1
|
Gyadi T, Bharti A, Basack S, Kumar P, Lucchi E. Influential factors in anaerobic digestion of rice-derived food waste and animal manure: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 413:131398. [PMID: 39236907 DOI: 10.1016/j.biortech.2024.131398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Utilization of organic community wastes towards deriving sustainable renewable energy and adequate disposal of the residual has been an important topic of investigation. Anaerobic digestion and co-digestion of rice-derived food waste and animal manure for sustainable biogas generation is crucial from the view-point of community consumption. This paper presents an extensive review of the important and recent contributions in the related areas. The critical physico-chemical parameters involved in such digestion process are analyzed, including temperature, carbon-nitrogen ratio, microorganisms, pH, substrate characteristics, organic loading rate, hydraulic retention time, volatile fatty acids, ammonia, and light/heavy metal ions. Studies implied that the optimum yield of biogas production could be achieved only when the values of the parameters exist in the specific ranges. Few recent studies highlighted the use of emerging techniques including micro-aerobic system, additives, laser radiation, bio-electrochemical field, among others for efficiency enhancement of the digestion process and optimum yield. The entire study provided a set of important conclusions and future research directives are as well proposed.
Collapse
Affiliation(s)
- Tado Gyadi
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Ajay Bharti
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Sudip Basack
- Regent Education and Research Foundation, Affiliated: MAKA University of Technology, Kolkata 700 121, India; Department of Civil Engineering, Graphic Era Deemed to be University, Clement City, Dehradun 248002, India
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Elena Lucchi
- Dipartimento di Ingegneria Civile e Architettura (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy.
| |
Collapse
|
2
|
Paulinetti AP, Guerieri FF, Augusto IMG, Lazaro CZ, Albanez R, Lovato G, Ratusznei SM, Domingues Rodrigues JA. Thermophilic and mesophilic anaerobic digestion of soybean molasses: A performance vs. stability trade-off. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122508. [PMID: 39366238 DOI: 10.1016/j.jenvman.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
One of the factors that has a direct impact on anaerobic digestion is the applied organic loading rate (OLRA). Increasing OLRA can boost methane production but can also cause process failure. As a result, establishing the appropriate OLRA for the procedure is critical. This study evaluated the effect of increasing the OLRA using soybean molasses in a thermophilic anaerobic reactor (R-Thermo), as well as the effect of feeding strategy and co-processing with okara. Furthermore, the performance versus stability trade-off between R-Thermo and mesophilic anaerobic digestion (R-Meso) was investigated. The increase of OLRA from 10 to 15 and 20 kg-COD/m³/d led to a decrease in COD removal efficiency (90, 86, and 75%), methane yield (12.0, 11.6, and 9.9 mol-CH4/kg-COD) and an increase in total volatile acids concentration (251, 456, and 1393 mg-HAc/L, respectively). At 15 kg-COD/m³/d, R-Meso performed similarly to R-Thermo, and at 20 kg-COD/m3/d, R-Meso outperformed (81% COD removal efficiency, 9.3 mol-CH4/kg-CODrem and 154.5 mol-CH4/m3/d). Temperature greatly influenced the distribution of metabolic pathways, as shown by thermodynamic and kinetic analyses, thus impacting bacterial diversity. At 55 °C, amongst the bacterial genera, Tepidiphilus stood out (>28.2%), followed by Acetomicrobium, Coprothermobacter and Candidatus_Caldatribacterium. The OLRA clearly impacted the archaeal community; Methanothermobacter (77.4%) was favored over Methanosarcina (14.8%). Under thermophilic temperature, it seems that syntrophic acetate oxidation (SAO) bacteria might have competed for substrate with acetoclastic methanogens, while in R-Meso microorganisms responsible for the initial steps of organic matter breakdown, such as members of the Firmicutes and Proteobacteria phyla (at least 67%), were dominant. In summary, R-Meso, characterized by a more uniform distribution of metabolic pathways, as well as a diverse and well-adapted microbial consortium, have exhibited enhanced stability and outperformed R-Thermo at high-loads.
