1
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
2
|
Dickman LT, Jonko AK, Linn RR, Altintas I, Atchley AL, Bär A, Collins AD, Dupuy J, Gallagher MR, Hiers JK, Hoffman CM, Hood SM, Hurteau MD, Jolly WM, Josephson A, Loudermilk EL, Ma W, Michaletz ST, Nolan RH, O'Brien JJ, Parsons RA, Partelli‐Feltrin R, Pimont F, Resco de Dios V, Restaino J, Robbins ZJ, Sartor KA, Schultz‐Fellenz E, Serbin SP, Sevanto S, Shuman JK, Sieg CH, Skowronski NS, Weise DR, Wright M, Xu C, Yebra M, Younes N. Integrating plant physiology into simulation of fire behavior and effects. THE NEW PHYTOLOGIST 2023; 238:952-970. [PMID: 36694296 PMCID: PMC10952334 DOI: 10.1111/nph.18770] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.
Collapse
Affiliation(s)
- L. Turin Dickman
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Alexandra K. Jonko
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Rodman R. Linn
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Ilkay Altintas
- San Diego Supercomputer Center and Halicioglu Data Science InstituteUniversity of California San DiegoLa JollaCA92093USA
| | - Adam L. Atchley
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Andreas Bär
- Department of BotanyUniversity of Innsbruck6020InnsbruckAustria
| | - Adam D. Collins
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Jean‐Luc Dupuy
- Ecologie des Forêts Méditerranéennes (URFM)INRAe84914AvignonFrance
| | | | | | - Chad M. Hoffman
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsCO80523USA
| | - Sharon M. Hood
- Rocky Mountain Research StationUSDA Forest ServiceMissoulaMT59801USA
| | | | - W. Matt Jolly
- Rocky Mountain Research StationUSDA Forest ServiceMissoulaMT59801USA
| | - Alexander Josephson
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | | | - Wu Ma
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Sean T. Michaletz
- Department of Botany and Biodiversity Research CentreThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Rachael H. Nolan
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2753Australia
- NSW Bushfire Risk Management Research HubWollongongNSW2522Australia
| | | | | | - Raquel Partelli‐Feltrin
- Department of Botany and Biodiversity Research CentreThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - François Pimont
- Ecologie des Forêts Méditerranéennes (URFM)INRAe84914AvignonFrance
| | - Víctor Resco de Dios
- School of Life Sciences and EngineeringSouthwest University of Science and TechnologyMianyang621010China
- Department of Crop and Forest Sciences and JRU CTFC‐AGROTECNIOUniversitat de LleidaLleida25198Spain
| | - Joseph Restaino
- Fire and Resource Assessment ProgramCalifornia Department of Forestry and Fire ProtectionSouth Lake TahoeCA96155USA
| | - Zachary J. Robbins
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Karla A. Sartor
- Environmental Protection and Compliance DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Emily Schultz‐Fellenz
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Shawn P. Serbin
- Environmental and Climate Sciences DepartmentBrookhaven National LaboratoryUptonNY11973USA
| | - Sanna Sevanto
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Jacquelyn K. Shuman
- Climate and Global Dynamics Laboratory, Terrestrial Sciences SectionNational Center for Atmospheric ResearchBoulderCO80305USA
| | - Carolyn H. Sieg
- Rocky Mountain Research StationUSDA Forest ServiceFlagstaffAZ86001USA
| | | | - David R. Weise
- Pacific Southwest Research StationUSDA Forest ServiceRiversideCA92507USA
| | - Molly Wright
- Cibola National ForestUSDA Forest ServiceAlbuquerqueNM87113USA
| | - Chonggang Xu
- Earth & Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Marta Yebra
- Fenner School of Environment and SocietyAustralian National UniversityCanberraACT2601Australia
- School of EngineeringAustralian National UniversityCanberraACT2601Australia
| | - Nicolas Younes
- Fenner School of Environment and SocietyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
3
|
Ruffault J, Limousin JM, Pimont F, Dupuy JL, De Càceres M, Cochard H, Mouillot F, Blackman CJ, Torres-Ruiz JM, Parsons RA, Moreno M, Delzon S, Jansen S, Olioso A, Choat B, Martin-StPaul N. Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of a Mediterranean forest to wildfires under extreme drought. THE NEW PHYTOLOGIST 2023; 237:1256-1269. [PMID: 36366950 DOI: 10.1111/nph.18614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.
