1
|
Ambattu LA, Del Rosal B, Conn CE, Yeo LY. High-frequency MHz-order vibration enables cell membrane remodeling and lipid microdomain manipulation. Biophys J 2025; 124:25-39. [PMID: 39415451 PMCID: PMC11739889 DOI: 10.1016/j.bpj.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
We elucidate the mechanism underpinning a recently discovered phenomenon in which cells respond to MHz-order mechanostimuli. Deformations induced along the plasma membrane under these external mechanical cues are observed to decrease the membrane tension, which, in turn, drives transient and reversible remodeling of its lipid structure. In particular, the increase and consequent coalescence of ordered lipid microdomains leads to closer proximity to mechanosensitive ion channels-Piezo1, in particular-that, due to crowding, results in their activation to mobilize influx of calcium (Ca2+) ions into the cell. It is the modulation of this second messenger that is responsible for the downstream signaling and cell fates that ensue. In addition, we show that such spatiotemporal control over the membrane microdomains in cells-without necessitating biochemical factors-facilitates aggregation and association of intrinsically disordered tau proteins in neuroblastoma cells, and their transformation to pathological conditions implicated in neurodegenerative diseases, thereby paving the way for the development of therapeutic intervention strategies.
Collapse
Affiliation(s)
- Lizebona A Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | | | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Afshari M, Amini S, Hashemibeni B. Effect of low frequency ultrasound waves on the morphology and viability of cultured human gingival fibroblasts. J Taibah Univ Med Sci 2023; 18:1406-1416. [PMID: 38162872 PMCID: PMC10757313 DOI: 10.1016/j.jtumed.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/13/2023] [Accepted: 05/08/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives The aim of this study was to investigate the effect of the vibration amplitude of mechanical ultrasound waves (27 kHz) on the viability and morphology of human gingival fibroblasts (hGFs) when cultured on a biomaterial substrate. Method hGFs were seeded on tissue culture plates (TCPs) and an Ti6Al4V titanium alloy surface in two groups for three days and seven days of cell culture. The cells were subjected to three vibration amplitudes for 20 min each day. Scanning electron microscope (SEM) images were used to characterize cell morphology. Results Experiments showed that hGF cells became detached from their plates at a vibration amplitude comparable to an intensity of 260 mW/cm2. In addition, hGfs that received a vibrational amplitude comparable to an intensity of 50 mW/cm2 underwent significant proliferation proliferated significantly; however, cells receiving higher amplitudes suffered from adverse effects. Conclusions SEM images of hGFs on titanium disks at vibration amplitude comparable to an intensity 50 mW/cm2 showed a remarkable hexagonal architecture, which we refer to as a honeycomb pattern. On day 6 the observed hGFs on TCPs, proliferated at a higher rate and new cells attached uniformly on the existing layer of cells. These data indicate the effect of cellular tissue as a substrate on the growth of new hGFs under low-intensity ultrasound.
Collapse
Affiliation(s)
- Mojtaba Afshari
- Department of Manufacturing, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
| | - Saeid Amini
- Department of Manufacturing, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
| | - Batool Hashemibeni
- Torabinejad Dentistry Research Center and Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
4
|
Ostasevicius V, Jurenas V, Mikuckyte S, Vezys J, Stankevicius E, Bubulis A, Venslauskas M, Kizauskiene L. Development of a Low-Frequency Piezoelectric Ultrasonic Transducer for Biological Tissue Sonication. SENSORS (BASEL, SWITZERLAND) 2023; 23:3608. [PMID: 37050668 PMCID: PMC10098853 DOI: 10.3390/s23073608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The safety of ultrasound exposure is very important for a patient's well-being. High-frequency (1-10 MHz) ultrasound waves are highly absorbed by biological tissue and have limited therapeutic effects on internal organs. This article presents the results of the development and application of a low-frequency (20-100 kHz) ultrasonic transducer for sonication of biological tissues. Using the methodology of digital twins, consisting of virtual and physical twins, an ultrasonic transducer has been developed that emits a focused ultrasound signal that penetrates into deeper biological tissues. For this purpose, the ring-shaped end surface of this transducer is excited not only by the main longitudinal vibrational mode, which is typical of the flat end surface transducers used to date, but also by higher mode radial vibrations. The virtual twin simulation shows that the acoustic signal emitted by the ring-shaped transducer, which is excited by a higher vibrational mode, is concentrated into a narrower and more precise acoustic wave that penetrates deeper into the biological tissue and affects only the part of the body to be treated, but not the whole body.
