1
|
Zhou Y, Feng Q, Li Y, Qi Y, Yang F, Zhou J. Adding rumen microorganisms to improve fermentation quality, enzymatic efficiency, and microbial communities of hybrid Pennisetum silage. BIORESOURCE TECHNOLOGY 2024; 410:131272. [PMID: 39147107 DOI: 10.1016/j.biortech.2024.131272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hybrid Pennisetum, a top biomass energy source, faces usage limitations because of its scarce lactic acid bacteria and high fiber content. This study assessed the influence of rumen fluid pretreatment on hybrid Pennisetum's silage, with focus on silage duration and rumen fluid effects on quality and fiber decomposition. Advanced third-generation sequencing was used to track microbial diversity changes and revealed that rumen fluid considerably enhanced dry matter, crude protein, and water-soluble carbohydrates, thus improving fermentation quality to satisfactory pH levels (3.40-3.67). Ideal results, including the highest fiber breakdown and enzymatic efficiency (47.23 %), were obtained with 5 % rumen fluid in 60 days. The addition of rumen fluid changed the dominant species, including Paucilactobacillus vaccinostercus (0.00 % vs. 18.21 %) and Lactiplantibacillus plantarum (21.03 % vs. 47.02 %), and no Enterobacter was detected in the high-concentration treatments. Moreover, strong correlations were found between specific lactic acid bacteria and fermentation indicators, revealing the potential of achieving efficient and economically beneficial hybrid Pennisetum production.
Collapse
Affiliation(s)
- Yi Zhou
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qixian Feng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Qi
- Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
| | - Fulin Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jing Zhou
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Das M, Dam S. Evaluation of probiotic efficacy of indigenous yeast strain, Saccharomyces cerevisiae Y-89 isolated from a traditional fermented beverage of West Bengal, India having protective effect against DSS-induced colitis in experimental mice. Arch Microbiol 2024; 206:398. [PMID: 39254791 DOI: 10.1007/s00203-024-04128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Increasing awareness regarding health promotion and disease prevention has driven inclusion of fermented foods and beverages in the daily diet. These are the enormous sources of beneficial microbes, probiotics. This study aims to isolate yeast strains having probiotic potential and effectivity against colitis. Initially, ninety-two yeast strains were isolated from Haria, an ethnic fermented beverage of West Bengal, India. Primary screening was done by their acid (pH 4) and bile salt (0.3%) tolerance ability. Four potent isolates were selected and found effective against Entamoeba histolytica, as this human pathogen is responsible to cause colitis. They were identified as Saccharomyces cerevisiae. They showed luxurious growth even at 37 oC, tolerance up to 5% of NaCl, resistance to gastric juice and high bile salt (2.0%) and oro-gastrointestinal transit tolerance. They exhibited good auto-aggregation and co-aggregation ability and strong hydrophobicity. Finally, heat map and principal component analysis revealed that strain Y-89 was the best candidate. It was further characterised and found to have significant protective effects against DSS-induced colitis in experimental mice model. It includes improvement in colon length, body weight and organ indices; reduction in disease activity index; reduction in cholesterol, LDL, SGPT, SGOT, urea and creatinine levels; improvement in HDL, ALP, total protein and albumin levels; decrease in coliform count and restoration of tissue damage. This study demonstrates that the S. cerevisiae strain Y-89 possesses remarkable probiotic traits and can be used as a potential bio-therapeutic candidate for the prevention of colitis.