Collapse
Affiliation(s)
| | | | | | | | | | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Florent Mouillot
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34000, Montpellier, France
| | - Chris J Blackman
- School of Biological Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Russell A Parsons
- Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Missoula, MT, 59808, USA
| | | | | | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, D-89081, Ulm, Germany
| | | | - Brendan Choat
- Western Sydney University, Penrith, NSW, 2751, Australia
| | | |
Collapse
|
4
|
Ferrer Palomino A, Sánchez Espino P, Borrego Reyes C, Jiménez Rojas JA, Rodríguez Y Silva F. Estimation of moisture in live fuels in the mediterranean: Linear regressions and random forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116069. [PMID: 36041304 DOI: 10.1016/j.jenvman.2022.116069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The live fuel moisture content is an important factor in estimating the risk of forest fires and their rate of spread. However, due to a lack of research, the FMC values in the Mediterranean region of Andalusia, Spain, must be obtained by sample collection. This study is therefore the first to provide tools for estimating the moisture content of the most widespread plant species in Andalusia. First, samples were collected to estimate the moisture content of the plants; these data were collected from May 2007 to the present. Each species has its own range of moistures that depend on the time of year and the physiological state in which they are found. Secondly, an extensive database was obtained for each day of sample collection from the nearest weather station with free access. The statistics are performed at 12 solar hours on the day of sample collection and 24 h before collection, and then at 7 days, 14 days, 1 month, 3 months and 6 months before the day of collection. Finally, this database was statistically analyzed in two ways: Multiple linear regressions and random forest for each species. The predictive capacity of random forest is superior (R2 > 0.89) to that obtained in linear regression (R2 < 0.86). The highest root mean square error obtained in the case of the random forest is 0.74479 while in the linear regressions it was 1.29184. Consequently, uncertainty regarding fire behavior in the case of forest fires is reduced.
Collapse
Affiliation(s)
- Aurora Ferrer Palomino
- Forest Fire Laboratory, Department of Forest Engineering, Leonardo da Vinci Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain.
| | - Patricia Sánchez Espino
- Forest Fire Laboratory, Department of Forest Engineering, Leonardo da Vinci Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Cristian Borrego Reyes
- Forest Fire Laboratory, Department of Forest Engineering, Leonardo da Vinci Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - José Antonio Jiménez Rojas
- Forest Fire Laboratory, Department of Forest Engineering, Leonardo da Vinci Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Francisco Rodríguez Y Silva
- Forest Fire Laboratory, Department of Forest Engineering, Leonardo da Vinci Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
5
|
Live Fuel Moisture Content Mapping in the Mediterranean Basin Using Random Forests and Combining MODIS Spectral and Thermal Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14133162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Remotely sensed vegetation indices have been widely used to estimate live fuel moisture content (LFMC). However, marked differences in vegetation structure affect the relationship between field-measured LFMC and reflectance, which limits spatial extrapolation of these indices. To overcome this limitation, we explored the potential of random forests (RF) to estimate LFMC at the subcontinental scale in the Mediterranean basin wildland. We built RF models (LFMCRF) using a combination of MODIS spectral bands, vegetation indices, surface temperature, and the day of year as predictors. We used the Globe-LFMC and the Catalan LFMC monitoring program databases as ground-truth samples (10,374 samples). LFMCRF was calibrated with samples collected between 2000 and 2014 and validated with samples from 2015 to 2019, with overall root mean square errors (RMSE) of 19.9% and 16.4%, respectively, which were lower than current approaches based on radiative transfer models (RMSE ~74–78%). We used our approach to generate a public database with weekly LFMC maps across the Mediterranean basin.
Collapse
|
6
|
Shuman JK, Balch JK, Barnes RT, Higuera PE, Roos CI, Schwilk DW, Stavros EN, Banerjee T, Bela MM, Bendix J, Bertolino S, Bililign S, Bladon KD, Brando P, Breidenthal RE, Buma B, Calhoun D, Carvalho LMV, Cattau ME, Cawley KM, Chandra S, Chipman ML, Cobian-Iñiguez J, Conlisk E, Coop JD, Cullen A, Davis KT, Dayalu A, De Sales F, Dolman M, Ellsworth LM, Franklin S, Guiterman CH, Hamilton M, Hanan EJ, Hansen WD, Hantson S, Harvey BJ, Holz A, Huang T, Hurteau MD, Ilangakoon NT, Jennings M, Jones C, Klimaszewski-Patterson A, Kobziar LN, Kominoski J, Kosovic B, Krawchuk MA, Laris P, Leonard J, Loria-Salazar SM, Lucash M, Mahmoud H, Margolis E, Maxwell T, McCarty JL, McWethy DB, Meyer RS, Miesel JR, Moser WK, Nagy RC, Niyogi D, Palmer HM, Pellegrini A, Poulter B, Robertson K, Rocha AV, Sadegh M, Santos F, Scordo F, Sexton JO, Sharma AS, Smith AMS, Soja AJ, Still C, Swetnam T, Syphard AD, Tingley MW, Tohidi A, Trugman AT, Turetsky M, Varner JM, Wang Y, Whitman T, Yelenik S, Zhang X. Reimagine fire science for the anthropocene. PNAS NEXUS 2022; 1:pgac115. [PMID: 36741468 PMCID: PMC9896919 DOI: 10.1093/pnasnexus/pgac115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/02/2022] [Indexed: 02/07/2023]
