1
|
Hu B, Shu R, Khairun HS, Tian Z, Wang C, Kumar Gupta N. Methanol Steam Reforming for Hydrogen Production over Ni-Based Catalysts: State-Of-The-Art Review and Future Prospects. Chem Asian J 2024; 19:e202400217. [PMID: 38752326 DOI: 10.1002/asia.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Indexed: 06/30/2024]
Abstract
With increasing global emphasis on environmental sustainability, the reliance on traditional energy sources such as coal, natural gas, and oil are encountering significant challenges. H2, known for its high energy content and pollution-free usage, emerges as a promising alternative. However, despite the great potential of H2, approximately 95 % of hydrogen production still depends on non-renewable resources. Hence, the shift towards producing H2 from renewable sources, particularly through methods like steam reforming of methanol - a renewable resource - represents a beacon of hope for advancing sustainable energy practices. This review comprehensively examines recent advancements in efficient H2 production using Ni-based catalysts in methanol steam reforming (MSR) and proposes the future prospects. Firstly, the fundamental principles of MSR technology and the significance in clean energy generation are elucidated. Subsequently, the design, synthesis techniques, and optimization strategies for enhancing the catalytic performance of Ni-based catalysts are discussed. Through the analysis of various catalyst compositions, structural adjustments, surface active sites, and modification methods, the review uncovers effective approaches for boosting the activity and durability of MSR reactions. Moreover, the review investigates the causes of deactivation in Ni-based catalysts during MSR reactions and proposes strategies for extending catalyst lifespan through fine design and optimization of operation parameters. Lastly, this review outlines the current research challenges and anticipates the future trends and potential applications of Ni-based catalysts in MSR hydrogen production. By offering a comprehensive critical analysis, this review serves as a valuable reference to enhance MSR hydrogen production efficiency and catalyst performance.
Collapse
Affiliation(s)
- Bin Hu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Riyang Shu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hafila S Khairun
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, 560012 Bengaluru, India
| | - Zhipeng Tian
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, 560012 Bengaluru, India
| |
Collapse
|
2
|
Toh-Ae P, Timasart N, Tumnantong D, Bovornratanaraks T, Poompradub S. Utilization of waste tire derived activated carbon as CO 2 capture and photocatalyst for CO 2 conversion. Sci Rep 2024; 14:17100. [PMID: 39048643 PMCID: PMC11269617 DOI: 10.1038/s41598-024-67631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
The aims of this research were to prepare activated carbon (AC) impregnated with tetraethylenepentamine (TEPA) for use in carbon dioxide (CO2) capture and to then develop the AC-TEPA sorbent with titanium dioxide (TiO2) as a catalyst for photocatalytic reduction. The AC was impregnated with TEPA at three loading levels (2.5, 5, and 10% [w/w]) and then examined for its CO2 adsorption capacity under an ambient temperature and atmospheric pressure. The use of 5% (w/w) TEPA-impregnated AC (AC_5T) provided the highest CO2 adsorption capacity and long-term operation with a regeneration ability for up to 10 cycles. Then, AC_5T-doped TiO2 (AC_5T-TiO2) was prepared as a photocatalytic reduction catalyst, since the presence of carbon and nitrogen in AC_5T could reduce the band gap energy and so enhance the photocatalytic reduction. In addition, the CO2-saturated AC_5T was used as a CO2 source that could be directly converted to valuable chemicals using the AC_5T-TiO2 catalyst under photocatalytic reduction. Products were obtained in both the liquid (methanol) and gaseous (methane, carbon monoxide, and hydrogen) phases. Accordingly, the challenge of this research was to make valuable products from CO2 and to manage waste tires, following the circular economy concept.
Collapse
Affiliation(s)
- Pornsiri Toh-Ae
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Napatsorn Timasart
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dusadee Tumnantong
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thiti Bovornratanaraks
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence On Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Bobadilla LF, Azancot L, González-Castaño M, Ruíz-López E, Pastor-Pérez L, Durán-Olivencia FJ, Ye R, Chong K, Blanco-Sánchez PH, Wu Z, Reina TR, Odriozola JA. Biomass gasification, catalytic technologies and energy integration for production of circular methanol: New horizons for industry decarbonisation. J Environ Sci (China) 2024; 140:306-318. [PMID: 38331510 DOI: 10.1016/j.jes.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 02/10/2024]
Abstract
The Intergovernmental Panel on Climate Change (IPCC) recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target. The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system. Renewable fuels provide long-term solutions for the transport sector, particularly for applications where fuels with high energy density are required. In addition, it helps reducing the carbon footprint of these sectors in the long-term. Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale. This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors. Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment, for this, membrane technology for upgrading syngas quality is discussed in this paper. Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues. Finally, the development of a process chain for the production of (i) methanol as an intermediate energy carrier, (ii) electricity and (iii) heat for decentralised applications based on biomass feedstock flexible gasification, gas upgrading and methanol synthesis is analysed.
Collapse
Affiliation(s)
- Luis F Bobadilla
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain.