Collapse
Affiliation(s)
- Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
3
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Shen X, Ma C, Yang Y, Liu X, Wang B, Wang Y, Zhang G, Bian X, Zhang N. The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review. Foods 2024; 13:2719. [PMID: 39272484 PMCID: PMC11394447 DOI: 10.3390/foods13172719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
5
|
Shruthi B, Adithi G, Deepa N, Divyashree S, Sreenivasa MY. Probiotic and Functional Attributes of Yeasts Isolated from Different Traditional Fermented Foods and Products. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10342-z. [PMID: 39180663 DOI: 10.1007/s12602-024-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Though numerous bacteria have been used as probiotics by industries, at present, Saccharomyces boulardii and Saccharomyces cerevesiae are the only yeast probiotics which are industrially exploited. In view of this, yeast probiotics were isolated from traditional fermented foods and products collected from different parts of Karnataka, India. In this work, we have studied the probiotic attributes of ten yeast isolates isolated from different traditionally fermented foods and products. About 73 yeast isolates were initially isolated by serially diluting the samples and plating on the Potato Dextrose Agar (PDA) plates. The spot assay was performed to screen the yeast isolates against test pathogens. Ten isolates were selected based on their significant antimicrobial activity. These isolates were subjected to biochemical characterization and then assessed for probiotic properties. The ability of probiotics to endure at pH 2.0 and tolerate bile conditions (0.3%) are crucial attributes for the survival in the gastrointestinal tract (GIT). The yeast isolates were also assessed for cell surface hydrophobicity and autoaggregation capabilities. All the ten isolates showed endurance in GIT tract and > 40% of adhesion. The study further examined cholesterol assimilation, antioxidant and antagonistic properties of the yeasts. Subsequently, the molecular characterization was performed by isolating the DNA of yeast isolates by phenol-chloroform method and identified molecularly through sequencing of D1/D2 regions. The isolates tested negative for gelatinase and DNase and were non-haemolytic indicating they are safe for consumption. Among ten isolates, Meyerozyma guillermondii (MYSY23), Meyerozyma caribbica (MYSY22) and Meyerozyma guillermondii (MYSY19) showed significant results for all probiotic and functional characteristics with greater than 65% survivability in GIT tract and > 50% of antagonistic activity against test pathogens and also proved non-cytotoxic and safe. These findings suggest that yeasts with significant probiotic attributes could be recommended for various probiotic application.
Collapse
Affiliation(s)
- B Shruthi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - G Adithi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - N Deepa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - S Divyashree
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - M Y Sreenivasa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
6
|
Huang L, Wang Y, Zhong K, Jiang Z, Jia H, Chen S, Zhao Z, Chen X. In Vitro Characterization and Identification of Potential Probiotic Yeasts Isolated from Zaopocu, a Traditional Fermented Dregs Vinegar from Hainan Island. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10347-8. [PMID: 39160414 DOI: 10.1007/s12602-024-10347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Recently, there has been an increasing interest in researching fermented food-derived yeasts as probiotics because they offer a natural and diverse source of potential strains with unique functional properties and health benefits. In this study, 13 yeast strains isolated from Zaopocu (ZPC), a traditional fermented dregs vinegar on Hainan Island, China, were evaluated for their probiotic characteristics in vitro. Yeast identification was conducted through 5.8S-ITS region sequencing, revealing Kodamaea ohmeri as the predominantly isolated species (ZPC_Y3, Y5, Y6, Y11), followed by Pichia kudriavzevii (ZPC_Y2, Y13, Y14), Rhodotorula mucilaginosa (ZPC_Y9, Y10), Pichia fermentans (ZPC_Y8, Y12), Pichia kluyveri (ZPC_Y4), and Pichia occidentalis (ZPC_Y1). Except for ZPC_Y4, ZPC_Y8, and ZPC_Y12, all isolated yeasts exhibited stable growth at 37 °C. The survival rates of all test strains exceeded 60% under challenging conditions at pH = 2 and 0.3% bile salt, along with strong antioxidant activity (> 5 6%), notable autoaggregation (> 70%), and varying levels of cell hydrophobicity with xylene (ranging from 35.32 ± 8.57% to 89.73 ± 4.84%). In addition, all isolates showed resistance to multiple antibiotics, along with antagonistic activity, and were deemed safe as none exhibited hemolytic, gelatinase, or DNase activities. Significantly, two P. kudriavzevii strains (ZPC_Y2, Y14) exhibited the production of catalase, lipase, and β-galactosidase, along with the capacity to synthesize gamma-aminobutyric acid (GABA). In summary, this preliminary study represents the first attempt to identify and characterize potential probiotic yeast strains isolated from Zaopocu, providing a theoretical basis for exploring their application in developing novel therapeutic probiotics.
