1
|
Pifferi M, Boner A, Maj D, Michelucci A, Donzelli G, Cangiotti AM, Guazzo R, Bertolucci G, Bertini V, Doccioli C, Piazza M, Valetto A, Caligo MA, Peroni D, Bush A. Impact of TAS2R38 polymorphisms on nasal nitric oxide and Pseudomonas infections in primary ciliary dyskinesia: relation to genotype. Thorax 2024; 79:1069-1076. [PMID: 39181709 DOI: 10.1136/thorax-2024-221396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Primary ciliary dyskinesia (PCD) severity has been related to genotype and levels of nasal nitric oxide (nNO). The most common TAS2R38 haplotypes (PAV/PAV, PAV/AVI, AVI/AVI) encoding the bitter taste receptor can affect nNO levels and thus could play a role in the susceptibility to respiratory infections. We assessed the impact of these polymorphisms on nNO production and Pseudomonas aeruginosa (P.a.) infections in different PCD genotypes. METHODS Prospective, longitudinal, single-centre study in patients with PCD with known genotype and one of three TAS2R38 haplotypes evaluated for up to 10 years. We related nNO values to TAS2R38 haplotypes in all patients, and in the three most frequent genotypes (CCDC39/CCDC40, DNAH5, DNAH11). In the genetic group(s) with different mean trends of nNO in relation to the polymorphism, we evaluated longitudinal lung function as a clinical outcome measure. We also studied any associations between the prevalence of chronic P.a. infection and PAV alleles. Linear mixed-effects models were used to evaluate longitudinal associations. RESULTS 119 patients with PCD underwent 1116 study visits. Only in the DNAH11 mutations group was there a mean trend of nNO production which was significantly higher in PAV/PAV than AVI/AVI haplotype (p=0.033), with a better trend in spirometric and plethysmographic parameters. In patients with DNAH11 mutations the PAV allele was also associated with a significantly reduced prevalence of chronic P.a. INFECTION CONCLUSION TAS2R38 may be a modifier gene for PCD severity, but only in mild phenotype disease. Further study of TAS2R38 polymorphisms might enable new management strategies to prevent chronic P.a. INFECTIONS
Collapse
Affiliation(s)
- Massimo Pifferi
- Department of Pediatrics, Pisa University Hospital, Pisa, Italy
| | - Attilio Boner
- Department of Surgical Science, Dentistry, Gynecology and Pediatrics, Integrated University Hospital of Verona, Verona, Italy
| | - Debora Maj
- Department of Pediatrics, Pisa University Hospital, Pisa, Italy
| | - Angela Michelucci
- Laboratory of Molecular Genetics, Pisa University Hospital, Pisa, Italy
| | - Gabriele Donzelli
- Institute of Clinical Physiology National Research Council, Pisa, Italy
| | - Angela M Cangiotti
- Institute of Normal Human Morphology, Electron Microscopy Unit, University Hospital of Ancona Umberto I G M Lancisi G Salesi, Ancona, Italy
| | - Raffaella Guazzo
- Laboratory of Electron Microscopy, Pathology Unit, Siena University Hospital, Siena, Italy
| | | | - Veronica Bertini
- Laboratory of Cytogenetics, Pisa University Hospital, Pisa, Italy
| | - Chiara Doccioli
- Department of Statistics, Computer Science and Applications, University of Florence, Florence, Italy
| | - Michele Piazza
- Department of Surgical Science, Dentistry, Gynecology and Pediatrics, Integrated University Hospital of Verona, Verona, Italy
| | - Angelo Valetto
- Laboratory of Cytogenetics, Pisa University Hospital, Pisa, Italy
| | | | - Diego Peroni
- Department of Pediatrics, Pisa University Hospital, Pisa, Italy
| | - Andrew Bush
- Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
| |
Collapse
|
2
|
Nigro M, Laska IF, Traversi L, Simonetta E, Polverino E. Epidemiology of bronchiectasis. Eur Respir Rev 2024; 33:240091. [PMID: 39384303 PMCID: PMC11462313 DOI: 10.1183/16000617.0091-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/05/2024] [Indexed: 10/11/2024] Open
Abstract
Bronchiectasis is a chronic respiratory disease characterised by permanent enlargement of the airways associated with cough, sputum production and a history of pulmonary exacerbations. In the past few years, incidence and prevalence of bronchiectasis have increased worldwide, possibly due to advances in imaging techniques and disease awareness, leading to increased socioeconomic burden and healthcare costs. Consistently, a mortality increase in bronchiectasis patient cohorts has been demonstrated in certain areas of the globe, with mortality rates of 16-24.8% over 4-5 years of follow-up. However, heterogeneity in epidemiological data is consistent, as reported prevalence in the general population ranges from 52.3 to more than 1000 per 100 000. Methodological flaws in the designs of available studies are likely to underestimate the proportion of people suffering from this condition worldwide and comparisons between different areas of the globe might be unreliable due to different assessment methods or local implementation of the same method in different contexts. Differences in disease severity associated with diverse geographical distribution of aetiologies, comorbidities and microbiology might explain an additional quota of heterogeneity. Finally, limited access to care in certain geographical areas is associated with both underestimation of the disease and increased severity and mortality. The aim of this review is to provide a snapshot of available real-world epidemiological data describing incidence and prevalence of bronchiectasis in the general population. Furthermore, data on mortality, healthcare burden and high-risk populations are provided. Finally, an analysis of the geographical distribution of determinants contributing to differences in bronchiectasis epidemiology is offered.