| | - Lola Azancot
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miriam González-Castaño
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Estela Ruíz-López
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Laura Pastor-Pérez
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Francisco J Durán-Olivencia
- Departamento de Ingeniería, Universidad Loyola Andalucía, Avda. de Las Universidades s/n, Sevilla 41704, Spain
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Katie Chong
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Paula H Blanco-Sánchez
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Zenthao Wu
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Tomás R Reina
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - José A Odriozola
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
4
|
Elgarahy AM, Hammad A, Shehata M, Ayyad A, El-Qelish M, Elwakeel KZ, Maged A. Reliable sustainable management strategies for flare gas recovery: technical, environmental, modeling, and economic assessment: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27566-27608. [PMID: 38592635 DOI: 10.1007/s11356-024-32864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
The gas flaring network is an inseparable constituent commonly present in most of the oil and gas refineries and petrochemical facilities conferring reliable operational parameters. The improper disposal of burn-off gases improperly results in environmental problems and loss of economic resources. In this regard, waste to energy transforming nexus, in accord with the "carbon neutrality" term, has potentially emerged as a reasonable pathway to preserve our planet. In a transdisciplinary manner, the present review article deeply outlines the different up-to-date strategies developed to recover the emitted gases (flaring minimization) into different value-added products. To analyze the recovery potential of flare gases, different technologies, and decision-making factors have been critically reviewed to find the best recovery methods. We recommend more straightforward recovery methods despite lower profits. In this regard, electricity generation seems to be an appropriate option for application in small amounts of flaring. However, several flare gas utilization processes such as syngas manufacturing, reinjection of gas into petroleum reservoirs, and production of natural gas liquid (NGL) are also recommended as options because of their economic significance, technological viability (both onshore and offshore), and environmental benefits. Moreover, the adopted computational multi-scale data assimilation for predictive modeling of flare gas recovery scenarios has been systematically reviewed, summarized, and inspected.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt
| | - Ahmed Hammad
- Chemical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Moustafa Shehata
- Mechanical Power Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Amir Ayyad
- Egyptian Methanex Methanol Company (EMethanex), Damietta, Egypt
| | - Mohamed El-Qelish
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Ali Maged
- Geology Department, Faculty of Science, Suez University, P.O. Box 43221, Suez, Egypt
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria
| |
Collapse
|
5
|
Dhakar S, Mukhopadhyay S, Ottakam Thotiyl M, Sharma S. Methanol assisted water electrooxidation on noble metal free perovskite: RRDE insight into the catalyst's behaviour. J Colloid Interface Sci 2024; 654:688-697. [PMID: 37864873 DOI: 10.1016/j.jcis.2023.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
In this work, we have hypothesized that noble metal-free perovskites are an essential class of oxygen evolution reaction (OER) catalysts in an alkaline medium and thus, they are a suitable candidate for the assisted water oxidation catalysts. Herein, we demonstrate that the origin of the methanol-assisted OER activity at near thermodynamic potential on perovskite electrode arises due to the involvement of additional hydroxyls as a result of dissociative chemisorption of methanol. When the perovskite electrode is screened for methanol electrooxidation reaction in 0.5 M KOH + 0.5 M methanol electrolyte, it delivers a two times higher current density. This imparts an 82 % increase in the evolution of oxygen gas moles with complete oxidation of methanol to carbon dioxide. Along with the electrochemical characterization to understand the electrocatalyst property, Rotating ring disk electrode (RRDE) technique is explored for the first time in literature to validate the catalyst's involvement during OER. RRDE is effective in understanding the lattice oxygen behaviour and methanol-assisted water electrooxidation during OER. Our results suggest new insights and ideas towards the oxygen evolution reaction process and the mechanistic insight into the elevated OER due to assisted methanol electrooxidation.
Collapse
Affiliation(s)
- Shikha Dhakar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355
| | - Sanchayita Mukhopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Sudhanshu Sharma
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355.
| |
Collapse
|
6
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
7
|
Khanam S, Saikia S, Lee S, Park YB, Zaki MEA, Bania KK. Interfacial Effect-Induced Electrocatalytic Activity of Spinel Cobalt Oxide in Methanol Oxidation Reaction. ACS OMEGA 2023; 8:44964-44976. [PMID: 38046355 PMCID: PMC10688207 DOI: 10.1021/acsomega.3c06414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
In this study, spinel cobalt oxide (Co3O4) nanoparticles without combining with any other metal atoms have been decorated through the influence of two hard templating agents, viz., zeolite-Y and carboxy-functionalized multiwalled carbon nanotubes (COOH-MWCNT). The adornment of the Co3O4 nanoparticles, through the combined impact of the aluminosilicate and carbon framework has resulted in quantum interference, causing the reversal of signatory Raman peaks of Co3O4. Apart from the construction of small Co3O4 nanoparticles at the interface of the two matrices, the particles were aligned along the direction of COOH-MWCNT. The catalyst Co3O4-Y-MWCNT exhibited excellent catalytic activity toward the methanol oxidation reaction (MOR) in comparison to Co3O4-Y, Co3O4-MWCNT, and bared Co3O4 with the current density of 0.92 A mg-1 at an onset potential of 1.33 V versus RHE. The material demonstrated persistent electrocatalytic activity up to 300 potential cycles and 20,000 s without substantial current density loss. High surface area of zeolite-Y in combination with the excellent conductivity of the COOH-MWCNT enhanced the electrocatalytic performance of the catalyst. The simplicity of synthesis, scale-up, and remarkable electrocatalytic activity of the catalyst Co3O4-Y-MWCNT provided an effective way toward the development of anode materials for direct methanol fuel cells.
Collapse
Affiliation(s)
- Salma
A. Khanam
- Department
of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sayanika Saikia
- Department
of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Seonghwan Lee
- Department
of Mechanical Engineering, Ulsan National
Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Young-Bin Park
- Department
of Mechanical Engineering, Ulsan National
Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Magdi E. A. Zaki
- Department
of Chemistry, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K. Bania
- Department
of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
8
|
Geng L, Zhang M, Zhang Z, Li Y. Production of carbon monoxide and hydrogen from methanol using a ruthenium pincer complex: a DFT study. Dalton Trans 2023; 52:13653-13661. [PMID: 37702003 DOI: 10.1039/d3dt01912h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
To understand the mechanism of the dehydrogenation of methanol to CO and H2 catalyzed by a ruthenium pincer complex, a density functional theory (DFT) study has been conducted on two different cycles which differ in the substances entering the cycle (methanol (cycle 1) versus methoxymethanol (cycle 2)). Our calculated results show that both cycles consist of three stages: dehydrogenation of alcohol to aldehyde (stage I); hydrogen formation (stage II); and decarbonylation with the regeneration of the catalyst (stage III). The energy barriers of the rate-determining steps for cycles 1 and 2 are 49.6 and 28.5 kcal mol-1, respectively. Thus cycle 2 is more energetically feasible. For stage III of cycle 2, our results did not support the mechanism proposed in the experiment (CO release occurs prior to decarbonylation). Instead, we suggested and examined an alternative pathway, that is, decarbonylation occurs prior to CO release. The mechanistic insights gained in the present paper could be beneficial for further designing of these kinds of reactions.
