171/2022.8.jns22888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Machine learning algorithms have shown groundbreaking results in neuroimaging. Herein, the authors evaluate the performance of a newly developed convolutional neural network (CNN) to detect and quantify the thickness, volume, and midline shift (MLS) of subdural hematoma (SDH) from noncontrast head CT (NCHCT).
METHODS
NCHCT studies performed for the evaluation of head trauma in consecutive patients between July 2018 and April 2021 at a single institution were retrospectively identified. Ground truth determination of SDH, thickness, and MLS was established by the neuroradiology report. The primary outcome was performance of the CNN in detecting SDH in an external validation set, as measured using area under the receiver operating characteristic curve analysis. Secondary outcomes included accuracy for thickness, volume, and MLS.
RESULTS
Among 263 cases with valid NCHCT according to the study criteria, 135 patients (51%) were male, the mean (± standard deviation) age was 61 ± 23 years, and 70 patients were diagnosed with SDH on neuroradiologist evaluation. The median SDH thickness was 11 mm (IQR 6 mm), and 16 patients had a median MLS of 5 mm (IQR 2.25 mm). In the independent data set, the CNN performed well, with sensitivity of 91.4% (95% CI 82.3%–96.8%), specificity of 96.4% (95% CI 92.7%–98.5%), and accuracy of 95.1% (95% CI 91.7%–97.3%); sensitivity for the subgroup with an SDH thickness above 10 mm was 100%. The maximum thickness mean absolute error was 2.75 mm (95% CI 2.14–3.37 mm), whereas the MLS mean absolute error was 0.93 mm (95% CI 0.55–1.31 mm). The Pearson correlation coefficient computed to determine agreement between automated and manual segmentation measurements was 0.97 (95% CI 0.96–0.98).
CONCLUSIONS
The described Viz.ai SDH CNN performed exceptionally well at identifying and quantifying key features of SDHs in an independent validation imaging data set.
Collapse
Affiliation(s)
- Marco Colasurdo
- Department of Radiology, Division of Neuroradiology, The University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | - Visish M. Srinivasan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona; and
| | - Sunil A. Sheth
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | | | | | | | | | | | | | - Hashem Shaltoni
- Neurology, The University of Texas Medical Branch, Galveston, Texas
| | | |
Collapse
|
17
|
Charting the potential of brain computed tomography deep learning systems. J Clin Neurosci 2022; 99:217-223. [DOI: 10.1016/j.jocn.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
|
18
|
Farzaneh N, Stein EB, Soroushmehr R, Gryak J, Najarian K. A deep learning framework for automated detection and quantitative assessment of liver trauma. BMC Med Imaging 2022; 22:39. [PMID: 35260105 PMCID: PMC8905785 DOI: 10.1186/s12880-022-00759-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Both early detection and severity assessment of liver trauma are critical for optimal triage and management of trauma patients. Current trauma protocols utilize computed tomography (CT) assessment of injuries in a subjective and qualitative (v.s. quantitative) fashion, shortcomings which could both be addressed by automated computer-aided systems that are capable of generating real-time reproducible and quantitative information. This study outlines an end-to-end pipeline to calculate the percentage of the liver parenchyma disrupted by trauma, an important component of the American Association for the Surgery of Trauma (AAST) liver injury scale, the primary tool to assess liver trauma severity at CT. Methods This framework comprises deep convolutional neural networks that first generate initial masks of both liver parenchyma (including normal and affected liver) and regions affected by trauma using three dimensional contrast-enhanced CT scans. Next, during the post-processing step, human domain knowledge about the location and intensity distribution of liver trauma is integrated into the model to avoid false positive regions. After generating the liver parenchyma and trauma masks, the corresponding volumes are calculated. Liver parenchymal disruption is then computed as the volume of the liver parenchyma that is disrupted by trauma. Results The proposed model was trained and validated on an internal dataset from the University of Michigan Health System (UMHS) including 77 CT scans (34 with and 43 without liver parenchymal trauma). The Dice/recall/precision coefficients of the proposed segmentation models are 96.13/96.00/96.35% and 51.21/53.20/56.76%, respectively, in segmenting liver parenchyma and liver trauma regions. In volume-based severity analysis, the proposed model yields a linear regression relation of 0.95 in estimating the percentage of liver parenchyma disrupted by trauma. The model shows an accurate performance in avoiding false positives for patients without any liver parenchymal trauma. These results indicate that the model is generalizable on patients with pre-existing liver conditions, including fatty livers and congestive hepatopathy. Conclusion The proposed algorithms are able to accurately segment the liver and the regions affected by trauma. This pipeline demonstrates an accurate performance in estimating the percentage of liver parenchyma that is affected by trauma. Such a system can aid critical care medical personnel by providing a reproducible quantitative assessment of liver trauma as an alternative to the sometimes subjective AAST grading system that is used currently. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-022-00759-9.