Collapse
Affiliation(s)
- Ana Paula Paulinetti
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Fernanda Furtunato Guerieri
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Isabela Mehi Gaspari Augusto
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Carolina Zampol Lazaro
- Department of Microbiology, Infectiology and Immunology, University of Montreal, H3C 3J7, Montreal/Quebec, Canada
| | - Roberta Albanez
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Giovanna Lovato
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Suzana Maria Ratusznei
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil.
| | - José Alberto Domingues Rodrigues
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| |
Collapse
|
3
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
4
|
Dang TMT, Bui HM. Performance evaluation of ICX reactor in treatment of paper mill wastewater: a case study in South Vietnam. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1115-1131. [PMID: 39215727 DOI: 10.2166/wst.2024.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
This study evaluates the performance of the Internal Circulation eXperience (ICX) reactor in treating high-strength paper mill wastewater in the south of Vietnam. The ICX reactor effectively managed organic concentrations (sCOD) of up to 11,800 mg/L. Results indicate a volumetric loading rate (VLR) of 26.8 kg/m3 × day, achieving processing efficiency exceeding 81% while consistently maintaining volatile fatty acids (VFA) below 300 mg/L. The study employed Monod and Stover-Kincannon kinetic modeling, revealing dynamic parameters including Ks = 56.81 kg/m3, Y = 0.121 kgVSS/kgsCOD, Kd = 0.0242 1/day, μmax = 0.372 1/day, Umax = 151 kg/m3 × day, and KB = 175.92 kg/m3 × day, underscoring the ICX reactor's superior efficiency compared to alternative technologies. Notably, the reactor's heightened sensitivity to VFA levels necessitates influent concentrations below 1,400 mg/L for effective sludge treatment. Furthermore, the influence of calcium on treatment efficiency requires post-treatment alkalinity maintenance below 19 meq/L to stabilize MLVSS/MLSS concentration. Biogas production ranged from 0.6 to 0.7 Nm3 biogas/kg sCOD; however, calcium impact diminished this ratio, reducing overall treatment efficiency and biogas production. The study contributes valuable insights into anaerobic treatment processes for complex industrial wastewaters, emphasizing the significance of controlling VFA, calcium, and alkalinity for optimal system performance.
Collapse
Affiliation(s)
- Tuan Minh Truong Dang
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, 840 Chengcing Road, Niaosong District, Kaohsiung City 833301, Taiwan
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam E-mail:
| |
Collapse
|
5
|
Choudhury AR, Singh N, Lalwani J, Srinivasan H, Palani SG. Enhancing biomethanation performance through co-digestion of diverse organic wastes: a comprehensive study on substrate optimization, inoculum selection, and microbial community analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34622-34646. [PMID: 38709410 DOI: 10.1007/s11356-024-33557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
A blend of organic municipal solid waste, slaughterhouse waste, fecal sludge, and landfill leachate was selected in different mixing ratios to formulate the best substrate mixture for biomethanation. Individual substrates were characterized, and the mixing ratio was optimized with the help of a response surface methodology tool to a value of 1:1:1:1 (with a C/N ratio of 28±0.769 and total volatile fatty acid (VFA) concentration of 2500±10.53 mg/L) to improve the overall biomethanation. The optimized blend (C/N ratio: 28.6, VFA: 2538 mg/L) was characterized for physicochemical, biological, and microbial properties and subjected to anaerobic digestion in lab-scale reactors of 1000 mL capacity with and without the addition of inoculum. The biogas yield of individual substrates and blends was ascertained separately. The observed cumulative biogas yield over 21 days from the non-inoculated substrates varied between 142±1.95 mL (24.6±0.3 ml/gVS) and 1974.5±21.72 mL (270.4±3.1 ml/gVS). In comparison, the addition of external inoculation at a 5% rate (w/w) of the substrate uplifted the minimum and maximum cumulative gas yield values to 203±9.9 mL (35.0±1.6 mL/gVS) and 3394±13.4 mL (315.3±1.2 mL/gVS), respectively. The inoculum procured from the Defence Research and Development Organisation (DRDO) was screened in advance, considering factors such as maximizing VFA production and consumption rate, biogas yield, and digestate quality. A similar outcome regarding biogas yield and digestate quality was observed for the equivalent blend. The cumulative gas yield increased from 2673±14.5 mL (373.7±2.2 mL/gVS) to 4284±111.02 mL (391.47±20.02 mL/gVS) over 21 days post-application of a similar dosage of DRDO inoculum. The 16S rRNA genomic analysis revealed that the predominant bacterial population belonged to the phylum Firmicutes, with the majority falling within the orders Clostridiales and Lactobacillales. Ultimately, the study advocates the potential of the blend mentioned above for biomethanation and concomitant enrichment of both biogas yield and digestate quality.