Collapse
Affiliation(s)
- Lin Huang
- Experimental Animal Center for Teaching, Hainan Medical University, Haikou, 571199, China
| | - Yuan Wang
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Keyan Zhong
- Experimental Animal Center for Teaching, Hainan Medical University, Haikou, 571199, China
| | - Ziyuan Jiang
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Hengkai Jia
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Shuying Chen
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Zhiyuan Zhao
- The First Clinical College, Hainan Medical University, Haikou, 571199, China
| | - Xinjun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Laboratory of Pathogenic Biology and Immunology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10327-y. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Tullio V. Probiotic Yeasts: A Developing Reality? J Fungi (Basel) 2024; 10:489. [PMID: 39057374 PMCID: PMC11277836 DOI: 10.3390/jof10070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Yeasts are gaining increasing attention for their potential health benefits as probiotics in recent years. Researchers are actively searching for new yeast strains with probiotic properties (i.e, Debaryomyces hansenii; Kluyveromyces marxianus; Yarrowia lipolytica; Pichia hudriavzevii; and Torulaspora delbrueckii) from various sources, including traditional fermented foods, the human gut, and the environment. This exploration is expanding the pool of potential probiotic yeasts beyond the well-studied Saccharomyces boulardii. Research suggests that specific yeast strains possess properties that could be beneficial for managing conditions like inflammatory bowel disease, irritable bowel syndrome, skin disorders, and allergies. Additionally, probiotic yeasts may compete with pathogenic bacteria for adhesion sites and nutrients, thereby inhibiting their growth and colonization. They might also produce antimicrobial compounds that directly eliminate harmful bacteria. To achieve these goals, the approach that uses probiotics for human health is changing. Next-generation yeast probiotics are emerging as a powerful new approach in the field of live biotherapeutics. By using genetic engineering, scientists are able to equip these tools with specialized capabilities. However, most research on these probiotic yeasts is still in its early stages, and more clinical trials are needed to confirm their efficacy and safety for various health conditions. This review could provide a brief overview of the situation in this field.
Collapse
Affiliation(s)
- Vivian Tullio
- Department of Public Health and Pediatrics, University of Turin, via Santena 9; 10126 Turin, Italy
| |
Collapse
|
9
|
Pal BB, Bandagi RV, Pebbili KK, Rathod R, Kotak B, Dhanaki G, Shah S. Effectiveness of Saccharomyces boulardii CNCM I-745 in Adult Indian Patients with Diarrhoea: A Real-world, Multicentre, Retrospective, Comparative Study. Drugs Real World Outcomes 2024; 11:309-316. [PMID: 38581564 PMCID: PMC11176121 DOI: 10.1007/s40801-024-00424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Multiple clinical studies have described the benefits of probiotic Saccharomyces boulardii (S. boulardii) CNCM I-745 against diarrhoea, but the real-world evidence supporting its use is lacking. OBJECTIVE To evaluate effectiveness of the S. boulardii CNCM I-745 group in a real-world setting. METHODS This was an electronic medical record (EMR)-based, retrospective, multicentre, comparative study in Indian adult patients presenting with diarrhoea managed between January 2020 and January 2022. Data of patients at the baseline visit, with a follow-up visit within 15 days, and who were administered S. boulardii CNCM I-745 (for the test group) or any other treatment modality excluding probiotics (for the control group) were considered. Effectiveness was evaluated on the basis of number of patients who did not complain of diarrhoea at follow-up. RESULTS Of 30,385 adult patients with diarrhoea, 270 patients prescribed S. boulardii CNCM I-745 were included, while the control group comprised 1457 patients. The baseline median age of the test group was 47 years (range 19-86 years), while it was 44 years (range 19-100 years) for the control group. The majority of patients in both study groups were females (56.7% in the test and 51.5% in the control group). Median duration between visits was 5 days (range 1-15 days) in both study groups. In all, 77.8% patients (95% CI 72.34-82.59) in the test group did not complain of diarrhoea at follow-up, while the proportion was 15.8% (95% CI 13.95-17.76) in the control group (p < 0.05). Odds ratio (OR) for absence of diarrhoea in the S. boulardii CNCM I-745 group versus the control group was 18.7 (95% CI 13.6-25.7, p < 0.05). For subgroups on concomitant antibiotics, a significant advantage was noted again for the test versus the control group (76.8% versus 18.4%; p < 0.05; OR: 14.7 with 95% CI 8.8-24.4; p < 0.05). CONCLUSION The effect of S. boulardii CNCM I-745 probiotic in controlling diarrhoea was better than anti-diarrhoeal and/or oral rehydration therapy in real-world clinical practice. The effect was similar even with concomitant antibiotic usage.