Collapse
Affiliation(s)
- Negar Farzaneh
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA. .,The Max Harry Weil Institute for Critical Care Research & Innovation, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Erica B Stein
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - Reza Soroushmehr
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.,The Max Harry Weil Institute for Critical Care Research & Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.,Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Gryak
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.,Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.,The Max Harry Weil Institute for Critical Care Research & Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.,Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
19
|
Hong N, Liu C, Gao J, Han L, Chang F, Gong M, Su L. State of the Art of Machine Learning-Enabled Clinical Decision Support in Intensive Care Units: Literature Review. JMIR Med Inform 2022; 10:e28781. [PMID: 35238790 PMCID: PMC8931648 DOI: 10.2196/28781] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/02/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Background Modern clinical care in intensive care units is full of rich data, and machine learning has great potential to support clinical decision-making. The development of intelligent machine learning–based clinical decision support systems is facing great opportunities and challenges. Clinical decision support systems may directly help clinicians accurately diagnose, predict outcomes, identify risk events, or decide treatments at the point of care. Objective We aimed to review the research and application of machine learning–enabled clinical decision support studies in intensive care units to help clinicians, researchers, developers, and policy makers better understand the advantages and limitations of machine learning–supported diagnosis, outcome prediction, risk event identification, and intensive care unit point-of-care recommendations. Methods We searched papers published in the PubMed database between January 1980 and October 2020. We defined selection criteria to identify papers that focused on machine learning–enabled clinical decision support studies in intensive care units and reviewed the following aspects: research topics, study cohorts, machine learning models, analysis variables, and evaluation metrics. Results A total of 643 papers were collected, and using our selection criteria, 97 studies were found. Studies were categorized into 4 topics—monitoring, detection, and diagnosis (13/97, 13.4%), early identification of clinical events (32/97, 33.0%), outcome prediction and prognosis assessment (46/97, 47.6%), and treatment decision (6/97, 6.2%). Of the 97 papers, 82 (84.5%) studies used data from adult patients, 9 (9.3%) studies used data from pediatric patients, and 6 (6.2%) studies used data from neonates. We found that 65 (67.0%) studies used data from a single center, and 32 (33.0%) studies used a multicenter data set; 88 (90.7%) studies used supervised learning, 3 (3.1%) studies used unsupervised learning, and 6 (6.2%) studies used reinforcement learning. Clinical variable categories, starting with the most frequently used, were demographic (n=74), laboratory values (n=59), vital signs (n=55), scores (n=48), ventilation parameters (n=43), comorbidities (n=27), medications (n=18), outcome (n=14), fluid balance (n=13), nonmedicine therapy (n=10), symptoms (n=7), and medical history (n=4). The most frequently adopted evaluation metrics for clinical data modeling studies included area under the receiver operating characteristic curve (n=61), sensitivity (n=51), specificity (n=41), accuracy (n=29), and positive predictive value (n=23). Conclusions Early identification of clinical and outcome prediction and prognosis assessment contributed to approximately 80% of studies included in this review. Using new algorithms to solve intensive care unit clinical problems by developing reinforcement learning, active learning, and time-series analysis methods for clinical decision support will be greater development prospects in the future.