Collapse
Affiliation(s)
- Lina Geng
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China.
| | - Mingchao Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China.
| | - Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China.
| |
Collapse
|
9
|
Goksu A, Li H, Liu J, Duyar MS. Nanoreactor Engineering Can Unlock New Possibilities for CO 2 Tandem Catalytic Conversion to C-C Coupled Products. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300004. [PMID: 37287598 PMCID: PMC10242537 DOI: 10.1002/gch2.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Climate change is becoming increasingly more pronounced every day while the amount of greenhouse gases in the atmosphere continues to rise. CO2 reduction to valuable chemicals is an approach that has gathered substantial attention as a means to recycle these gases. Herein, some of the tandem catalysis approaches that can be used to achieve the transformation of CO2 to C-C coupled products are explored, focusing especially on tandem catalytic schemes where there is a big opportunity to improve performance by designing effective catalytic nanoreactors. Recent reviews have highlighted the technical challenges and opportunities for advancing tandem catalysis, especially highlighting the need for elucidating structure-activity relationships and mechanisms of reaction through theoretical and in situ/operando characterization techniques. In this review, the focus is on nanoreactor synthesis strategies as a critical research direction, and discusses these in the context of two main tandem pathways (CO-mediated pathway and Methanol-mediated pathway) to C-C coupled products.
Collapse
Affiliation(s)
- Ali Goksu
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Haitao Li
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Melis S. Duyar
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| |
Collapse
|
10
|
Maqbool Q, Yigit N, Stöger-Pollach M, Ruello ML, Tittarelli F, Rupprechter G. Operando monitoring of a room temperature nanocomposite methanol sensor. Catal Sci Technol 2023; 13:624-636. [PMID: 36760342 PMCID: PMC9900598 DOI: 10.1039/d2cy01395a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
The sensing of volatile organic compounds by composites containing metal oxide semiconductors is typically explained via adsorption-desorption and surface electrochemical reactions changing the sensor's resistance. The analysis of molecular processes on chemiresistive gas sensors is often based on indirect evidence, whereas in situ or operando studies monitoring the gas/surface interactions enable a direct insight. Here we report a cross-disciplinary approach employing spectroscopy of working sensors to investigate room temperature methanol detection, contrasting well-characterized nanocomposite (TiO2@rGO-NC) and reduced-graphene oxide (rGO) sensors. Methanol interactions with the sensors were examined by (quasi) operando-DRIFTS and in situ-ATR-FTIR spectroscopy, the first paralleled by simultaneous measurements of resistance. The sensing mechanism was also studied by mass spectroscopy (MS), revealing the surface electrochemical reactions. The operando and in situ spectroscopy techniques demonstrated that the sensing mechanism on the nanocomposite relies on the combined effect of methanol reversible physisorption and irreversible chemisorption, sensor modification over time, and electron/O2 depletion-restoration due to a surface electrochemical reaction forming CO2 and H2O.
Collapse
Affiliation(s)
- Qaisar Maqbool
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche INSTM Research Unit, via Brecce Bianche 12 60131 Ancona Italy
| | - Nevzat Yigit
- Institute of Materials Chemistry TU Wien, Getreidemarkt 9/BC A-1060 Vienna Austria
| | - Michael Stöger-Pollach
- University Service Center for Transmission Electron Microscopy TU Wien, Wiedner Hauptstr. 8-10 1040 Vienna Austria
| | - Maria Letizia Ruello
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche INSTM Research Unit, via Brecce Bianche 12 60131 Ancona Italy
| | - Francesca Tittarelli
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche INSTM Research Unit, via Brecce Bianche 12 60131 Ancona Italy
| | - Günther Rupprechter
- Institute of Materials Chemistry TU Wien, Getreidemarkt 9/BC A-1060 Vienna Austria
| |
Collapse
|
11
|
Sollai S, Porcu A, Tola V, Ferrara F, Pettinau A. Renewable methanol production from green hydrogen and captured CO2: A techno-economic assessment. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Li M, Ulrich N, Schubert I, Sigle W, Peter Wagner MF, Trautmann C, Toimil-Molares ME. Three-dimensional free-standing gold nanowire networks as a platform for catalytic applications. RSC Adv 2023; 13:4721-4728. [PMID: 36760287 PMCID: PMC9897260 DOI: 10.1039/d2ra08035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
We report the catalytic performance of networks of highly interconnected Au nanowires with diameters tailored between 80 and 170 nm. The networks were synthesized by electrodeposition in etched ion-track polymer templates, and the synthesis conditions were developed for optimal wire crystallinity and network homogeneity. The nanowire networks were self-supporting and could be easily handled as electrodes in electrochemical cells or other devices. The electrochemically active surface area of the networks increased systematically with increasing the wire diameter. They showed a very stable performance during 200 CV cycles of methanol oxidation reactions, with the peak current density reaching up to 200 times higher than that of a flat reference electrode, with only a 5% drop in the peak current density. The Au nanowire networks proved to be excellent model systems for investigation of the performance of porous catalysts and very promising nanosystems for application in direct alcohol fuel cell catalysts.