Collapse
Affiliation(s)
- Mattia Nigro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Irena F Laska
- Department of Respiratory and Sleep Disorders Medicine, Western Health, Footscray, Australia
| | - Letizia Traversi
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | | | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| |
Collapse
|
3
|
Tanaka Y, Fujisawa T, Yazawa S, Ohta I, Takaku Y, Ito M, Inoue Y, Yasui H, Hozumi H, Karayama M, Suzuki Y, Furuhashi K, Enomoto N, Setou M, Inui N, Suzuki T, Suda T. Obesity impairs ciliary function and mucociliary clearance in the murine airway epithelium. Am J Physiol Lung Cell Mol Physiol 2024; 327:L406-L414. [PMID: 39104315 DOI: 10.1152/ajplung.00114.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024] Open
Abstract
Obesity is a risk factor for increased morbidity and mortality in viral respiratory infection. Mucociliary clearance (MCC) in the airway is the primary host defense against viral infections. However, the impact of obesity on MCC is unclear, prompting this study. Using murine tracheal tissue culture and in vitro influenza A virus (IAV) infection models, we analyzed cilia-driven flow and ciliary beat frequency (CBF) in the airway epithelium to evaluate MCC. Short-term IAV infection increased cilia-driven flow and CBF in control mice, but not in high-fat diet-induced obese mice. Basal cilia-driven flow and CBF were also lower in obese mice than in control mice. Mechanistically, the increase of extracellular adenosine triphosphate (ATP) release during IAV infection, which was observed in the control mice, was abolished in the obese mice; however, the addition of ATP increased cilia-driven flow and CBF both in control and obese mice to a similar extent. In addition, RNA sequencing and reverse transcription-polymerase chain reaction revealed the downregulation of several cilia-related genes, including Dnah1, Dnal1, Armc4, and Ttc12 (the dynein-related genes); Ulk4 (the polychaete differentiation gene); Cep164 (the ciliogenesis and intraflagellar transport gene); Rsph4a, Cfap206, and Ppil6 (the radial spoke structure and assembly gene); and Drc3(the nexin-dynein regulatory complex genes) in obese murine tracheal tissues compared with their control levels. In conclusion, our studies demonstrate that obesity attenuates MCC under basal conditions and during IAV infection by downregulating the expression of cilia-related genes and suppressing the release of extracellular ATP, thereby increasing the susceptibility and severity of IAV infection.NEW & NOTEWORTHY Our study shows that obesity impairs airway mucociliary clearance (MCC), an essential physical innate defense mechanism for viral infection. Mechanically, this is likely due to the obesity-induced downregulation of cilia-related genes and attenuation of extracellular ATP release. This study provides novel insights into the mechanisms driving the higher susceptibility and severity of viral respiratory infections in individuals with obesity.
Collapse
Affiliation(s)
- Yuko Tanaka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shusuke Yazawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Isao Ohta
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yasuharu Takaku
- Laboratory of Bio-Design, Department of Agricultural Innovation for Sustainable Society, Tokyo University of Agriculture, Atsugi, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
4
|
Shen C, Shen Y, Huang W, Zhang A, Zou T, Guo D, Wang H, Wu J, Hu H, Xiang M, Ye B. A novel homozygous RSPH4A variant in a family with primary ciliary dyskinesia and literature review. Front Genet 2024; 15:1364476. [PMID: 38818043 PMCID: PMC11137616 DOI: 10.3389/fgene.2024.1364476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction: Primary ciliary dyskinesia (PCD) is a rare heterogeneous disease caused by abnormalities in motile cilia. In this case report, we first analyzed the clinical and genetic data of a proband who was suspected of having PCD on the basis of her clinical and radiological findings. Methods: Whole-exome sequencing was performed, and a variant in the RSPH4A gene was identified in the proband. Sanger sequencing was used for validation of RSPH4A variants in the proband, her sister, her daughter and her parents. Finally, the phenotypic features of the patient were analyzed, and the current literature was reviewed to better understand the gene variants in PCD related to hearing loss and the clinical manifestations of the RSPH4A variant in PCD. Results: The chief clinical symptoms of this proband included gradual mixed hearing loss, otitis media, anosmia, sinusitis, recurrent cough and infertility. Her DNA sequencing revealed a novel homozygous T to C transition at position 1321 within exon 3 of RSPH4A according to genetic testing results. This variant had never been reported before. The homozygous variant resulted in an amino acid substitution of tryptophan by arginine at position 441 (p.Trp441Arg). The same variant was also found in the proband's sister, and a heterozygous pathogenic variant was identified among immediate family members, including the proband's daughter and parents. Discussion: A literature review showed that 16 pathogenic variants in RSPH4A have been reported. Hearing loss had only been observed in patients with the RSPH4A (c.921+3_6delAAGT) splice site mutation, and the specific type of hearing loss was not described.