Collapse
Affiliation(s)
| | | | - Kranthi Kiran Pebbili
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Rahul Rathod
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Bhavesh Kotak
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Gauri Dhanaki
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Snehal Shah
- Department of Clinical Insights, Healthplix Technologies, Bangalore, India
| |
Collapse
|
10
|
Rodríguez Machado A, Caro CM, Hurtado-Murillo JJ, Gomes Lobo CJ, Zúñiga RN, Franco W. Unconventional Yeasts Isolated from Chilean Honey: A Probiotic and Phenotypic Characterization. Foods 2024; 13:1582. [PMID: 38790882 PMCID: PMC11120828 DOI: 10.3390/foods13101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 05/26/2024] Open
Abstract
This study explores the potential probiotic properties of yeasts isolated from various Chilean honeys, focusing on Ulmo, Quillay, and Mountain honeys. Six yeast strains were identified, including Zygosaccharomyces rouxii, Candida sp., Schizosaccharomyces pombe, Rhodosporidiobolus ruineniae, Clavispora lusitaniae, and Metschnikowia chrysoperlae. Phenotypic characterization involved assessing their fermentative performance, ethanol and hops resistance, and cross-resistance. Ethanol concentration emerged as a limiting factor in their fermentative performance. The probiotic potential of these yeasts was evaluated based on resistance to high temperatures, low pH, auto-aggregation capacity, survival in simulated in vitro digestion (INFOGEST method), and antimicrobial activity against pathogens like Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis. Three yeasts, Zygosaccharomyces rouxii, Schizosaccharomyces pombe, and Metschnikowia chrysoperlae, exhibited potential probiotic characteristics by maintaining cell concentrations exceeding 106 CFU/mL after in vitro digestion. They demonstrated fermentative abilities and resistance to ethanol and hops, suggesting their potential as starter cultures in beer production. Despite revealing promising probiotic and technological aspects, further research is necessary to ascertain their viability in producing fermented foods. This study underscores the innovative potential of honey as a source for new probiotic microorganisms and highlights the need for comprehensive investigations into their practical applications in the food industry.
Collapse
Affiliation(s)
- Adrian Rodríguez Machado
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 6904411, Chile; (A.R.M.); (J.J.H.-M.); (C.J.G.L.)
| | - Camila Mella Caro
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmas 3360, Ñuñoa, Santiago 7800003, Chile; (C.M.C.); (R.N.Z.)
| | - John J. Hurtado-Murillo
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 6904411, Chile; (A.R.M.); (J.J.H.-M.); (C.J.G.L.)
| | - Cristian J. Gomes Lobo
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 6904411, Chile; (A.R.M.); (J.J.H.-M.); (C.J.G.L.)
| | - Rommy N. Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmas 3360, Ñuñoa, Santiago 7800003, Chile; (C.M.C.); (R.N.Z.)
| | - Wendy Franco
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 6904411, Chile; (A.R.M.); (J.J.H.-M.); (C.J.G.L.)