Abstract
Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Collapse
Affiliation(s)
- Jacquelyn K Shuman
- Terrestrial Sciences Section, Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA
| | - Jennifer K Balch
- Earth Lab, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder,4001 Discovery Drive, Suite S348 611 UCB, Boulder, CO, 80303, USA
| | - Rebecca T Barnes
- Environmental Studies Program, Colorado College, 14 East Cache la Poudre, Colorado Springs, CO, 80903, USA
| | - Philip E Higuera
- Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Christopher I Roos
- Department of Anthropology, Southern Methodist University, P.O. Box 750336, Dallas, TX, 75275-0336, USA
| | - Dylan W Schwilk
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Lubbock, TX, 79409-43131, USA
| | - E Natasha Stavros
- Earth Lab, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder,4001 Discovery Drive, Suite S348 611 UCB, Boulder, CO, 80303, USA
| | - Tirtha Banerjee
- Samueli School of Engineering, University of California, 3084 Interdisciplinary Science and Engineering Building, UC Irvine, CA 92697, USA
| | - Megan M Bela
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, 216 UCB, Boulder CO, 80309, USA
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
| | - Jacob Bendix
- Department of Geography and the Environment, Syracuse University, 144 Eggers Hall, Syracuse NY 13244, USA
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Solomon Bililign
- Department of Physics, North Carolina A&T State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Kevin D Bladon
- Department of Forest Engineering, Resources, and Management, Oregon State University, 244 Peavy Forest Science Center; Corvallis, OR, 97331, USA
| | - Paulo Brando
- Earth System Science, University of California Irvine, 3215 Croul Hall Irvine, CA 92697, USA
| | - Robert E Breidenthal
- Department of Aeronautics and Astronautics, University of Washington, Box 352400, Seattle, WA 98195-2400, USA
| | - Brian Buma
- Integrative Biology, University of Colorado Denver, Campus Box 171, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Donna Calhoun
- Department of Mathematics, Boise State University, 1910 University Drive, Boise, ID 83725-1135, USA
| | - Leila M V Carvalho
- Department of Geography, University of California Santa Barbara, 1832 Ellison Hall, Santa Barbara, CA, 93106, USA
| | - Megan E Cattau
- Human-Environment Systems, Boise State University, Boise State Environmental Research Building, 1295 W University Dr, Boise, ID 83706, USA
| | - Kaelin M Cawley
- National Ecological Observatory Network, Battelle, 1685 38th St., Suite 100, Boulder, CO 80301, USA
| | - Sudeep Chandra
- Global Water Center, University of Nevada, 1664 N. Virginia, Reno, NV, 89509, USA
| | - Melissa L Chipman
- Department of Earth and Environmental Sciences, Syracuse University, 317 Heroy Geology Building, 141 Crouse Dr, Syracuse, NY 13210, USA
| | - Jeanette Cobian-Iñiguez
- Department of Mechanical Engineering, University of California Merced, Sustainability Research and Engineering, SRE 366, 5200 Lake Rd, Merced, CA 95343, USA
| | - Erin Conlisk
- Point Blue Conservation Science, 3820 Cypress Dr, Petaluma, CA 94954, USA
| | - Jonathan D Coop
- Clark School of Environment and Sustainability, Western Colorado University, 1 Western Way, Gunnison CO 81231, USA
| | - Alison Cullen
- Evans School of Public Policy and Governance, University of Washington, Parrington Hall, Mailbox 353055, Seattle, WA 98195-3055, USA
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Archana Dayalu
- Atmospheric and Environmental Research, 131 Hartwell Ave, Lexington MA 02421, USA
| | - Fernando De Sales
- Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4493, USA
| | - Megan Dolman
- Human-Environment Systems, Boise State University, Boise State Environmental Research Building, 1295 W University Dr, Boise, ID 83706, USA
| | - Lisa M Ellsworth
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, 104 Nash Hall, Corvallis, OR 97330, USA
| | - Scott Franklin
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, Greeley, CO 80639, USA
| | - Christopher H Guiterman
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, 216 UCB, Boulder CO, 80309, USA
- NOAA's National Centers for Environmental Information (NCEI), 325 Broadway, NOAA E/GC3, Boulder, Colorado 80305-3337, USA
| | - Matthew Hamilton
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Erin J Hanan
- Department of Natural Resources and Environmental Science, University of Nevada, 1664 N. Virginia St. Mail Stop 0186. Reno, NV 89509, USA
| | - Winslow D Hansen
- Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, NY 12545, USA
| | - Stijn Hantson
- Earth System Science Program, Faculty of Natural Sciences, Max Planck Tandem Group in Earth System Science, Universidad del Rosario, Carrera 26 # 63b-48, Bogota, DC 111221, Colombia
| | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, UW-SEFS, Box 352100, Seattle, WA 98195, USA
| | - Andrés Holz
- Department of Geography, Portland State University, 1721 SW Broadway, Portland, OR 97201, USA
| | - Tao Huang