Collapse
Affiliation(s)
- Atun Roy Choudhury
- Cube Bio Energy Pvt. Ltd., Madhapur, Hyderabad, Telangana, 500081, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India
| | - Neha Singh
- Unison I3X Private Limited, Plot No. 23, Maruti Industrial Area, Sector-18, Gurgaon, Haryana, 122015, India
- The K.R.T. Arts, B.H. Commerce & A.M. Science College, Savitribai Phule Pune University, Gangapur Rd, Shivaji Nagar, Nashik, Maharashtra, 422002, India
| | - Jitesh Lalwani
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India
| | - Hemapriya Srinivasan
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India
| | - Sankar Ganesh Palani
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India.
| |
Collapse
|
6
|
Kriswantoro JA, Chu CY, Chang TR, Pai HJ, Chang CK, Chiu YP. Comparison of thermal alkaline pretreatment and zinc acetate-catalyzed methanolysis (MtOH-ZnOAc) for anaerobic digestion of bioplastic waste. BIORESOURCE TECHNOLOGY 2023; 377:128959. [PMID: 36965583 DOI: 10.1016/j.biortech.2023.128959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The aim of this work was to study the effect of thermal alkaline pretreatment and zinc acetate-catalyzed methanolysis (MtOH-ZnOAc) in biogas production from bioplastic in anaerobic digestion. The pretreated bioplastic with MtOH-ZnOAc performs efficient solubilization and produced 205.7 ± 6.9 mL/g CODadded, which is higher than thermal alkaline degradation. The mesophilic condition produces more than 79% higher biogas compared with the thermophilic condition with the diluted pretreated bioplastic by 30 times. The kinetic study was well fit the experimental data and showed the correlation between cumulative biogas, production rate, and lag phase with mono- and two-stage system in batch fermentation. The two-stage system produced 315.6 ± 7.7 mL/g CODadded which was higher 67.2 ± 2.02 than the mono-stage system. Methanosaetaceae predominates among the Archaea, which are primarily responsible for methanogenesis, showing a contribution to a higher biogas production rate.
Collapse
Affiliation(s)
- Jayen Aris Kriswantoro
- Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taiwan; Institute of Green Products, Feng Chia University, Taiwan; School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Indonesia
| | - Chen-Yeon Chu
- Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taiwan; Institute of Green Products, Feng Chia University, Taiwan; Institute of Atmospheric Pollution Research (IIA), CNR, Italy.
| | - Ting-Rui Chang
- Institute of Green Products, Feng Chia University, Taiwan; Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taiwan
| | - Hao-Jen Pai
- Institute of Green Products, Feng Chia University, Taiwan; Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taiwan
| | | | | |
Collapse
|
7
|
Al Hasani Z, Kumar Nayak J, Alhimali H, Al-Mamun A. Enhancing methane production of co-digested food waste with granular activated carbon coated with nano zero-valent iron in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 363:127832. [PMID: 36029986 DOI: 10.1016/j.biortech.2022.127832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) possesses dual benefits of waste treatment and energy generation. The use of conductive additives in AD matrix has potential to improve process yield. Hence, the study aimed to investigate a thermophilic AD (TAD) inserted by granular activated carbon coated with nano zero-valent iron (GAC/nZVI) in the matrix and was operated for mono-digestion and co-digestion of cow manure with food wastes (rice and bread) to check the bioprocess improvement. The results were compared with the control TAD without conductive additives. Biogas production increased by 11 folds upon using GAC/nZVI addition compared to the control TAD. Moreover, the addition of GAC/nZVI increased the methane in biogas by 20.7 folds compared to control one. With GAC/nZVI, the maximum COD removal of 78.29% and 85.21% were noticed for co-digestion and mono digestion, respectively. Such improvement of TAD performance was due to easy bacterial communication and electron exchange through the conductive particles.
Collapse
Affiliation(s)
- Zahra Al Hasani
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Jagdeep Kumar Nayak
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Halima Alhimali
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|