Collapse
Affiliation(s)
- Vytautas Ostasevicius
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Vytautas Jurenas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Sandra Mikuckyte
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Joris Vezys
- Department of Mechanical Engineering, Kaunas University of Technology, Studentu Street 50, LT-51368 Kaunas, Lithuania
| | - Edgaras Stankevicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickevicius Street 9, LT-44307 Kaunas, Lithuania
| | - Algimantas Bubulis
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Mantas Venslauskas
- Institute of Mechatronics, Kaunas University of Technology, Studentu Street 56, LT-51424 Kaunas, Lithuania
| | - Laura Kizauskiene
- Department of Computer Sciences, Kaunas University of Technology, Studentu Street 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
5
|
Effect of Therapeutic Ultrasound on the Mechanical and Biological Properties of Fibroblasts. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
This paper explores the effect of therapeutic ultrasound on the mechanical and biological properties of ligament fibroblasts.
Methods and Results
We assessed pulsed ultrasound doses of 1.0 and 2.0 W/cm2 at 1 MHz frequency for five days on ligament fibroblasts using a multidisciplinary approach. Atomic force microscopy showed a decrease in cell elastic modulus for both doses, but the treated cells were still viable based on flow cytometry. Finite element method analysis exhibited visible cytoskeleton displacements and decreased harmonics in treated cells. Colorimetric assay revealed increased cell proliferation, while scratch assay showed increased migration at a low dose. Enzyme-linked immunoassay detected increased collagen and fibronectin at a high dose, and immunofluorescence imaging technique visualized β-actin expression for both treatments.
Conclusion
Both doses of ultrasound altered the fibroblast mechanical properties due to cytoskeletal reorganization and enhanced the regenerative and remodeling stages of cell repair.
Lay Summary
Knee ligament injuries are a lesion of the musculoskeletal system frequently diagnosed in active and sedentary lifestyles in young and older populations. Therapeutic ultrasound is a rehabilitation strategy that may lead to the regenerative and remodeling of ligament wound healing. This research demonstrated that pulsed therapeutic ultrasound applied for 5 days reorganized the ligament fibroblasts structure to increase the cell proliferation and migration at a low dose and to increase the releasing proteins that give the stiffness of the healed ligament at a high dose.
Future Works
Future research should further develop and confirm that therapeutic ultrasound may improve the regenerative and remodeling stages of the ligament healing process applied in clinical trials in active and sedentary lifestyles in young and older populations.
Graphical abstract
Collapse
|
6
|
Figarol A, Olive L, Joubert O, Ferrari L, Rihn BH, Sarry F, Beyssen D. Biological Effects and Applications of Bulk and Surface Acoustic Waves on In Vitro Cultured Mammal Cells: New Insights. Biomedicines 2022; 10:biomedicines10051166. [PMID: 35625902 PMCID: PMC9139135 DOI: 10.3390/biomedicines10051166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Medical imaging has relied on ultrasound (US) as an exploratory method for decades. Nonetheless, in cell biology, the numerous US applications are mainly in the research and development phase. In this review, we report the main effects on human or mammal cells of US induced by bulk or surface acoustic waves (SAW). At low frequencies, bulk US can lead to cell death. Under specific intensities and exposure times, however, cell proliferation and migration can be enhanced through cytoskeleton fluidization (a reorganization of the actin filaments and microtubules). Cavitation phenomena, frequencies of resonance close to those of the biological compounds, and mechanical transfers of energy from the acoustic pressure could explain those biological outcomes. At higher frequencies, no cavitation is observed. However, USs of high frequency stimulate ionic channels and increase cell permeability and transfection potency. Surface acoustic waves are increasingly exploited in microfluidics, especially for precise cell manipulations and cell sorting. With applications in diagnosis, infection, cancer treatment, or wound healing, US has remarkable potential. More mechanotransduction studies would be beneficial to understand the distinct roles of temperature rise, acoustic streaming and mechanical and electrical stimuli in the field.