- Human-Environment Systems, Boise State University, Boise State Environmental Research Building, 1295 W University Dr, Boise, ID 83706, USA
| | - Matthew D Hurteau
- Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, NM 87131, USA
| | - Nayani T Ilangakoon
- Earth Lab, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder,4001 Discovery Drive, Suite S348 611 UCB, Boulder, CO, 80303, USA
| | - Megan Jennings
- Institute for Ecological Monitoring and Management, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Charles Jones
- Department of Geography, University of California Santa Barbara, 1832 Ellison Hall, Santa Barbara, CA, 93106, USA
| | | | - Leda N Kobziar
- College of Natural Resources, University of Idaho, 1031 N. Academic Way Coeur d'Alene, ID 83844, USA
| | - John Kominoski
- Institute of Environment and Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Branko Kosovic
- Weather Systems and Assessment Program, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA
| | - Meg A Krawchuk
- Department of Forest Ecosystems and Society, Oregon State University, Richardson Hall, Corvallis, OR 97331, USA
| | - Paul Laris
- Department of Geography, California State University Long Beach, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | - Jackson Leonard
- Rocky Mountain Research Station, U.S.D.A. Forest Service, 2500 S. Pine Knoll Dr. Flagstaff, Arizona 86001, USA
| | | | - Melissa Lucash
- Department of Geography, University of Oregon, 1251 University of Oregon, Eugene OR 97403-1251, USA
| | - Hussam Mahmoud
- Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ellis Margolis
- U.S. Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, 15 Entrance Rd., Los Alamos, NM 87544, USA
| | - Toby Maxwell
- Department of Biological Sciences, Boise State University, 1910 University Dr. Boise ID 83725, USA
| | - Jessica L McCarty
- Department of Geography and Geospatial Analysis Center, Miami University, 217 Shideler Hall, Oxford, OH 45056, USA
| | - David B McWethy
- Department of Earth Sciences, Montana State University, 226 Traphagen Hall, Bozeman, MT 59717, USA
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Jessica R Miesel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street Rm A286, East Lansing, MI 48823, USA
| | - W Keith Moser
- Rocky Mountain Research Station, U.S.D.A. Forest Service, 2500 S. Pine Knoll Dr. Flagstaff, Arizona 86001, USA
| | - R Chelsea Nagy
- Earth Lab, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder,4001 Discovery Drive, Suite S348 611 UCB, Boulder, CO, 80303, USA
| | - Dev Niyogi
- Jackson School of Geosciences, and Cockrell School of Engineering, University of Texas at Austin, 2305 Speedway Stop C1160, Austin, TX 78712-1692, USA
| | - Hannah M Palmer
- Department of Life and Environmental Sciences, University of California Merced, Merced, 5200 Lake Rd, Merced, CA 95343, USA
| | - Adam Pellegrini
- Department of Plant Sciences, University of Cambridge, Downing St, Cambridge, CB2 3EA, UK
| | - Benjamin Poulter
- NASA Goddard Space Flight Center, Greenbelt Road, Greenbelt, MD 20771, USA
| | - Kevin Robertson
- Tall Timbers Research Station and Land Conservancy, 13093 Henry Beadel Drive, Tallahassee, FL 32312, USA
| | - Adrian V Rocha
- Department of Biological Sciences, University of Notre Dame, 100 Campus Dr., Notre Dame, IN 46556, USA
| | - Mojtaba Sadegh
- Department of Civil Engineering, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Fernanda Santos
- Environmental Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
| | - Facundo Scordo
- Global Water Center and the Department of Biology, University of Nevada, 1664 N. Virginia, Reno, NV, 89509, USA
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Florida 8000, Bahía Blanca, B8000BFW Buenos Aires, Argentina
| | - Joseph O Sexton
- terraPulse, Inc., 13201 Squires Ct., North Potomac, MD 20878, USA
| | - A Surjalal Sharma
- Department of Astronomy, University of Maryland, 4296 Stadium Dr., Astronomy Dept Room 1113, College Park, MD 20742, USA
| | - Alistair M S Smith
- Department of Earth and Spatial Sciences, College of Science, University of Idaho, 875 Perimeter Drive MS 3021, Moscow ID, 83843-3021, USA
- Department of Forest, Rangeland, and Fire Science, College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1133, Moscow, ID 83844-1133, USA
| | - Amber J Soja
- NASA Langley Research Center, NASA, 2 Langley Blvd, Hampton, VA 23681, USA
- National Institute of Aerospace, NASA, 100 Exploration Way, Hampton, VA 23666, USA
| | - Christopher Still
- Department of Forest Ecosystems and Society, Oregon State University, Richardson Hall, Corvallis, OR 97331, USA
| | - Tyson Swetnam
- Data Science Institute, University of Arizona, 1657 E Helen St, Tucson, AZ 85721, USA
| | - Alexandra D Syphard
- Conservation Biology Institute, 10423 Sierra Vista Ave., La Mesa, CA, 91941, USA
| | - Morgan W Tingley
- Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E Young Dr S #951606, Los Angeles, CA 90095, USA
| | - Ali Tohidi
- Department of Mechanical Engineering, San Jose State University, Room 310-K, ENG Building, 1 Washington Square, San Jose, CA 95112, USA
| | - Anna T Trugman
- Department of Geography, University of California Santa Barbara, 1832 Ellison Hall, Santa Barbara, CA, 93106, USA
| | - Merritt Turetsky
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Campus Box 450, Boulder, CO 80309-0450, USA
| | - J Morgan Varner