Collapse
Affiliation(s)
- Chenling Shen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Otolaryngology and Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Tianyuan Zou
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Otolaryngology and Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongye Guo
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Carr KA, Moore PE, O'Connor MG. The utility of nasal nitric oxide in the diagnostic evaluation of primary ciliary dyskinesia. Pediatr Pulmonol 2024; 59:1410-1417. [PMID: 38380959 PMCID: PMC11058016 DOI: 10.1002/ppul.26929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND There is no gold-standard test for primary ciliary dyskinesia (PCD), rather American Thoracic Society guidelines recommend starting with nasal nitric oxide (nNO) in children ≥5 years old and confirming the diagnosis with genetic testing or ciliary biopsy with transmission electron microscopy (TEM). These guidelines have not been studied in a clinical setting. We present a case series describing the PCD diagnostic process at our pediatric PCD center. METHODS Diagnostic data from 131 patients undergoing PCD consultation were reviewed. RESULTS In all participants ≥ 5 years old and who completed nNO using resistor methodology, the first diagnostic test performed was nNO in 77% (73/95), genetic testing in 14% (13/95), and TEM in <1% (9/95). nNO was the only diagnostic test performed in 75% (55/73) of participants who completed nNO first. Seventy-five percent (55/73) had a single above the cutoff nNO value and PCD was determined to be unlikely in 91% (50/55) without performing additional confirmatory testing. Eleven percent (8/73) had multiple below the cutoff nNO values, with 38% (3/8) being diagnosed with PCD by confirmatory testing and 50% (4/8) with negative confirmatory testing, but being managed as PCD. The genetic testing positivity rate was 50% in participants who completed nNO first and 8% when genetic testing was completed first. CONCLUSION nNO is useful in three situations: an initial above the cutoff nNO value makes PCD unlikely and prevents additional confirmatory testing, repetitively below the cutoff nNO values without positive confirmatory testing suggests a probable PCD diagnosis and the yield of genetic testing is higher when nNO is performed first.
Collapse
Affiliation(s)
- Katherine A Carr
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul E Moore
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael G O'Connor
- Department of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Gatt D, Golan Tripto I, Levanon E, Arwas N, Hazan G, Alkrinawi S, Goldbart AD, Aviram M. Stepwise genetic approach for the diagnosis of primary ciliary dyskinesia in highly consanguineous populations. Arch Dis Child 2024; 109:428-431. [PMID: 38296613 DOI: 10.1136/archdischild-2023-325921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The American Thoracic Society guidelines for the diagnosis of primary ciliary dyskinesia (PCD) consider the presence of a bi-allelic pathogenic variant confirmatory for the diagnosis of PCD, with genetic testing recommended when other confirmatory diagnostic tests are less accessible. We present our experience with genetic testing as first line with a proposed algorithm for high consanguinity populations. METHODS Patients with a suspected diagnosis of PCD underwent genetic testing according to a diagnostic algorithm composed of three steps: (1) patients with a previously known causative familial/Bedouin tribal pathogenic variant completed direct testing for a single variant; (2) if the initial test was negative or there was no known pathogenic variant, a PCD genetic panel was completed; (3) if the panel was negative, whole exome sequencing (WES) was completed. RESULTS Since the implementation of the protocol, diagnosis was confirmed by genetic testing in 21 patients. The majority of them were of Bedouin origin (81%) and had a positive history of consanguinity (65%). Nine patients (43%) had a sibling with a confirmed diagnosis. Most patients (15/21, 71%) were diagnosed by direct pathogenic variant testing and the remainder by genetic panel (19%) and WES (10%). Disease-causing variants were found in nine genes, with DNAL1 (24%) and DNAAF3, DNAAF5, ZMYND10 (14% each) as the most prevalent ones. CONCLUSIONS In highly consanguineous regions, a stepwise genetic testing approach is recommended. This approach may be particularly useful in areas where the ability to obtain confirmatory diagnostic tests through other modalities is less accessible.