Collapse
Affiliation(s)
- Agathe Figarol
- Institut FEMTO-ST, UMR CNRS 6174, Université de Bourgogne Franche-Comté, F-25030 Besançon, France;
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (L.O.); (O.J.); (L.F.); (B.H.R.); (F.S.)
| | - Lucile Olive
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (L.O.); (O.J.); (L.F.); (B.H.R.); (F.S.)
| | - Olivier Joubert
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (L.O.); (O.J.); (L.F.); (B.H.R.); (F.S.)
| | - Luc Ferrari
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (L.O.); (O.J.); (L.F.); (B.H.R.); (F.S.)
| | - Bertrand H. Rihn
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (L.O.); (O.J.); (L.F.); (B.H.R.); (F.S.)
| | - Frédéric Sarry
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (L.O.); (O.J.); (L.F.); (B.H.R.); (F.S.)
| | - Denis Beyssen
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (L.O.); (O.J.); (L.F.); (B.H.R.); (F.S.)
- Correspondence: ; Tel.: +33-61-448-6182
| |
Collapse
|
7
|
Ultrasound and Microbubbles Enhance Uptake of Doxorubicin in Murine Kidneys. Pharmaceutics 2021; 13:pharmaceutics13122038. [PMID: 34959319 PMCID: PMC8703523 DOI: 10.3390/pharmaceutics13122038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The use of ultrasound and microbubble-enhanced drug delivery, commonly referred to as sonoporation, has reached numerous clinical trials and has shown favourable results. Nevertheless, the microbubbles and acoustic path also pass through healthy tissues. To date, the majority of studies have focused on the impact to diseased tissues and rarely evaluated the impact on healthy and collateral tissue. The aim of this study was to test the effect and feasibility of low-intensity sonoporation on healthy kidneys in a mouse model. In our work here, we used a clinical diagnostic ultrasound system (GE Vivid E9) with a C1-5 ultrasound transducer combined with a software modification for 20-µs-long pulses to induce the ultrasound-guided drug delivery of doxorubicin (DOX) in mice kidneys in combination with SonoVue® and Sonazoid™ microbubbles. The acoustic output settings were within the commonly used diagnostic ranges. Sonoporation with SonoVue® resulted in a significant decrease in weight vs. DOX alone (p = 0.0004) in the first nine days, whilst all other comparisons were not significant. Ultrasound alone resulted in a 381% increase in DOX uptake vs. DOX alone (p = 0.0004), whilst SonoVue® (p = 0.0001) and Sonazoid™ (p < 0.0001) further increased the uptake nine days after treatment (419% and 493%, respectively). No long-standing damage was observed in the kidneys via histology. In future sonoporation and drug uptake studies, we therefore suggest including an “ultrasound alone” group to verify the actual contribution of the individual components of the procedure on the drug uptake and to perform collateral damage studies to ensure there is no negative impact of low-intensity sonoporation on healthy tissues.
Collapse
|
8
|
Wang L, Li G, Cao L, Dong Y, Wang Y, Wang S, Li Y, Guo X, Zhang Y, Sun F, Du X, Su J, Li Q, Peng X, Shao K, Zhao W. An ultrasound-driven immune-boosting molecular machine for systemic tumor suppression. SCIENCE ADVANCES 2021; 7:eabj4796. [PMID: 34669472 PMCID: PMC8528430 DOI: 10.1126/sciadv.abj4796] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Exploring facile and effective therapeutic modalities for synergistically controlling primary tumor and metastasis remains a pressing clinical need. Sonodynamic therapy (SDT) offers the possibility of noninvasively eradicating local solid tumors, but lacks antimetastatic activity because of its limited ability in generating systemic antitumor effect. Here, we exploited a previously unidentified ultrasound-driven “molecular machine,” DYSP-C34 (C34 for short), with multiple attractive features, emerging from preferential tumor accumulation, potent ultrasound-triggered cytotoxicity, and intrinsic immune-boosting capacity. Driven by the ultrasound, C34 functioned not only as a tumor cell killing reagent but also as an immune booster that could potentiate robust adaptive antitumor immunity by directly stimulating dendritic cells, resulting in the eradication of the primary solid tumor along with the inhibition of metastasis. This molecular machine, C34, rendered great promise to achieve systemic treatment against cancer via unimolecule-mediated SDT.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Cao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Dong
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shisheng Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiuhan Guo
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Sun
- Nuclear Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Xuemei Du
- Nuclear Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jiangan Su
- EEC Biotech Co. Ltd, Guangzhou 510070, China
| | - Qing Li
- EEC Biotech Co. Ltd, Guangzhou 510070, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Fontana F, Iberite F, Cafarelli A, Aliperta A, Baldi G, Gabusi E, Dolzani P, Cristino S, Lisignoli G, Pratellesi T, Dumont E, Ricotti L. Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation. ULTRASONICS 2021; 116:106495. [PMID: 34186322 DOI: 10.1016/j.ultras.2021.106495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/25/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
This work aims to describe the development and validation of two low-intensity pulsed ultrasound stimulation systems able to control the dose delivered to the biological target. Transducer characterization was performed in terms of pressure field shape and intensity, for a high-frequency range (500 kHz to 5 MHz) and for a low-frequency value (38 kHz). This allowed defining the distance, on the beam axis, at which biological samples should be placed during stimulation and to exactly know the intensity at the target. Carefully designed retaining systems were developed, for hosting biological samples. Sealing tests proved their impermeability to external contaminants. The assembly/de-assembly time of the systems resulted ~3 min. Time-domain acoustic simulations allowed to precisely estimate the ultrasound beam within the biological sample chamber, thus enabling the possibility to precisely control the pressure to be transmitted to the biological target, by modulating the transducer's input voltage. Biological in vitro tests were also carried out, demonstrating the sterility of the system and the absence of toxic and inflammatory effects on growing cells after multiple immersions in water, over seven days.