- Tall Timbers Research Station and Land Conservancy, 13093 Henry Beadel Drive, Tallahassee, FL 32312, USA
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA
| | - Thea Whitman
- Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Dr., Madison, WI 53711, USA
| | - Stephanie Yelenik
- Rocky Mountain Research Station, U.S.D.A. Forest Service, 920 Valley Road, Reno NV, 89512, USA
| | - Xuan Zhang
- Department of Life and Environmental Sciences, University of California Merced, Merced, 5200 Lake Rd, Merced, CA 95343, USA
| |
Collapse
|
7
|
Hoffmann WA, Rodrigues AC, Uncles N, Rossi L. Hydraulic segmentation does not protect stems from acute water loss during fire. TREE PHYSIOLOGY 2021; 41:1785-1793. [PMID: 33929545 DOI: 10.1093/treephys/tpab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The heat plume associated with fire has been hypothesized to cause sufficient water loss from trees to induce embolism and hydraulic failure. However, it is unclear whether the water transport path remains sufficiently intact during scorching or burning of foliage to sustain high water loss. We measured water uptake by branches of Magnolia grandiflora while exposing them to a range of fire intensities and examined factors influencing continued water uptake after fire. Burning caused a 22-fold mean increase in water uptake, with greatest rates of water loss observed at burn intensities that caused complete consumption of leaves. Such rapid uptake is possible only with steep gradients in water potential, which would likely result in substantial cavitation of xylem and loss of conductivity in intact stems. Water uptake continued after burning was complete and was greatest following burn intensities that killed leaves but did not consume them. This post-fire uptake was mostly driven by rehydration of the remaining tissues, rather than evaporation from the tissues. Our results indicate that the fire plume hypothesis can be expanded to include a wide range of burning conditions experienced by plants. High rates of water loss are sustained during burning, even when leaves are killed or completely consumed.
Collapse
Affiliation(s)
- William A Hoffmann
- Department of Plant and Microbial Biology, North Carolina State University, Campus Box 7612, Raleigh, NC 27695, USA
| | - Amanda C Rodrigues
- Department of Plant and Microbial Biology, North Carolina State University, Campus Box 7612, Raleigh, NC 27695, USA
- University Studies and Educational Technology, Johnston Community College, Smithfield, NC 27577, USA
| | - Nicholas Uncles
- Department of Plant and Microbial Biology, North Carolina State University, Campus Box 7612, Raleigh, NC 27695, USA
| | - Lorenzo Rossi
- Department of Plant and Microbial Biology, North Carolina State University, Campus Box 7612, Raleigh, NC 27695, USA
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| |
Collapse
|
8
|
Pimont F, Fargeon H, Opitz T, Ruffault J, Barbero R, Martin-StPaul N, Rigolot E, RiviÉre M, Dupuy JL. Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02316. [PMID: 33636026 DOI: 10.1002/eap.2316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Modeling wildfire activity is crucial for informing science-based risk management and understanding the spatiotemporal dynamics of fire-prone ecosystems worldwide. Models help disentangle the relative influences of different factors, understand wildfire predictability, and provide insights into specific events. Here, we develop Firelihood, a two-component, Bayesian, hierarchically structured, probabilistic model of daily fire activity, which is modeled as the outcome of a marked point process: individual fires are the points (occurrence component), and fire sizes are the marks (size component). The space-time Poisson model for occurrence is adjusted to gridded fire counts using the integrated nested Laplace approximation (INLA) combined with the stochastic partial differential equation (SPDE) approach. The size model is based on piecewise-estimated Pareto and generalized Pareto distributions, adjusted with INLA. The Fire Weather Index (FWI) and forest area are the main explanatory variables. Temporal and spatial residuals are included to improve the consistency of the relationship between weather and fire occurrence. The posterior distribution of the Bayesian model provided 1,000 replications of fire activity that were compared with observations at various temporal and spatial scales in Mediterranean France. The number of fires larger than 1 ha across the region was coarsely reproduced at the daily scale, and was more accurately predicted on a weekly basis or longer. The regional weekly total number of larger fires (10-100 ha) was predicted as well, but the accuracy degraded with size, as the model uncertainty increased with event rareness. Local predictions of fire numbers or burned areas also required a longer aggregation period to maintain model accuracy. The estimation of fires larger than 1 ha was also consistent with observations during the extreme fire season of the 2003 unprecedented heat wave, but the model systematically underrepresented large fires and burned areas, which suggests that the FWI does not consistently rate the actual danger of large fire occurrence during heat waves. Firelihood enabled a novel analysis of the stochasticity underlying fire hazard, and offers a variety of applications, including fire hazard predictions for management and projections in the context of climate change.