Collapse
Affiliation(s)
- Mohan Li
- Materials Research, GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany .,Materials and Earth Sciences, Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Nils Ulrich
- Materials Research, GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany .,Materials and Earth Sciences, Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Ina Schubert
- Materials Research, GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
| | - Wilfried Sigle
- Max Planck Institute for Solid State ResearchHeisenbergstr. 170569 StuttgartGermany
| | | | - Christina Trautmann
- Materials Research, GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany .,Materials and Earth Sciences, Technische Universität Darmstadt 64287 Darmstadt Germany
| | | |
Collapse
|
13
|
Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers (Basel) 2023; 15:polym15030659. [PMID: 36771960 PMCID: PMC9920170 DOI: 10.3390/polym15030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
Collapse
|
14
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
15
|
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022; 13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
The direct hydrogenation of CO or CO2 to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO2). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO2 hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO2 hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H2 present in the feedstock. Thus, the growth of a GaO x /ZnO x overlayer is thermodynamically preferred under reaction conditions, enhancing CO2 adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO2 hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| |
Collapse
|
16
|
Voß JM, Daun T, Geitner C, Schlüter S, Schulzke T. Operating Behavior of a Demonstration Plant for Methanol Synthesis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Michael Voß
- Fraunhofer UMSICHT Institute for Environmental, Safety, and Energy Technology, Department Low Carbon Technologies Osterfelder Strasse 3 46047 Oberhausen Germany
- Ruhr-University Bochum Faculty of Mechanical Engineering Universitätsstrasse 150 44801 Bochum Germany
| | - Torben Daun
- Fraunhofer UMSICHT Institute for Environmental, Safety, and Energy Technology, Department Low Carbon Technologies Osterfelder Strasse 3 46047 Oberhausen Germany
- Ruhr-University Bochum Faculty of Mechanical Engineering Universitätsstrasse 150 44801 Bochum Germany
| | - Christian Geitner
- Fraunhofer UMSICHT Institute for Environmental, Safety, and Energy Technology, Department Low Carbon Technologies Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Stefan Schlüter
- Fraunhofer UMSICHT Institute for Environmental, Safety, and Energy Technology, Department Low Carbon Technologies Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Tim Schulzke
- Fraunhofer UMSICHT Institute for Environmental, Safety, and Energy Technology, Department Low Carbon Technologies Osterfelder Strasse 3 46047 Oberhausen Germany
| |
Collapse
|
17
|
Modeling the Performance Degradation of a High-Temperature PEM Fuel Cell. ENERGIES 2022. [DOI: 10.3390/en15155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, the performance of a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) was modeled using literature data. The paper attempted to combine different sources from the literature to find trends in the degradation mechanisms of HT-PEMFCs. The model focused on the activation and ohmic losses. The activation losses were defined as a function of both Pt agglomeration and loss of catalyst material. The simulations revealed that the loss of electrochemical active surface area (ECSA) was a major contributor to the total voltage loss. The ohmic losses were defined as a function of changes of acid doping level in time. The loss of conductivity increased significantly on a percentage basis over time, but its impact on the overall voltage degradation was fairly low. It was found that the evaporation of phosphoric acid caused the ohmic overpotential to increase, especially at temperatures above 180 °C. Therefore, higher temperatures can lead to shorter lifetimes but increase the average power output over the lifetime of the fuel cell owing to a higher performance at higher temperatures. The lifetime prognosis was also made at different operating temperatures. It was shown that while the fuel cell performance increased linearly with increasing temperature at the beginning of its life, the voltage decay rate increased exponentially with an increasing temperature. Based on an analysis of the voltage decay rate and lifetime prognosis, the operating temperature range between 160 °C and 170 °C could be said to be optimal, as there was a significant increase in performance compared to lower operating temperatures without too much penalty in terms of lifetime.
Collapse
|
18
|
Borthakur I, Kumari S, Kundu S. Water as a solvent: transition metal catalyzed dehydrogenation of alcohols going green. Dalton Trans 2022; 51:11987-12020. [PMID: 35894592 DOI: 10.1039/d2dt01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long-established practice of using organic solvents in synthetic chemistry is currently becoming a major focus of environmental alarms as many of the chemical wastes are generated in the form of organic solvents. Recently, various alternative solvents have been recognized by the scientific community, including water, ionic liquids, supercritical fluids, glycerol, polyethylene glycol, etc. Among these alternatives, water is unquestionably an ideal solvent as it is abundant, cheap, non-toxic, and non-flammable. In the last few decades, a breakthrough has been achieved in the field of transition metal-catalyzed dehydrogenation of alcohols and the related chemistry for the sustainable synthesis of a wide range of valuable compounds. Although a large number of reports with new potential are published every year following this alcohol dehydrogenation strategy, the utilization of water as a solvent in alcohol dehydrogenation and related coupling reactions is yet to be highlighted properly. This review summarizes the advances in metal-catalyzed dehydrogenative functionalization of alcohols using water as a solvent.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| |
Collapse
|
19
|
Narochnyi GB, Savost’yanov AP, Zubkov IN, Dul’nev AV, Yakovenko RE. Study of the NIAP-06-06 Zinc–Copper Catalyst for the Steam Reforming of Carbon Monoxide in the Synthesis of Methanol. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Wei D, Sang R, Moazezbarabadi A, Junge H, Beller M. Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System. JACS AU 2022; 2:1020-1031. [PMID: 35647600 PMCID: PMC9131476 DOI: 10.1021/jacsau.1c00489] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 05/03/2023]
Abstract
Recent developments of CO2 capture and subsequent catalytic hydrogenation to C1 products are discussed and evaluated in this Perspective. Such processes can become a crucial part of a more sustainable energy economy in the future. The individual steps of this catalytic carbon capture and usage (CCU) approach also provide the basis for chemical hydrogen batteries. Here, specifically the reversible CO2/formic acid (or bicarbonate/formate salts) system is presented, and the utilized catalysts are discussed.
Collapse
|
21
|
Lakhtaria P, Ribeirinha P, Huhtinen W, Viik S, Sousa J, Mendes A. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review. OPEN RESEARCH EUROPE 2022; 1:81. [PMID: 37645145 PMCID: PMC10445907 DOI: 10.12688/openreseurope.13812.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 08/31/2023]
Abstract
Aqueous-phase reforming (APR) can convert methanol and other oxygenated hydrocarbons to hydrogen and carbon dioxide at lower temperatures when compared with the corresponding gas phase process. APR favours the water-gas shift (WGS) reaction and inhibits alkane formation; moreover, it is a simpler and more energy efficient process compared to gas-phase steam reforming. For example, Pt-based catalysts supported on alumina are typically selected for methanol APR, due to their high activity at temperatures of circa 200°C. However, non-noble catalysts such as nickel (Ni) supported on metal-oxides or zeolites are being investigated with promising results in terms of catalytic activity and stability. The development of APR kinetic models and reactor designs is also being addressed to make APR a more attractive process for producing in situ hydrogen. This can also lead to the possibility of APR integration with high-temperature proton exchange membrane fuel cells. The integration can result into increased overall system efficiency and avoiding critical issues faced in the state-of-the-art fuel cells integrated with methanol steam reforming.