Collapse
Affiliation(s)
- Dvir Gatt
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Southern, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Inbal Golan Tripto
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Southern, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eran Levanon
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noga Arwas
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Southern, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Guy Hazan
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Southern, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Soliman Alkrinawi
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Southern, Israel
| | - Aviv D Goldbart
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Southern, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Micha Aviram
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Southern, Israel
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Asseri AA, Shati AA, Asiri IA, Aldosari RH, Al-Amri HA, Alshahrani M, Al-Asmari BG, Alalkami H. Clinical and Genetic Characterization of Patients with Primary Ciliary Dyskinesia in Southwest Saudi Arabia: A Cross Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1684. [PMID: 37892347 PMCID: PMC10605387 DOI: 10.3390/children10101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD, MIM 244400) is an inherited ciliopathy disorder characterized by recurrent sinopulmonary infections, subfertility, and laterality defects. The true incidence of PCD in Saudi Arabia is not known, but it is likely underdiagnosed due to the high prevalence of consanguineous marriages. In this study, we aim to study the clinical and genetic characteristics of PCD patients in the southwestern region of Saudi Arabia to provide guidance to clinicians and researchers studying PCD. METHODS This was a cross-sectional study conducted between 2019 and 2023 in Abha Maternity and Children's Hospital. Twenty-eight patients with clinically diagnosed PCD were recruited. The diagnosis of PCD was confirmed via whole-exome sequencing. RESULTS A total of 28 patients from 20 families were identified and recruited for this study. The median age of patients was 7.5 years (IQR = 3, 13 years). The people of different sexes were evenly distributed, and 18 patients (64%) had neonatal respiratory distress (NRD). The median age of diagnosis was 5.5 years (IQR = 2, 11 years), while the age when the first symptoms appeared was 3 months old (IQR = 1, 6 months). The prevalence of a chronic wet cough, chronic rhinosinusitis, ear infections were 100% (n = 28), 78.6% (n = 22), and 67.9% (19), respectively. The most common gene in our study was DNAH5, which represented 17.9% (five out of twenty-eight) of the cases. Furthermore, the remaining pathogenic variants included: 14.3% with RSPH9 in four individuals (three families), 14.3% with DNAI2 in four individuals (two families), and 10.7% with LRRC56 in three individuals (one family). The most common findings on the chest CT scans were consolidation (seen in all patients), mucus plugging (seen in 95%), and bronchiectasis (seen in 77%). In the patients with bronchiectasis, the most commonly affected lobes were the right lower lobe (88%) and left lower lobe (76%). The patients with PCD and situs inversus were more likely to experience NRD than the patients with PCD and situs solitus. The median PICADAR score in the patients with PCD and situs inversus (median: 11.5; Q1: 10-Q3: 12.5) was significantly higher compared to those with PCD and situs solitus (median: 7.5; Q1: 5.8-Q3: 8) (U = 10.5; p < 0.001). CONCLUSION This study provides preliminary data on the clinical and genetic characteristics of PCD patients in the southwestern region of Saudi Arabia. We found that DNAH5 and RSPH9 genes were the most common genes among the studied population. Furthermore, PCD should be considered for each child with early NRD and laterality defects, and further confirmatory tests are recommended. These findings also highlight the need for greater awareness of the disease in daily clinical practice to facilitate early diagnosis and avoid irreversible lung damage.
Collapse
Affiliation(s)
- Ali Alsuheel Asseri
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Ibrahim A. Asiri
- Departments of Pediatrics, King Khalid University Medical City, Abha 62223, Saudi Arabia;
| | - Reem H. Aldosari
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
| | - Hassan A. Al-Amri
- Department of Pediatrics, Khamis Mushayt Children Hospital, Khamis Mushayt 62454, Saudi Arabia;
| | - Mohammed Alshahrani
- Department of Pulmonology, Aseer Central Hospital, Abha 62523, Saudi Arabia;
| | - Badriah G. Al-Asmari
- Department of Pediatrics, King Fahad Military Hospital, Khamis Mushayt 31932, Saudi Arabia;
| | - Haleimah Alalkami
- Department of Pediatrics, Abha Maternity & Children Hospital, Abha 3613, Saudi Arabia;
| |
Collapse
|
8
|
Hunter‐Schouela J, Geraghty MT, Hegele RA, Dyment DA, Pierre DS, Richer J, Sheffield H, Zariwala MA, Knowles MR, Lehman A, Dell S, Shapiro AJ, Kovesi TA. First reports of primary ciliary dyskinesia caused by a shared DNAH11 allele in Canadian Inuit. Pediatr Pulmonol 2023; 58:1942-1949. [PMID: 37088965 PMCID: PMC10330405 DOI: 10.1002/ppul.26414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is typically an autosomal recessive disease characterized by recurrent infections of the lower respiratory tract, frequent and severe otitis media, chronic rhinosinusitis, neonatal respiratory distress, and organ laterality defects. While severe lower respiratory tract infections and bronchiectasis are common in Inuit, PCD has not been recognized in this population. METHODS We report a case series of seven Inuit patients with PCD identified by genetic testing in three Canadian PCD centers. RESULTS Patients ranged from 4 to 59 years of age (at time of last evaluation) and originated in the Qikiqtaaluk region (Baffin Island, n = 5), Nunavut, or Nunavik (northern Quebec, n = 2), Canada. They had typical features of PCD, including neonatal respiratory distress (five patients), situs inversus totalis (four patients), bronchiectasis (four patients), chronic atelectasis (six patients), and chronic otitis media (six patients). Most had chronic rhinitis. Genetic evaluation demonstrated that all had homozygous pathogenic variants in DNAH11 at NM_001277115.1:c.4095+2C>A. CONCLUSIONS The discovery of this homozygous DNAH11 variant in widely disparate parts of the Nunangat (Inuit homelands) suggests this is a founder mutation that may be widespread in Inuit. Thus, PCD may be an important cause of chronic lung, sinus, and middle ear disease in this population. Inuit with chronic lung disease, including bronchiectasis or laterality defects, should undergo genetic testing for PCD. Consideration of including PCD genetic analysis in routine newborn screening should be considered in Inuit regions.