Collapse
Affiliation(s)
- Na Hong
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Chun Liu
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Jianwei Gao
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Lin Han
- Digital Health China Technologies Ltd Co, Beijing, China
| | | | - Mengchun Gong
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Jabeen K, Khan MA, Alhaisoni M, Tariq U, Zhang YD, Hamza A, Mickus A, Damaševičius R. Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion. SENSORS 2022; 22:s22030807. [PMID: 35161552 PMCID: PMC8840464 DOI: 10.3390/s22030807] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
After lung cancer, breast cancer is the second leading cause of death in women. If breast cancer is detected early, mortality rates in women can be reduced. Because manual breast cancer diagnosis takes a long time, an automated system is required for early cancer detection. This paper proposes a new framework for breast cancer classification from ultrasound images that employs deep learning and the fusion of the best selected features. The proposed framework is divided into five major steps: (i) data augmentation is performed to increase the size of the original dataset for better learning of Convolutional Neural Network (CNN) models; (ii) a pre-trained DarkNet-53 model is considered and the output layer is modified based on the augmented dataset classes; (iii) the modified model is trained using transfer learning and features are extracted from the global average pooling layer; (iv) the best features are selected using two improved optimization algorithms known as reformed differential evaluation (RDE) and reformed gray wolf (RGW); and (v) the best selected features are fused using a new probability-based serial approach and classified using machine learning algorithms. The experiment was conducted on an augmented Breast Ultrasound Images (BUSI) dataset, and the best accuracy was 99.1%. When compared with recent techniques, the proposed framework outperforms them.
Collapse
Affiliation(s)
- Kiran Jabeen
- Department of Computer Science, HITEC University Taxila, Taxila 47080, Pakistan; (K.J.); (M.A.K.); (A.H.)
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University Taxila, Taxila 47080, Pakistan; (K.J.); (M.A.K.); (A.H.)
| | - Majed Alhaisoni
- College of Computer Science and Engineering, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Usman Tariq
- College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj 11942, Saudi Arabia;
| | - Yu-Dong Zhang
- Department of Informatics, University of Leicester, Leicester LE1 7RH, UK;
| | - Ameer Hamza
- Department of Computer Science, HITEC University Taxila, Taxila 47080, Pakistan; (K.J.); (M.A.K.); (A.H.)
| | - Artūras Mickus
- Department of Applied Informatics, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
- Correspondence:
| |
Collapse
|
21
|
V. V, Gudigar A, Raghavendra U, Hegde A, Menon GR, Molinari F, Ciaccio EJ, Acharya UR. Automated Detection and Screening of Traumatic Brain Injury (TBI) Using Computed Tomography Images: A Comprehensive Review and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6499. [PMID: 34208596 PMCID: PMC8296416 DOI: 10.3390/ijerph18126499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) occurs due to the disruption in the normal functioning of the brain by sudden external forces. The primary and secondary injuries due to TBI include intracranial hematoma (ICH), raised intracranial pressure (ICP), and midline shift (MLS), which can result in significant lifetime disabilities and death. Hence, early diagnosis of TBI is crucial to improve patient outcome. Computed tomography (CT) is the preferred modality of choice to assess the severity of TBI. However, manual visualization and inspection of hematoma and its complications from CT scans is a highly operator-dependent and time-consuming task, which can lead to an inappropriate or delayed prognosis. The development of computer aided diagnosis (CAD) systems could be helpful for accurate, early management of TBI. In this paper, a systematic review of prevailing CAD systems for the detection of hematoma, raised ICP, and MLS in non-contrast axial CT brain images is presented. We also suggest future research to enhance the performance of CAD for early and accurate TBI diagnosis.
Collapse
Affiliation(s)
- Vidhya V.
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - U. Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Ajay Hegde
- Institute of Neurological Sciences, Glasgow G51 4LB, UK;
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Girish R. Menon
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Filippo Molinari
- Department of Electronics, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Torino, Italy;
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore;
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, 463 Clementi Road, Singapore 599491, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|