Collapse
Affiliation(s)
- Paranjeet Lakhtaria
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Paulo Ribeirinha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Werneri Huhtinen
- VTT Technical Research Center of Finland Ltd, Tietotie 4 C, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Saara Viik
- VTT Technical Research Center of Finland Ltd, Tietotie 4 C, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - José Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
- Departamento de Química, Escola de Ciências da Vida e do Ambiente, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Adélio Mendes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| |
Collapse
|
22
|
Yakubson KI. Prospects for Using Hydrogen in Various Branches of the World Economy as One of the Directions of Its Decarbonization. RUSS J APPL CHEM+ 2022. [PMCID: PMC9417091 DOI: 10.1134/s1070427222030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K. I. Yakubson
- Institute of Oil and Gas Problems, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
23
|
Guse D, Polierer S, Wild S, Pitter S, Kind M. Improved Preparation of Cu/Zn‐Based Catalysts by Well‐Defined Conditions of Co‐Precipitation and Aging. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Guse
- Karlsruhe Institute of Technology (KIT) Institute of Thermal Process Engineering (TVT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Sabrina Polierer
- Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Stefan Wild
- Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Stephan Pitter
- Karlsruhe Institute of Technology (KIT) Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Matthias Kind
- Karlsruhe Institute of Technology (KIT) Institute of Thermal Process Engineering (TVT) Kaiserstraße 12 76131 Karlsruhe Germany
| |
Collapse
|
24
|
Cho JH, Ha Y, Cho A, Park J, Choi J, Won Y, Kim H, Kim BM. A bimetallic PdCu–Fe 3O 4 catalyst with an optimal d-band centre for selective N-methylation of aromatic amines with methanol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00065b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Highly efficient and selective N-methylation of aniline with methanol is possible with Pd1Cu0.6–Fe3O4 nanoparticle catalyst.
Collapse
Affiliation(s)
- Jin Hee Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoonhoo Ha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ahra Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeyoon Choi
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngdae Won
- The Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
García JL, Galán B. Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy. Microb Biotechnol 2021; 15:228-239. [PMID: 34905295 PMCID: PMC8719819 DOI: 10.1111/1751-7915.13991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- José L García
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| | - Beatriz Galán
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| |
Collapse
|
26
|
Alberico E, Leischner T, Junge H, Kammer A, Sang R, Seifert J, Baumann W, Spannenberg A, Junge K, Beller M. HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chem Sci 2021; 12:13101-13119. [PMID: 34745541 PMCID: PMC8513996 DOI: 10.1039/d1sc04181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed. Mo(0) complexes with aliphatic PNP-pincer ligands enable the first example of non-noble metal catalyzed formic acid disproportionation leading to methanol with a selectivity of up to 37% and a turnover number up to 69.![]()
Collapse
Affiliation(s)
- Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany .,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rui Sang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jenny Seifert
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
27
|
Nguyen TL, Ravishankara AR, Franke PR, Stanton JF. Thermal Decomposition of CH 3O: A Curious Case of Pressure-Dependent Tunneling Effects. J Phys Chem A 2021; 125:6761-6771. [PMID: 34343002 DOI: 10.1021/acs.jpca.1c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermal unimolecular decomposition of a methoxy radical (CH3O), a key intermediate in the combustion of methane, methanol, and other hydrocarbons, was studied using high-level coupled-cluster calculations, followed by E,J-resolved master equation analyses. The experimental results available for a wide range of temperature and pressure are in striking agreement with the calculations. In line with a previous theoretical study that used a one-dimensional master equation, the tunneling correction is found to exhibit a marked pressure dependence, being the largest at low pressure. This curious effect on the tunneling enhancement also affects the calculated kinetic isotope effect, which falls initially with pressure but is predicted to rise again at high pressures. These findings serve to reconcile a set of conflicting results regarding the importance of tunneling in this prototype unimolecular reaction and also motivate further experimental investigation. This study also exemplifies how changes in the energy redistribution due to collisions manifest in the tunneling rates.
Collapse
Affiliation(s)
- Thanh Lam Nguyen
- Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States
| | - A R Ravishankara
- Departments of Chemistry and Atmospheric Sciences, Colorado State University, Ft. Collins, Colorado 80523, United States
| | - Peter R Franke
- Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States
| | - John F Stanton
- Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
28
|
Energy Optimization and Effective Control of Reactive Distillation Process for the Production of High Purity Biodiesel. Processes (Basel) 2021. [DOI: 10.3390/pr9081340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biodiesel is a promising renewable energy option that significantly reduces the emission of greenhouse gases and other toxic byproducts. However, a major challenge in the industrial scale production of biodiesel is the desired product purity. To this end, reactive distillation (RD) processes, which involve simultaneous removal of the byproduct during the transesterification reaction, can drive the equilibrium towards high product yield. In the present study, we first optimized the heat exchange network (HEN) for a high purity RD process leading to a 34% reduction in the overall energy consumption. Further, a robust control scheme is proposed to mitigate any feed disturbance in the process that may compromise the product purity. Three rigorous case studies are performed to investigate the effect of composition control in the cascade with the temperature control of the product composition. The cascade control scheme effectively countered the disturbances and maintained the fatty acid mono-alkyl ester (FAME) purity.
Collapse
|
29
|
Methanol to Formaldehyde: An Overview of Surface Studies and Performance of an Iron Molybdate Catalyst. Catalysts 2021. [DOI: 10.3390/catal11080893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde is a primary chemical in the manufacturing of various consumer products. It is synthesized via partial oxidation of methanol using a mixed oxide iron molybdate catalyst (Fe2(MoO4)3–MoO3). This is one of the standard energy-efficient processes. The mixed oxide iron molybdate catalyst is an attractive commercial catalyst for converting methanol to formaldehyde. However, a detailed phase analysis of each oxide phase and a complete understanding of the catalyst formulation and deactivation studies is required. It is crucial to correctly formulate each oxide phase and influence the synthesis methods precisely. A better tradeoff between support and catalyst and oxygen revival on the catalyst surface is vital to enhance the catalyst’s selectivity, stability, and lifetime. This review presents recent advances on iron molybdate’s catalytic behaviour for formaldehyde production—a deep recognition of the catalyst and its critical role in the processes are highlighted. Finally, the conclusion and prospects are presented at the end.