Collapse
Affiliation(s)
- Julia Hunter‐Schouela
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Michael T. Geraghty
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Robert A. Hegele
- Department of Medicine and Robarts Research Institute, Western University, London, Ontario, Canada
| | - David A. Dyment
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - David St Pierre
- Respiratory Epidemiology and Clinical Research Unit, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Julie Richer
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Holden Sheffield
- Department of Pediatrics, Qikiqtani General Hospital, Iqaluit, Nunavut, Canada
| | - Maimoona A. Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia on behalf of the Silent Genomes Precision Medicine Consortium, Vancouver, British Columbia, Canada
| | - Sharon Dell
- Department of Pediatrics, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Adam J. Shapiro
- Department of Pediatrics, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Thomas A. Kovesi
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
The RSPH4A Gene in Primary Ciliary Dyskinesia. Int J Mol Sci 2023; 24:ijms24031936. [PMID: 36768259 PMCID: PMC9915723 DOI: 10.3390/ijms24031936] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The radial spoke head protein 4 homolog A (RSPH4A) gene is one of more than 50 genes that cause Primary ciliary dyskinesia (PCD), a rare genetic ciliopathy. Genetic mutations in the RSPH4A gene alter an important protein structure involved in ciliary pathogenesis. Radial spoke proteins, such as RSPH4A, have been conserved across multiple species. In humans, ciliary function deficiency caused by RSPH4A pathogenic variants results in a clinical phenotype characterized by recurrent oto-sino-pulmonary infections. More than 30 pathogenic RSPH4A genetic variants have been associated with PCD. In Puerto Rican Hispanics, a founder mutation (RSPH4A (c.921+3_921+6delAAGT (intronic)) has been described. The spectrum of the RSPH4A PCD phenotype does not include laterality defects, which results in a challenging diagnosis. PCD diagnostic tools can combine transmission electron microscopy (TEM), nasal nitric oxide (nNO), High-Speed Video microscopy Analysis (HSVA), and immunofluorescence. The purpose of this review article is to provide a comprehensive overview of current knowledge about the RSPH4A gene in PCD, ranging from basic science to human clinical phenotype.
Collapse
|
10
|
De Jesús-Rojas W, Alvarado-Huerta F, Meléndez-Montañez JM, Muñiz-Hernández J, Santos-López A, Mosquera RA. Nasal Nitric Oxide Levels: Improving the Diagnosis of Primary Ciliary Dyskinesia in Puerto Rico. Adv Respir Med 2022; 90:399-406. [PMID: 36285978 PMCID: PMC9717333 DOI: 10.3390/arm90050050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Primary Ciliary Dyskinesia (PCD) is a rare genetic disease characterized by motile cilia dysfunction with a prevalence of 1 in 16,309 individuals in Hispanic populations. In Puerto Rico, the prevalence of PCD is unknown. Diagnosis of PCD in Puerto Rico is challenging due to the lack of diagnostic technology. Algorithms for PCD diagnosis include clinical history, genetic testing, ciliary biopsy, and nasal Nitric Oxide (nNO) levels. For the first time, this study successfully implemented and measured the nNO levels in subjects with the RSPH4A (c.921+3_921+6del (intronic)) as a diagnostic tool to complement the current algorithm for PCD diagnosis on the island. The nNO level differentiated homozygous subjects with PCD due to the RSPH4A (c.921+3_921+6del (intronic)) founder mutation compared to healthy gender-age matched controls and subjects with VUS or negative genetic testing for PCD. The acquisition of state-of-the-art diagnostic tools such as nNO positively impacted and expanded our current PCD diagnostic capabilities in Puerto Rico for our founder genetic mutation. The addition of nNO technology promotes earlier disease screening and recognition for patients with PCD on the island. The access to nNO helped us to properly characterize the PCD diagnosis for patients with the RSPH4A (c.921+3_921+6del (intronic)). As a result, our findings will allow us to be part of the national PCD foundation registry and represent Puerto Rican Hispanics in future PCD multicentric clinical trials.