Collapse
Affiliation(s)
- François Pimont
- Ecologie des Forêts Méditerranéennes (URFM), INRAe, Avignon, 84914, France
| | - Héléne Fargeon
- Ecologie des Forêts Méditerranéennes (URFM), INRAe, Avignon, 84914, France
| | - Thomas Opitz
- Biostatistics and Spatial Processes, INRAe, Avignon, 84914, France
| | - Julien Ruffault
- Ecologie des Forêts Méditerranéennes (URFM), INRAe, Avignon, 84914, France
| | - Renaud Barbero
- Ecosystèmes Méditerranéens et Risques, INRAe, Aix-en-Provence, 13182, France
| | | | - Eric Rigolot
- Ecologie des Forêts Méditerranéennes (URFM), INRAe, Avignon, 84914, France
| | - Miguel RiviÉre
- Université de Lorraine, Université de Strasbourg, AgroParisTech, CNRS, INRAe, BETA, Nancy, 54000, France
| | - Jean-Luc Dupuy
- Ecologie des Forêts Méditerranéennes (URFM), INRAe, Avignon, 84914, France
| |
Collapse
|
9
|
Lu Y, Wei C. Evaluation of microwave soil moisture data for monitoring live fuel moisture content (LFMC) over the coterminous United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145410. [PMID: 33736181 DOI: 10.1016/j.scitotenv.2021.145410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Live fuel moisture content (LFMC), which is the ratio of water in the fresh biomass to the dry biomass, is a key variable that affects wildfire behaviour. Previous studies have assessed soil moisture as a predictor of LFMC over small areas with limited data, but a comprehensive evaluation at sub-continental scale is still lacking, and the explanatory utility has not been evaluated under different aridity conditions. In this study, the utility was evaluated using microwave soil moisture data from the ESA ECV_SM product from 1979 to 2018 and LFMC data from over 1000 sites in the coterminous United States. A time-lagged robust linear regression model was adopted, and the results were compared with analysis from in situ soil moisture measurements at adjacent sites. The results suggested that at most sites the LFMC correlates best with soil moisture within 60 days prior to LFMC sampling, and that the correlation is lower in areas with complex terrain. LFMC can be estimated from soil moisture with a mean RMSE of around 20%. The correlation between LFMC and soil moisture is significant (p<0.01) in most regions, and is mostly stable in different years. The major fuel types with a high response to soil moisture include pine, redcedar, sagebrush, oak, manzanita, chamise, mesquite and juniper, depending on the region. The LFMC ~ soil moisture correlation varies with the aridity condition, and soil moisture has a higher explanatory utility on LFMC under dry conditions. An analysis using SMAP Level-4 product indicated that the surface and root-zone soil moisture perform similarly in LFMC estimation. This study suggests that microwave soil moisture data contain sufficient information on LFMC, and may serve as a reference for the development of more sophisticated LFMC estimation methods.
Collapse
Affiliation(s)
- Yang Lu
- Geography and Environment, University of Southampton, Southampton, United Kingdom
| | - Chunzhu Wei
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
10
|
Partelli-Feltrin R, Smith AMS, Adams HD, Kolden CA, Johnson DM. Short- and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings. PLANT, CELL & ENVIRONMENT 2021; 44:696-705. [PMID: 32890427 DOI: 10.1111/pce.13881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Understanding tree physiological responses to fire is needed to accurately model post-fire carbon processes and inform management decisions. Given trees can die immediately or at extended time periods after fire, we combined two experiments to assess the short- (one-day) and long-term (21-months) fire effects on Pinus ponderosa sapling water transport. Native percentage loss of conductivity (nPLC), vulnerability to cavitation and xylem anatomy were assessed in unburned and burned saplings at lethal and non-lethal fire intensities. Fire did not cause any impact on nPLC and xylem cell wall structure in either experiment. However, surviving saplings evaluated 21-months post-fire were more vulnerable to cavitation. Our anatomical analysis in the long-term experiment showed that new xylem growth adjacent to fire scars had irregular-shaped tracheids and many parenchyma cells. Given conduit cell wall deformation was not observed in the long-term experiment, we suggest that the irregularity of newly grown xylem cells nearby fire wounds may be responsible for decreasing resistance to embolism in burned plants. Our findings suggest that hydraulic failure is not the main short-term physiological driver of mortality for Pinus ponderosa saplings. However, the decrease in embolism resistance in fire-wounded saplings could contribute to sapling mortality in the years following fire.