Collapse
|
30
|
Ploner K, Delir Kheyrollahi Nezhad P, Gili A, Kamutzki F, Gurlo A, Doran A, Cao P, Heggen M, Köwitsch N, Armbrüster M, Watschinger M, Klötzer B, Penner S. The sol-gel autocombustion as a route towards highly CO 2-selective, active and long-term stable Cu/ZrO 2 methanol steam reforming catalysts. MATERIALS CHEMISTRY FRONTIERS 2021; 5:5093-5105. [PMID: 34262777 PMCID: PMC8238116 DOI: 10.1039/d1qm00641j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The adaption of the sol-gel autocombustion method to the Cu/ZrO2 system opens new pathways for the specific optimisation of the activity, long-term stability and CO2 selectivity of methanol steam reforming (MSR) catalysts. Calcination of the same post-combustion precursor at 400 °C, 600 °C or 800 °C allows accessing Cu/ZrO2 interfaces of metallic Cu with either amorphous, tetragonal or monoclinic ZrO2, influencing the CO2 selectivity and the MSR activity distinctly different. While the CO2 selectivity is less affected, the impact of the post-combustion calcination temperature on the Cu and ZrO2 catalyst morphology is more pronounced. A porous and largely amorphous ZrO2 structure in the sample, characteristic for sol-gel autocombustion processes, is obtained at 400 °C. This directly translates into superior activity and long-term stability in MSR compared to Cu/tetragonal ZrO2 and Cu/monoclinic ZrO2 obtained by calcination at 600 °C and 800 °C. The morphology of the latter Cu/ZrO2 catalysts consists of much larger, agglomerated and non-porous crystalline particles. Based on aberration-corrected electron microscopy, we attribute the beneficial catalytic properties of the Cu/amorphous ZrO2 material partially to the enhanced sintering resistance of copper particles provided by the porous support morphology.
Collapse
Affiliation(s)
- Kevin Ploner
- Department of Physical Chemistry, University of Innsbruck Innrain 52c A-6020 Innsbruck Austria +43 51250758003
| | | | - Albert Gili
- Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technical University Berlin Hardenbergstr. 40 D-10623 Berlin Germany
- Institute of Chemistry, Technical University Berlin Sekretariat TC 8 Straße des 17. Juni 124 D-10623 Berlin Germany
| | - Franz Kamutzki
- Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technical University Berlin Hardenbergstr. 40 D-10623 Berlin Germany
| | - Aleksander Gurlo
- Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technical University Berlin Hardenbergstr. 40 D-10623 Berlin Germany
| | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Pengfei Cao
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH Leo-Brandt-Str. 1 D-52428 Jülich Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH Leo-Brandt-Str. 1 D-52428 Jülich Germany
| | - Nicolas Köwitsch
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Technical University Chemnitz Straße der Nationen 62 D-09111 Chemnitz Germany
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Technical University Chemnitz Straße der Nationen 62 D-09111 Chemnitz Germany
| | - Maximilian Watschinger
- Department of Physical Chemistry, University of Innsbruck Innrain 52c A-6020 Innsbruck Austria +43 51250758003
| | - Bernhard Klötzer
- Department of Physical Chemistry, University of Innsbruck Innrain 52c A-6020 Innsbruck Austria +43 51250758003
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck Innrain 52c A-6020 Innsbruck Austria +43 51250758003
| |
Collapse
|
31
|
Juarez E, Lasobras J, Soler J, Herguido J, Menéndez M. Polymer-Ceramic Composite Membranes for Water Removal in Membrane Reactors. MEMBRANES 2021; 11:membranes11070472. [PMID: 34206748 PMCID: PMC8304073 DOI: 10.3390/membranes11070472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
Methanol can be obtained through CO2 hydrogenation in a membrane reactor with higher yield or lower pressure than in a conventional packed bed reactor. In this study, we explore a new kind of membrane with the potential suitability for such membrane reactors. Silicone–ceramic composite membranes are synthetized and characterized for their capability to selectively remove water from a mixture containing hydrogen, CO2, and water at temperatures typical for methanol synthesis. We show that this membrane can achieve selective permeation of water under such harsh conditions, and thus is an alternative candidate for use in membrane reactors for processes where water is one of the products and the yield is limited by thermodynamic equilibrium.
Collapse
|
32
|
Effects of Impurities on Pre-Doped and Post-Doped Membranes for High Temperature PEM Fuel Cell Stacks. ENERGIES 2021. [DOI: 10.3390/en14112994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we experimentally investigated two high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stacks for their response to the presence of reformate impurities in an anode gas stream. The investigation was aimed at characterizing the effects of reformate impurities at the stack level, including in humidified conditions and identifying fault features for diagnosis purposes. Two HT-PEMFC stacks of 37 cells each with active areas of 165 cm2 were used with one stack containing a pre-doped membrane with a woven gas diffusion layer (GDL) and the other containing a post-doped membrane with non-woven GDL. Polarization curves and galvanostatic electrochemical impedance spectroscopy (EIS) were used for characterization. We found that both N2 dilution and impurities in the anode feed affected mainly the charge transfer losses, especially on the anode side. We also found that humidification alleviated the poisoning effects of the impurities in the stack with pre-doped membrane electrode assemblies (MEA) and woven GDL but had detrimental effects on the stack with post-doped MEAs and non-woven GDL. We demonstrated that pure and dry hydrogen operation at the end of the tests resulted in significant recovery of the performance losses due to impurities for both stacks even after the humidified reformate operation. This implies that there was only limited acid loss during the test period of around 150 h for each stack.