Collapse
Affiliation(s)
- Wilfredo De Jesús-Rojas
- Department of Pediatrics–Anatomy and Neuroanatomy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA
- Department of Pediatrics and Basic Science, Ponce Health Science University, Ponce, PR 00716, USA
| | - Francisco Alvarado-Huerta
- Department of Pediatrics–Anatomy and Neuroanatomy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA
| | | | - José Muñiz-Hernández
- Department of Natural Science, University of Puerto Rico, Cayey Campus, Cayey, PR 00736, USA
| | - Arnaldo Santos-López
- Department of Pediatrics and Basic Science, Ponce Health Science University, Ponce, PR 00716, USA
| | - Ricardo A. Mosquera
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Lyu H, Guo Z, Chen C, Duan B, Xu Z, Chen W. CT imaging features of paranasal sinuses in children with primary ciliary dyskinesia. Acta Otolaryngol 2022; 142:691-695. [PMID: 36093609 DOI: 10.1080/00016489.2022.2118371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) causes impaired mucociliary clearance and results in chronic pulmonary and sinonasal symptoms. OBJECTIVES To study the CT imaging features of paranasal sinuses in children with PCD. MATERIALS AND METHODS 17 PCD patients ranged from 4 to 13 years, a mean age of 7.9 ± 3.3 years, were included in the final analysis. Patients with non-PCD chronic rhinosinusitis (CRS) who accepted maxillary balloon catheter dilation were included in the control group. Paranasal sinuses CT scans were scored according to the Lund-Mackay staging system. The correlation between age and Lund-Mackay score was analyzed. RESULTS 100% (17/17) had rhinosinusitis, 52.9% (9/17) had lung consolidation, 64.7% (11/17) had atelectasis, 35.3% (6/17) had bronchiectasis, and 47.1% (8/17) had a history of neonatal respiratory distress. The mean Lund-Mackay score of PCD patients was 14.2 ± 3.1, that of non-PCD CRS patients was 14.6 ± 5.5, the difference was not significant (p = .79). There was a significant inverse correlation between age and Lund-Mackay score in PCD patients (r = -0.530, p = .029) but not in non-PCD CRS patients (r = -0.168, p = .519). CONCLUSION Radiographic severity of rhinosinusitis in PCD patients was similar to the control population but decreased with age. SIGNIFICANCE First time to propose radiographic severity of rhinosinusitis in pediatric patients with PCD might decrease with age.
Collapse
Affiliation(s)
- Huiying Lyu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Zhuoyao Guo
- Department of Respiratory, Children's Hospital of Fudan University, Shanghai, China
| | - Chao Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Bo Duan
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Zhengmin Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Wenxia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
De Jesús-Rojas W, Muñiz-Hernández J, Alvarado-Huerta F, Meléndez-Montañez JM, Santos-López AJ, Mosquera RA. The Genetics of Primary Ciliary Dyskinesia in Puerto Rico. Diagnostics (Basel) 2022; 12:diagnostics12051127. [PMID: 35626283 PMCID: PMC9139572 DOI: 10.3390/diagnostics12051127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) has been linked to more than 50 genes that cause a spectrum of clinical symptoms, including newborn respiratory distress, sinopulmonary infections, and laterality abnormalities. Although the RSPH4A (c.921+3_6delAAGT) pathogenic variant has been related to Hispanic groups with Puerto Rican ancestry, it is uncertain how frequently other PCD-implicated genes are present on the island. A retrospective chart review of n = 127 genetic reports from Puerto Rican subjects who underwent genetic screening for PCD variants was conducted from 2018 to 2022. Of 127 subjects, 29.1% subjects presented PCD pathogenic variants, and 13.4% were homozygous for the RSPH4A (c.921+3_6delAAGT) founder mutation. The most common pathogenic variants were in RSPH4A and ZMYND10 genes. A description of the frequency and geographic distribution of implicated PCD pathogenic variants in Puerto Rico is presented. Our findings reconfirm that the presence of PCD in Puerto Rico is predominantly due to a founder pathogenic variant in the RSPH4A (c.921+3_6delAAGT) splice site. Understanding the frequency of PCD genetic variants in Puerto Rico is essential to map a future genotype-phenotype PCD spectrum in Puerto Rican Hispanics with a heterogeneous ancestry.
Collapse
Affiliation(s)
- Wilfredo De Jesús-Rojas
- Department of Pediatrics–Anatomy and Neuroanatomy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
- Department of Pediatrics, Ponce Health Science University, Ponce, PR 00716, USA; (J.M.M.-M.); (A.J.S.-L.)