Collapse
Affiliation(s)
| | - Alistair M S Smith
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, Washington, USA
| | - Crystal A Kolden
- Gallo School of Management, University of California Merced, Merced, California, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Scarff FR, Lenz T, Richards AE, Zanne AE, Wright IJ, Westoby M. Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fiona R. Scarff
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | - Tanja Lenz
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | - Anna E. Richards
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | | | - Ian J. Wright
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | - Mark Westoby
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| |
Collapse
|
12
|
Drought Increases Vulnerability of Pinus ponderosa Saplings to Fire-Induced Mortality. FIRE-SWITZERLAND 2020. [DOI: 10.3390/fire3040056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The combination of drought and fire can cause drastic changes in forest composition and structure. Given the predictions of more frequent and severe droughts and forecasted increases in fire size and intensity in the western United States, we assessed the impact of drought and different fire intensities on Pinus ponderosa saplings. In a controlled combustion laboratory, we exposed saplings to surface fires at two different fire intensity levels (quantified via fire radiative energy; units: MJ m−2). The recovery (photosynthesis and bud development) and mortality of saplings were monitored during the first month, and at 200- and 370-days post-fire. All the saplings subjected to high intensity surface fires (1.4 MJ m−2), regardless of the pre-fire water status, died. Seventy percent of pre-fire well-watered saplings recovered after exposure to low intensity surface fire (0.7 MJ m−2). All of the pre-fire drought-stressed saplings died, even at the lower fire intensity. Regardless of the fire intensity and water status, photosynthesis was significantly reduced in all saplings exposed to fire. At 370 days post-fire, burned well-watered saplings that recovered had similar photosynthesis rates as unburned plants. In addition, all plants that recovered or attempted to recover produced new foliage within 35 days following the fire treatments. Our results demonstrate that the pre-fire water status of saplings is an important driver of Pinus ponderosa sapling recovery and mortality after fire.
Collapse
|
13
|
Abstract
Globally, fire regimes are being altered by changing climatic conditions. New fire regimes have the potential to drive species extinctions and cause ecosystem state changes, with a range of consequences for ecosystem services. Despite the co-occurrence of forest fires with drought, current approaches to modelling flammability largely overlook the large body of research into plant vulnerability to drought. Here, we outline the mechanisms through which plant responses to drought may affect forest flammability, specifically fuel moisture and the ratio of dead to live fuels. We present a framework for modelling live fuel moisture content (moisture content of foliage and twigs) from soil water content and plant traits, including rooting patterns and leaf traits such as the turgor loss point, osmotic potential, elasticity and leaf mass per area. We also present evidence that physiological drought stress may contribute to previously observed fuel moisture thresholds in south-eastern Australia. Of particular relevance is leaf cavitation and subsequent shedding, which transforms live fuels into dead fuels, which are drier, and thus easier to ignite. We suggest that capitalising on drought research to inform wildfire research presents a major opportunity to develop new insights into wildfires, and new predictive models of seasonal fuel dynamics.
Collapse
|
14
|
Yebra M, Scortechini G, Badi A, Beget ME, Boer MM, Bradstock R, Chuvieco E, Danson FM, Dennison P, Resco de Dios V, Di Bella CM, Forsyth G, Frost P, Garcia M, Hamdi A, He B, Jolly M, Kraaij T, Martín MP, Mouillot F, Newnham G, Nolan RH, Pellizzaro G, Qi Y, Quan X, Riaño D, Roberts D, Sow M, Ustin S. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci Data 2019; 6:155. [PMID: 31434899 PMCID: PMC6704185 DOI: 10.1038/s41597-019-0164-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 11/09/2022] Open
Abstract
Globe-LFMC is an extensive global database of live fuel moisture content (LFMC) measured from 1,383 sampling sites in 11 countries: Argentina, Australia, China, France, Italy, Senegal, Spain, South Africa, Tunisia, United Kingdom and the United States of America. The database contains 161,717 individual records based on in situ destructive samples used to measure LFMC, representing the amount of water in plant leaves per unit of dry matter. The primary goal of the database is to calibrate and validate remote sensing algorithms used to predict LFMC. However, this database is also relevant for the calibration and validation of dynamic global vegetation models, eco-physiological models of plant water stress as well as understanding the physiological drivers of spatiotemporal variation in LFMC at local, regional and global scales. Globe-LFMC should be useful for studying LFMC trends in response to environmental change and LFMC influence on wildfire occurrence, wildfire behavior, and overall vegetation health. Design Type(s) | database creation objective • cross validation objective • physiological process monitoring objective | Measurement Type(s) | moisture content trait | Technology Type(s) | digital curation | Factor Type(s) | geographic location • environmental feature | Sample Characteristic(s) | Earth (Planet) • United States of America • French Republic |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
Affiliation(s)
- Marta Yebra
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia. .,Bushfire & Natural Hazards Cooperative Research Centre, Melbourne, Victoria, Australia.