Collapse
|
33
|
Girod K, Lohmann H, Kaluza S. Methanol Synthesis with Steel Mill Gases: Performance Investigations in an On‐Site Technical Center. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Girod
- Fraunhofer UMSICHT Osterfelder Straße 3 46047 Oberhausen Germany
| | - Heiko Lohmann
- Fraunhofer UMSICHT Osterfelder Straße 3 46047 Oberhausen Germany
| | - Stefan Kaluza
- Fraunhofer UMSICHT Osterfelder Straße 3 46047 Oberhausen Germany
- Hochschule Düsseldorf, University of Applied Sciences Faculty of Mechanical and Process Engineering Münsterstraße 156 40476 Düsseldorf Germany
| |
Collapse
|
34
|
Sarki N, Goyal V, Tyagi NK, Puttaswamy, Narani A, Ray A, Natte K. Simple RuCl
3
‐catalyzed
N
‐Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem 2021. [DOI: 10.1002/cctc.202001937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Naina Sarki
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| | - Vishakha Goyal
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| | - Nitin Kumar Tyagi
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
| | - Puttaswamy
- Department of Chemistry Bangalore University Jnana Bharathi Campus Bangalore 560056 India
| | - Anand Narani
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- BioFuels Division CSIR-Indian Institute of Petroleum (CSIR-IIP) Haridwar Road Mohkampur Dehradun 248 005 India
| | - Anjan Ray
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Analytical Sciences Division CSIR-Indian Institute of Petroleum (CSIR-IIP) Haridwar Road Mohkampur Dehradun 248 005 India
| | - Kishore Natte
- Chemical and Material Sciences Division CSIR-Indian Institute of Petroleum Haridwar road Mohkampur Dehradun 248 005 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-HRDC Campus Joggers Road, Kamla Nehru Nagar Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
35
|
Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques. Catalysts 2021. [DOI: 10.3390/catal11010143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Molybdenum phosphide (MoP) catalyzes the hydrogenation of CO, CO2, and their mixtures to methanol, and it is investigated as a high-activity catalyst that overcomes deactivation issues (e.g., formate poisoning) faced by conventional transition metal catalysts. MoP as a new catalyst for hydrogenating CO2 to methanol is particularly appealing for the use of CO2 as chemical feedstock. Herein, we use a colloidal synthesis technique that connects the presence of MoP to the formation of methanol from CO2, regardless of the support being used. By conducting a systematic support study, we see that zirconia (ZrO2) has the striking ability to shift the selectivity towards methanol by increasing the rate of methanol conversion by two orders of magnitude compared to other supports, at a CO2 conversion of 1.4% and methanol selectivity of 55.4%. In situ X-ray Absorption Spectroscopy (XAS) and in situ X-ray Diffraction (XRD) indicate that under reaction conditions the catalyst is pure MoP in a partially crystalline phase. Results from Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Temperature Programmed Surface Reaction (DRIFTS-TPSR) point towards a highly reactive monodentate formate intermediate stabilized by the strong interaction of MoP and ZrO2. This study definitively shows that the presence of a MoP phase leads to methanol formation from CO2, regardless of support and that the formate intermediate on MoP governs methanol formation rate.
Collapse
|
36
|
Goyal V, Sarki N, Natte K, Ray A. Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Nazir H, Muthuswamy N, Louis C, Jose S, Prakash J, Buan MEM, Flox C, Chavan S, Shi X, Kauranen P, Kallio T, Maia G, Tammeveski K, Lymperopoulos N, Carcadea E, Veziroglu E, Iranzo A, M Kannan A. Is the H 2 economy realizable in the foreseeable future? Part III: H 2 usage technologies, applications, and challenges and opportunities. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:28217-28239. [PMID: 32863546 DOI: 10.1016/j.ijhydene.2020.03.092] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 05/23/2023]
Abstract
Energy enthusiasts in developed countries explore sustainable and efficient pathways for accomplishing zero carbon footprint through the H2 economy. The major objective of the H2 economy review series is to bring out the status, major issues, and opportunities associated with the key components such as H2 production, storage, transportation, distribution, and applications in various energy sectors. Specifically, Part I discussed H2 production methods including the futuristic ones such as photoelectrochemical for small, medium, and large-scale applications, while Part II dealt with the challenges and developments in H2 storage, transportation, and distribution with national and international initiatives. Part III of the H2 economy review discusses the developments and challenges in the areas of H2 application in chemical/metallurgical industries, combustion, and fuel cells. Currently, the majority of H2 is being utilized by a few chemical industries with >60% in the oil refineries sector, by producing grey H2 by steam methane reforming on a large scale. In addition, the review also presents the challenges in various technologies for establishing greener and sustainable H2 society.
Collapse
Affiliation(s)
- Hassan Nazir
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Navaneethan Muthuswamy
- Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælands Vei 4, N-7491, Trondheim, Norway
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Cindrella Louis
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, TN, India
| | - Sujin Jose
- School of Physics, Madurai Kamaraj University, Palkalai Nagar, Madurai 625021, TN, India
| | - Jyoti Prakash
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Marthe E M Buan
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Cristina Flox
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Sai Chavan
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Xuan Shi
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Pertti Kauranen
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Tanja Kallio
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso Do Sul, University City, Senador Filinto Müller Avenue No. 1555, 79074-460, Campo Grande, MS, Brazil
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Nikolaos Lymperopoulos
- Fuel Cells and Hydrogen Joint Undertaking, Avenue de La Toison D'Or 56-60, B-1060, Brussels, Belgium
| | - Elena Carcadea
- National Center for Hydrogen and Fuel Cells, National R&D Institute for Cryogenics and Isotopic Technologies - ICSI, 4 Uzinei Street, Ramnicu Valcea, 240050, Romania
| | - Emre Veziroglu
- International Journal of Hydrogen Energy, International Association for Hydrogen Energy, USA
| | - Alfredo Iranzo
- School of Engineering, Universidad de Sevilla, Camino de Los Descubrimientos, S/n, 41092, Sevilla, Spain
| | - Arunachala M Kannan
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| |
Collapse
|
38
|
Nazir H, Muthuswamy N, Louis C, Jose S, Prakash J, Buan MEM, Flox C, Chavan S, Shi X, Kauranen P, Kallio T, Maia G, Tammeveski K, Lymperopoulos N, Carcadea E, Veziroglu E, Iranzo A, M Kannan A. Is the H 2 economy realizable in the foreseeable future? Part III: H 2 usage technologies, applications, and challenges and opportunities. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:28217-28239. [PMID: 32863546 DOI: 10.1016/j.ijhydene.2020.05.241] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 05/23/2023]
Abstract
Energy enthusiasts in developed countries explore sustainable and efficient pathways for accomplishing zero carbon footprint through the H2 economy. The major objective of the H2 economy review series is to bring out the status, major issues, and opportunities associated with the key components such as H2 production, storage, transportation, distribution, and applications in various energy sectors. Specifically, Part I discussed H2 production methods including the futuristic ones such as photoelectrochemical for small, medium, and large-scale applications, while Part II dealt with the challenges and developments in H2 storage, transportation, and distribution with national and international initiatives. Part III of the H2 economy review discusses the developments and challenges in the areas of H2 application in chemical/metallurgical industries, combustion, and fuel cells. Currently, the majority of H2 is being utilized by a few chemical industries with >60% in the oil refineries sector, by producing grey H2 by steam methane reforming on a large scale. In addition, the review also presents the challenges in various technologies for establishing greener and sustainable H2 society.