Collapse
Affiliation(s)
- F Fontana
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - F Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - A Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - A Aliperta
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - G Baldi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - E Gabusi
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy.
| | - P Dolzani
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy.
| | - S Cristino
- Dipartimento Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126 Bologna, Italy.
| | - G Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy.
| | | | - E Dumont
- Image Guided Therapy, 33600 Pessac, France.
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| |
Collapse
|
10
|
Wang P, Sun Y, Shi X, Shen H, Ning H, Liu H. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: A review. Bioact Mater 2021; 6:1283-1307. [PMID: 33251379 PMCID: PMC7662879 DOI: 10.1016/j.bioactmat.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The demand for artificial organs has greatly increased because of various aging-associated diseases and the wide need for organ transplants. A recent trend in tissue engineering is the precise reconstruction of tissues by the growth of cells adhering to bioscaffolds, which are three-dimensional (3D) structures that guide tissue and organ formation. Bioscaffolds used to fabricate bionic tissues should be able to not only guide cell growth but also regulate cell behaviors. Common regulation methods include biophysical and biochemical stimulations. Biophysical stimulation cues include matrix hardness, external stress and strain, surface topology, and electromagnetic field and concentration, whereas biochemical stimulation cues include growth factors, proteins, kinases, and magnetic nanoparticles. This review discusses bioink preparation, 3D bioprinting (including extrusion-based, inkjet, and ultraviolet-assisted 3D bioprinting), and regulation of cell behaviors. In particular, it provides an overview of state-of-the-art methods and devices for regulating cell growth and tissue formation and the effects of biophysical and biochemical stimulations on cell behaviors. In addition, the fabrication of bioscaffolds embedded with regulatory modules for biomimetic tissue preparation is explained. Finally, challenges in cell growth regulation and future research directions are presented.
Collapse
Affiliation(s)
- Pengju Wang
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yazhou Sun
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoquan Shi
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Huixing Shen
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haohao Ning
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haitao Liu
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
11
|
Zhang Q, Fang G, Chen W, Zhong X, Long Y, Qin H, Ye J. The molecular effects of ultrasound on the expression of cellular proteome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137439. [PMID: 32143036 DOI: 10.1016/j.scitotenv.2020.137439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
High frequency and low intensity, diagnostic ultrasound methods are recognized to be safe in epidemiology and pathology but the bioeffects of these methods on molecular and proteomic levels are unknown. As a representative organism that can directly reflect the molecular response to stresses, Escherichia coli was selected for exposure to ultrasound probes C1-5, M5s and 9 L for 10 min and 20 min. ITRAQ was used to measure the expression of the cellular proteome. The results showed that both the frequency and time of exposure to ultrasound affected the proteome expression. Fifty biological processes were affected and nineteen metabolic processes, including carbohydrate metabolism, asparagine metabolism and phosphate import were differentially regulated. Lower frequency ultrasound caused copper export and iron‑sulfur cluster biosynthesis upregulation. Nine proteins (GlpD, AsnB, TdcB, CopA, IscR, IscU, IscS, IscA, RecA) were key for the adaption to ultrasound. Accordingly, the results of the potential risks based on the calculation of the orthologous genome clarified that relevant pathways and potentially sensitive individuals were worthy of further study. These findings offer insights into reveal the bioeffects of ultrasound at the metabolic network and proteomic levels.