| | - Gianluca Scortechini
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Abdulbaset Badi
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | | | - Emilio Chuvieco
- Department of Geology, Geography and the Environment, University of Alcala, Alcala de Henares, Madrid, Spain
| | - F Mark Danson
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Philip Dennison
- Department of Geography, University of Utah, Salt Lake City, USA
| | | | - Carlos M Di Bella
- Instituto de Clima y Agua, INTA. Hurlingham, Buenos Aires, Argentina
| | | | | | - Mariano Garcia
- Department of Geology, Geography and the Environment, University of Alcala, Alcala de Henares, Madrid, Spain
| | - Abdelaziz Hamdi
- Laboratoire des Ressources Sylvo-Pastorales, Institut Sylvo Pastoral de Tabarka, 8110, Jendouba, Tunisia
| | - Binbin He
- School of Resources and Environment, University of Electronic Science and Technology of China, Sichuan, China
| | - Matt Jolly
- Rocky Mountain Research Station, Fire Sciences Laboratory, USFS, Montana, USA
| | - Tineke Kraaij
- Nelson Mandela University, School of Natural Resource Management, George, South Africa
| | - M Pilar Martín
- Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab), Spanish National Research Council (CSIC), Madrid, Spain
| | - Florent Mouillot
- UMR CEFE, CNRS, université de Montpellier, Université Paul Valery Montpellier, EPHE, IRD, 1919 route de mende, 34293, Montpellier Cedex 5, France
| | | | - Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Grazia Pellizzaro
- Istituto di Biometeorologia (Sassari) Consiglio Nazionale delle Ricerche (CNR-IBIMET), Sassari, Italy
| | - Yi Qi
- University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xingwen Quan
- School of Resources and Environment, University of Electronic Science and Technology of China, Sichuan, China
| | - David Riaño
- Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab), Spanish National Research Council (CSIC), Madrid, Spain.,Center for Spatial Technologies and Remote Sensing, UC-Davis, Davis, USA
| | - Dar Roberts
- Department of Geography, University of California, Santa Barbara, USA
| | - Momadou Sow
- Institut des Sciences de l'Environnement (ISE), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Susan Ustin
- Center for Spatial Technologies and Remote Sensing, UC-Davis, Davis, USA
| |
Collapse
|
15
|
The Survival of Pinus ponderosa Saplings Subjected to Increasing Levels of Fire Behavior and Impacts on Post-Fire Growth. FIRE-SWITZERLAND 2019. [DOI: 10.3390/fire2020023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Improved predictions of tree species mortality and growth metrics following fires are important to assess fire impacts on forest succession, and ultimately forest growth and yield. Recent studies have shown that North American conifers exhibit a ‘toxicological dose-response’ relationship between fire behavior and the resultant mortality or recovery of the trees. Prior studies have not been conclusive due to potential pseudo-replication in the experimental design and time-limited observations. We explored whether dose-response relationships are observed in ponderosa pine (Pinus ponderosa) saplings exposed to surface fires of increasing fire behavior (as quantified by Fire Radiative Energy—FRE). We confirmed equivalent dose-response relationships to the prior studies that were focused on other conifer species. The post-fire growth in the saplings that survived the fires decreased with increasing FRE dosages, while the percentage mortality in the sapling dosage groups increased with the amount of FRE applied. Furthermore, as with lodgepole pine (Pinus contorta), a low FRE dosage could be applied that did not yield mortality in any of the replicates (r = 10). These results suggest that land management agencies could use planned burns to reduce fire hazard while still maintaining a crop of young saplings. Incorporation of these results into earth-system models and growth and yield models could help reduce uncertainties associated with the impacts of fire on timber growth, forest resilience, carbon dynamics, and ecosystem economics.
Collapse
|
16
|
Live Fuel Moisture Content: The ‘Pea Under the Mattress’ of Fire Spread Rate Modeling? FIRE-SWITZERLAND 2018. [DOI: 10.3390/fire1030043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Currently, there is a dispute on whether live fuel moisture content (FMC) should be accounted for when predicting a real-world fire-spread rate (RoS). The laboratory and field data results are conflicting: laboratory trials show a significant effect of live FMC on RoS, which has not been convincingly detected in the field. It has been suggested that the lack of influence of live FMC on RoS might arise from differences in the ignition of dead and live fuels: flammability trials using live leaves subjected to high heat fluxes (80–140 kW m−2) show that ignition occurs before all of the moisture is vaporized. We analyze evidence from recent studies, and hypothesize that differences in the ignition mechanisms between dead and live fuels do not preclude the use of overall fine FMC for attaining acceptable RoS predictions. We refer to a simple theory that consists of two connected hypotheses to explain why the effect of live FMC on field fires RoS has remained elusive so far: H1, live tree foliage FMC remains fairly constant over the year; and H2, the seasonal variation of live shrubs’ FMC correlates with the average dead FMC. As a result, the effect of live FMC is not easily detected by statistical analysis.
Collapse
|
17
|
Embracing Complexity to Advance the Science of Wildland Fire Behavior. FIRE-SWITZERLAND 2018. [DOI: 10.3390/fire1020020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|