Collapse
Affiliation(s)
- Hassan Nazir
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Navaneethan Muthuswamy
- Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælands Vei 4, N-7491, Trondheim, Norway
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Cindrella Louis
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, TN, India
| | - Sujin Jose
- School of Physics, Madurai Kamaraj University, Palkalai Nagar, Madurai 625021, TN, India
| | - Jyoti Prakash
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Marthe E M Buan
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Cristina Flox
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Sai Chavan
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Xuan Shi
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Pertti Kauranen
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Tanja Kallio
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso Do Sul, University City, Senador Filinto Müller Avenue No. 1555, 79074-460, Campo Grande, MS, Brazil
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Nikolaos Lymperopoulos
- Fuel Cells and Hydrogen Joint Undertaking, Avenue de La Toison D'Or 56-60, B-1060, Brussels, Belgium
| | - Elena Carcadea
- National Center for Hydrogen and Fuel Cells, National R&D Institute for Cryogenics and Isotopic Technologies - ICSI, 4 Uzinei Street, Ramnicu Valcea, 240050, Romania
| | - Emre Veziroglu
- International Journal of Hydrogen Energy, International Association for Hydrogen Energy, USA
| | - Alfredo Iranzo
- School of Engineering, Universidad de Sevilla, Camino de Los Descubrimientos, S/n, 41092, Sevilla, Spain
| | - Arunachala M Kannan
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| |
Collapse
|
39
|
Nazir H, Muthuswamy N, Louis C, Jose S, Prakash J, Buan MEM, Flox C, Chavan S, Shi X, Kauranen P, Kallio T, Maia G, Tammeveski K, Lymperopoulos N, Carcadea E, Veziroglu E, Iranzo A, M Kannan A. Is the H 2 economy realizable in the foreseeable future? Part III: H 2 usage technologies, applications, and challenges and opportunities. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:28217-28239. [PMID: 32863546 PMCID: PMC7442163 DOI: 10.1016/j.ijhydene.2020.07.256] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 05/07/2023]
Abstract
Energy enthusiasts in developed countries explore sustainable and efficient pathways for accomplishing zero carbon footprint through the H2 economy. The major objective of the H2 economy review series is to bring out the status, major issues, and opportunities associated with the key components such as H2 production, storage, transportation, distribution, and applications in various energy sectors. Specifically, Part I discussed H2 production methods including the futuristic ones such as photoelectrochemical for small, medium, and large-scale applications, while Part II dealt with the challenges and developments in H2 storage, transportation, and distribution with national and international initiatives. Part III of the H2 economy review discusses the developments and challenges in the areas of H2 application in chemical/metallurgical industries, combustion, and fuel cells. Currently, the majority of H2 is being utilized by a few chemical industries with >60% in the oil refineries sector, by producing grey H2 by steam methane reforming on a large scale. In addition, the review also presents the challenges in various technologies for establishing greener and sustainable H2 society.
Collapse
Affiliation(s)
- Hassan Nazir
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Navaneethan Muthuswamy
- Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælands Vei 4, N-7491, Trondheim, Norway
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Cindrella Louis
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, TN, India
| | - Sujin Jose
- School of Physics, Madurai Kamaraj University, Palkalai Nagar, Madurai 625021, TN, India
| | - Jyoti Prakash
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Marthe E M Buan
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Cristina Flox
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Sai Chavan
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Xuan Shi
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Pertti Kauranen
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Tanja Kallio
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076, Espoo, Finland
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso Do Sul, University City, Senador Filinto Müller Avenue No. 1555, 79074-460, Campo Grande, MS, Brazil
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Nikolaos Lymperopoulos
- Fuel Cells and Hydrogen Joint Undertaking, Avenue de La Toison D'Or 56-60, B-1060, Brussels, Belgium
| | - Elena Carcadea
- National Center for Hydrogen and Fuel Cells, National R&D Institute for Cryogenics and Isotopic Technologies - ICSI, 4 Uzinei Street, Ramnicu Valcea, 240050, Romania
| | - Emre Veziroglu
- International Journal of Hydrogen Energy, International Association for Hydrogen Energy, USA
| | - Alfredo Iranzo
- School of Engineering, Universidad de Sevilla, Camino de Los Descubrimientos, S/n, 41092, Sevilla, Spain
| | - Arunachala M Kannan
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| |
Collapse
|
40
|
System Design and Modeling of a High Temperature PEM Fuel Cell Operated with Ammonia as a Fuel. ENERGIES 2020. [DOI: 10.3390/en13184689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ammonia is a hydrogen-rich compound that can play an important role in the storage of green hydrogen and the deployment of fuel cell technologies. Nowadays used as a fertilizer, NH3 has the right peculiarities to be a successful sustainable fuel for the future of the energy sector. This study presents, for the first time in literature, an integration study of ammonia as a hydrogen carrier and a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) as an energy conversion device. A system design is presented, that integrates a reactor for the decomposition of ammonia with an HT-PEMFC, where hydrogen produced from NH3 is electrochemically converted into electricity and heat. The overall system based on the two technologies is designed integrating all balance of plant components. A zero-dimensional model was implemented to evaluate system efficiency and study the effects of parametric variations. Thermal equilibrium of the decomposition reactor was studied, and two different strategies were implemented in the model to guarantee thermal energy balance inside the system. The results show that the designed system can operate with an efficiency of 40.1% based on ammonia lower heating value (LHV) at the fuel cell operating point of 0.35 A/cm2 and 0.60 V.
Collapse
|
41
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
42
|
Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability. Catalysts 2020. [DOI: 10.3390/catal10060665] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The growing demand for energy production highlights the shortage of traditional resources and the related environmental issues. The adoption of bioalcohols (i.e., alcohols produced from biomass or biological routes) is progressively becoming an interesting approach that is used to restrict the consumption of fossil fuels. Bioethanol, biomethanol, bioglycerol, and other bioalcohols (propanol and butanol) represent attractive feedstocks for catalytic reforming and production of hydrogen, which is considered the fuel of the future. Different processes are already available, including steam reforming, oxidative reforming, dry reforming, and aqueous-phase reforming. Achieving the desired hydrogen selectivity is one of the main challenges, due to the occurrence of side reactions that cause coke formation and catalyst deactivation. The aims of this review are related to the critical identification of the formation of carbon roots and the deactivation of catalysts in bioalcohol reforming reactions. Furthermore, attention is focused on the strategies used to improve the durability and stability of the catalysts, with particular attention paid to the innovative formulations developed over the last 5 years.
Collapse
|