Collapse
Affiliation(s)
- Qinglin Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guiting Fang
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xing Zhong
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Effect of acoustic standing waves on cellular viability and metabolic activity. Sci Rep 2020; 10:8493. [PMID: 32444830 PMCID: PMC7244593 DOI: 10.1038/s41598-020-65241-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Acoustic standing wave devices offer excellent potential applications in biological sciences for drug delivery, cell manipulation and tissue engineering. However, concerns have been raised about possible destructive effects on cells due to the applied acoustic field, in addition to other produced secondary factors. Here, we report a systematic study employing a 1D resonant acoustic trapping device to evaluate the cell viability and cell metabolism for a healthy cell line (Human Dermal Fibroblasts, HDF) and a cervical cancer cell line (HeLa), as a function of time and voltages applied (4-10 Vpp) under temperature-controlled conditions. We demonstrate that high cell viability can be achieved reliably when the device is operated at its minimum trapping voltage and tuned carefully to maximise the acoustic standing wave field at the cavity resonance. We found that cell viability and reductive metabolism for both cell lines are kept close to control levels at room temperature and at 34 °C after 15 minutes of acoustic exposure, while shorter acoustic exposures and small changes on temperature and voltages, had detrimental effects on cells. Our study highlights the importance of developing robust acoustic protocols where the operating mode of the acoustic device is well defined, characterized and its temperature carefully controlled, for the application of acoustic standing waves when using live cells and for potential clinical applications.
Collapse
|
13
|
Liu Z, Smith SR. Enzyme activity of waste activated sludge extracts. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1861-1869. [PMID: 32144218 DOI: 10.2166/wst.2020.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wastewater treatment and generated biological sludge provide an alternative source of enzymes to conventional industrial production methods. Here, we present a protocol for extracting enzymes from activated sludge using ultrasonication and surfactant treatment. Under optimum conditions, ultrasound disruption of activated sludge gave recovery rates of protease and cellulase enzymes equivalent to 63.1% and ∼100%, respectively. The extracting of enzymes from activated sludge represents a potentially significant, high-value, resource recovery option for biological sludge generated by municipal wastewater treatment.
Collapse
|
14
|
Surendran V, Chiulli T, Manoharan S, Knisley S, Packirisamy M, Chandrasekaran A. Acoustofluidic Micromixing Enabled Hybrid Integrated Colorimetric Sensing, for Rapid Point-of-Care Measurement of Salivary Potassium. BIOSENSORS 2019; 9:E73. [PMID: 31141923 PMCID: PMC6628211 DOI: 10.3390/bios9020073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023]
Abstract
The integration of microfluidics with advanced biosensor technologies offers tremendous advantages such as smaller sample volume requirement and precise handling of samples and reagents, for developing affordable point-of-care testing methodologies that could be used in hospitals for monitoring patients. However, the success and popularity of point-of-care diagnosis lies with the generation of instantaneous and reliable results through in situ tests conducted in a painless, non-invasive manner. This work presents the development of a simple, hybrid integrated optical microfluidic biosensor for rapid detection of analytes in test samples. The proposed biosensor works on the principle of colorimetric optical absorption, wherein samples mixed with suitable chromogenic substrates induce a color change dependent upon the analyte concentration that could then be detected by the absorbance of light in its path length. This optical detection scheme has been hybrid integrated with an acoustofluidic micromixing unit to enable uniform mixing of fluids within the device. As a proof-of-concept, we have demonstrated the real-time application of our biosensor format for the detection of potassium in whole saliva samples. The results show that our lab-on-a-chip technology could provide a useful strategy in biomedical diagnoses for rapid analyte detection towards clinical point-of-care testing applications.
Collapse
Affiliation(s)
- Vikram Surendran
- Department of Chemical, Biological and Bio Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA.
| | - Thomas Chiulli
- Department of Chemical, Biological and Bio Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA.
| | - Swetha Manoharan
- Department of Chemical, Biological and Bio Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA.
| | - Stephen Knisley
- Department of Chemical, Biological and Bio Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA.
| | - Muthukumaran Packirisamy
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H2L5C9, Canada.
| | - Arvind Chandrasekaran
- Department of Chemical, Biological and Bio Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA.
| |
Collapse
|