- Correspondence:
| | - José Muñiz-Hernández
- Department of Natural Science, University of Puerto Rico, Cayey Campus, Cayey, PR 00736, USA;
| | - Francisco Alvarado-Huerta
- Department of Pediatrics–Anatomy and Neuroanatomy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| | - Jesús M. Meléndez-Montañez
- Department of Pediatrics, Ponce Health Science University, Ponce, PR 00716, USA; (J.M.M.-M.); (A.J.S.-L.)
| | - Arnaldo J. Santos-López
- Department of Pediatrics, Ponce Health Science University, Ponce, PR 00716, USA; (J.M.M.-M.); (A.J.S.-L.)
| | - Ricardo A. Mosquera
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| |
Collapse
|
13
|
Limitations of Nasal Nitric Oxide Measurement for Diagnosis of Primary Ciliary Dyskinesia with Normal Ultrastructure. Ann Am Thorac Soc 2022; 19:1275-1284. [PMID: 35202559 DOI: 10.1513/annalsats.202106-728oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale Primary ciliary dyskinesia (PCD) is a heterogeneous, multisystem disorder characterized by defective ciliary beating. Diagnostic guidelines of the American Thoracic Society (ATS) and European Respiratory Society (ERS) recommend measurement of nasal nitric oxide (nNO) for PCD diagnosis. Several studies demonstrated low nNO-production rates in PCD individuals but underlying causes remain elusive. Objective To determine nNO-production rates in a well-characterized PCD cohort including subgroup analyses with regard to ultrastructural and ciliary beating phenotypes. Methods This study included 301 individuals assessed according to ERS guidelines. Diagnostic cutoffs for nNO-production rates for this study cohort and subgroups with normal and abnormal ultrastructure were determined. Diagnostic accuracy was also tested for the widely used 77 nl/min-cutoff in this study cohort. The relationship between nNO-production rates and ciliary beat frequencies (CBFs) was evaluated. Results The study cohort comprised 180 individuals with definite PCD diagnosis including 160 individuals with genetic diagnosis, 16 individuals with probable PCD diagnosis and 105 disease controls. The 77 nl/min nNO-cutoff showed a test sensitivity of 0.92 and specificity of 0.86. Test sensitivity was lower (0.85) in the subgroup of 47 PCD individuals with normal ultrastructure compared to 133 PCD individuals with abnormal ultrastructure (0.95). The optimal diagnostic cutoff for the nNO-production rate for the whole study cohort was 69.8 nl/min (sensitivity 0.92, specificity 0.89), however it was 107.8 nl/min (sensitivity 0.89, specificity 0.78) for the subgroup of PCD with normal ultrastructure. PCD individuals with normal ultrastructure compared to abnormal ultrastructure showed higher ciliary motility. Consistently, PCD individuals with higher CBFs showed higher nNO-production rates. In addition, laterality defects occurred less frequently in PCD with normal ultrastructure. Conclusion Measurements of nNO below the widely used 77 nL/min cutoff are less sensitive in detecting PCD individuals with normal ultrastructure. Our findings indicate, that higher nNO-production in this subgroup with a higher cutoff for the nNO-production rate (107.8 nl/min) and higher residual ciliary motility are dependent on the underlying molecular PCD defect. Higher nNO-production rates, higher residual CBFs and the lower prevalence of laterality defects hamper diagnosis of PCD with normal ultrastructure. Adjusting the cutoff of nNO-production rate to 107.8 nl/min might promote diagnosing PCD with normal ultrastructure.
Collapse
|
14
|
Hoque M, Kim EN, Chen D, Li FQ, Takemaru KI. Essential Roles of Efferent Duct Multicilia in Male Fertility. Cells 2022; 11:cells11030341. [PMID: 35159149 PMCID: PMC8834061 DOI: 10.3390/cells11030341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cilia are microtubule-based hair-like organelles on the cell surface. Cilia have been implicated in various biological processes ranging from mechanosensation to fluid movement. Ciliary dysfunction leads to a plethora of human diseases, known as ciliopathies. Although non-motile primary cilia are ubiquitous, motile multicilia are found in restricted locations of the body, such as the respiratory tract, the oviduct, the efferent duct, and the brain ventricles. Multicilia beat in a whip-like motion to generate fluid flow over the apical surface of an epithelium. The concerted ciliary motion provides the driving force critical for clearing airway mucus and debris, transporting ova from the ovary to the uterus, maintaining sperm in suspension, and circulating cerebrospinal fluid in the brain. In the male reproductive tract, multiciliated cells (MCCs) were first described in the mid-1800s, but their importance in male fertility remained elusive until recently. MCCs exist in the efferent ducts, which are small, highly convoluted tubules that connect the testis to the epididymis and play an essential role in male fertility. In this review, we will introduce multiciliogenesis, discuss mouse models of male infertility with defective multicilia, and summarize our current knowledge on the biological function of multicilia in the male reproductive tract.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Danny Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
- Correspondence:
| |
Collapse
|
15
|
Hyland RM, Brody SL. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells 2021; 11:125. [PMID: 35011687 PMCID: PMC8750550 DOI: 10.3390/cells11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Motile cilia are hairlike organelles that project outward from a tissue-restricted subset of cells to direct fluid flow. During human development motile cilia guide determination of the left-right axis in the embryo, and in the fetal and neonatal periods they have essential roles in airway clearance in the respiratory tract and regulating cerebral spinal fluid flow in the brain. Dysregulation of motile cilia is best understood through the lens of the genetic disorder primary ciliary dyskinesia (PCD). PCD encompasses all genetic motile ciliopathies resulting from over 60 known genetic mutations and has a unique but often underrecognized neonatal presentation. Neonatal respiratory distress is now known to occur in the majority of patients with PCD, laterality defects are common, and very rarely brain ventricle enlargement occurs. The developmental function of motile cilia and the effect and pathophysiology of motile ciliopathies are incompletely understood in humans. In this review, we will examine the current understanding of the role of motile cilia in human development and clinical considerations when assessing the newborn for suspected motile ciliopathies.
Collapse
Affiliation(s)
- Rachael M. Hyland
- Department of Pediatrics, Division of Newborn Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110,USA;
| | - Steven L. Brody
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
16
|
A Study on the Genetics of Primary Ciliary Dyskinesia. J Clin Med 2021; 10:jcm10215102. [PMID: 34768622 PMCID: PMC8584573 DOI: 10.3390/jcm10215102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a poorly understood disorder. It is primarily autosomal recessive and is prevalent in tribal communities of the United Arab Emirates due to consanguineous marriages. This retrospective study aimed to assess the pathogenicity of the genetic variants of PCD in indigenous patients with significant clinical respiratory problems. Pathogenicity scores of variants obtained from the chart review were consolidated using the Ensembl Variant Effect Predictor. The multidimensional dataset of scores was clustered into three groups based on their pathogenicity. Sequence alignment and the Jensen–Shannon Divergence (JSD) were generated to evaluate the amino acid conservation at the site of the variation. One-hundred and twelve variants of 28 genes linked to PCD were identified in 66 patients. Twenty-two variants were double heterozygous, two triple heterozygous, and seven homozygous. Of the thirteen novel variants, two, c.11839 + 1G > A in dynein, axonemal, heavy chain 11 (DNAH11) and p.Lys92Trpfs in dynein, axonemal, intermediate chain 1 (DNAI1) were associated with dextrocardia with situs inversus, and one, p.Gly21Val in coiled-coil domain-containing protein 40 (CCDC40), with absent inner dynein arms. Homozygous C1orf127:p.Arg113Ter (rs558323413) was also associated with laterality defects in two related patients. The majority of variants were missense involving conserved residues with a median JSD score of 0.747. Homology models of two deleterious variants in the stalk of DNAH11, p.Gly3102Asp and p.Leu3127Arg, revealed structural importance of the conserved glycine and leucine. These results define potentially damaging PCD variants in the region. Future studies, however, are needed to fully comprehend the genetic underpinnings of PCD.
Collapse
|
17
|
De Jesús-Rojas W, Reyes De Jesús D, Nieves AM, Mosquera RA, Martinez-Cruzado JC. Primary Ciliary Dyskinesia: Ancestral Haplotypes Analysis of the RSPH4A Founder Mutation in Puerto Rico. Cureus 2021; 13:e17673. [PMID: 34513534 PMCID: PMC8415044 DOI: 10.7759/cureus.17673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic mutations in >50 genes, including RSPH4A, can lead to primary ciliary dyskinesia (PCD). RSPH4A mutations affect radial spokes, which alter the configuration of the ciliary ultrastructure and lead to chronic oto-sinopulmonary disease. The RSPH4A [c.921+3_6delAAGT] founder mutation was described as one cause of PCD without laterality defects in Puerto Rico. The average Puerto Rican genetic composition includes 64% European, 21% African ancestral, and 15% Native-American or Taino, a native tribe in the Caribbean at the start of the European colonization, genes. Due to the relatively elevated Taino ancestry on the island, it might have contributed to the endemicity of the RSPH4A [c.921+3_6delAAGT] splice site mutation. However, the ancestry of this mutation is still not confirmed. This article describes the two pediatric PCD cases with the Puerto Rican foundermutationand reports an ancestral haplotype analysis of the RSPH4A [c.921+3_6delAAGT] splice site mutation. A median-joining haplotype network was constructed with the genome sequence data from 104 Puerto Rican subjects in the 1000 Genomes Project (1000GP). This study found that the RSPH4A [c.921+3_6delAAGT] splice site mutation was carried to Puerto Rico from Europe by conquistadors or shortly after the conquest and that it gained frequency on the island through genetic drift fueled by a subsequent population expansion.
Collapse
Affiliation(s)
- Wilfredo De Jesús-Rojas
- Department of Pediatrics, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
- Department of Pediatrics, Ponce Health Sciences University, Ponce, PRI
- Department of Pediatrics, San Juan Bautista Medical School, Caguas, PRI
| | - Dalilah Reyes De Jesús
- Department of Pediatrics, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | | | - Ricardo A Mosquera
- Division of Pediatric Pulmonology, University of Texas (UT) Physicians High Risk Children's Clinic at McGovern Medical School at UTHealth, Houston, Texas, USA
| | | |
Collapse
|