- Department of Health Sciences, Nutrition Career, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 6904411, Chile
| |
Collapse
|
11
|
Yu JX, Chen X, Zang SG, Chen X, Wu YY, Wu LP, Xuan SH. Gut microbiota microbial metabolites in diabetic nephropathy patients: far to go. Front Cell Infect Microbiol 2024; 14:1359432. [PMID: 38779567 PMCID: PMC11109448 DOI: 10.3389/fcimb.2024.1359432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes and a major cause of end-stage renal disease, which has a severe impact on the quality of life of patients. Strict control of blood sugar and blood pressure, including the use of renin-angiotensin-aldosterone system inhibitors, can delay the progression of diabetic nephropathy but cannot prevent it from eventually developing into end-stage renal disease. In recent years, many studies have shown a close relationship between gut microbiota imbalance and the occurrence and development of DN. This review discusses the latest research findings on the correlation between gut microbiota and microbial metabolites in DN, including the manifestations of the gut microbiota and microbial metabolites in DN patients, the application of the gut microbiota and microbial metabolites in the diagnosis of DN, their role in disease progression, and so on, to elucidate the role of the gut microbiota and microbial metabolites in the occurrence and prevention of DN and provide a theoretical basis and methods for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-Pei Wu
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| | - Shi-Hai Xuan
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| |
Collapse
|
12
|
Sica P, Domingues MA, Mota LA, Pinto AU, Baptista AAS, Horii J, Abdalla AL, Baptista AS. How does active yeast supplementation reduce the deleterious effects of aflatoxins in Wistar rats? A radiolabeled assay and histopathological study. World J Microbiol Biotechnol 2024; 40:164. [PMID: 38630373 PMCID: PMC11023971 DOI: 10.1007/s11274-024-03981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study was to investigate the mechanisms by which yeasts (Saccharomyces cerevisiae) control the toxic effects of aflatoxins, which are not yet fully understood. Radiolabeled aflatoxin B1 (AFB13H) was administered by gavage to Wistar rats fed with aflatoxin (AflDiet) and aflatoxin supplemented with active dehydrated yeast Y904 (AflDiet + Yeast). The distribution of AFB13H and its metabolites were analyzed at 24, 48 and 72 h by tracking back of the radioactivity. No significant differences were observed between the AflDiet and AflDiet + Yeast groups in terms of the distribution of labeled aflatoxin. At 72 h, for the AflDiet group the radiolabeled aflatoxin was distributed as following: feces (79.5%), carcass (10.5%), urine (1.7%), and intestine (7.4%); in the AflDiet + Yeast the following distribution was observed: feces (76%), carcass (15%), urine (2.9%), and intestine (4.9%). These values were below 1% in other organs. These findings indicate that even after 72 h considerable amounts of aflatoxins remains in the intestines, which may play a significant role in the distribution and metabolism of aflatoxins and its metabolites over time. The presence of yeast may not significantly affect this process. Furthermore, histopathological examination of hepatic tissues showed that the presence of active yeast reduced the severity of liver damage caused by aflatoxins, indicating that yeasts control aflatoxin damage through biochemical mechanisms. These findings contribute to a better understanding of the mechanisms underlying the protective effects of yeasts against aflatoxin toxicity.
Collapse
Affiliation(s)
- Pietro Sica
- Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsenvej, Frederiksberg, 1870, Denmark.
| | - Maria Antonia Domingues
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Layna Amorim Mota
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Alana Uchôa Pinto
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | | | - Jorge Horii
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Adibe Luiz Abdalla
- Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo, 303, Centenario Avenue, Piracicaba, Sao Paulo, 13400-970, Brazil
| | - Antonio Sampaio Baptista
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| |
Collapse
|
13
|
Rahimi D, Sadeghi A, Kashaninejad M, Ebrahimi M. Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan. Heliyon 2024; 10:e28452. [PMID: 38560170 PMCID: PMC10979270 DOI: 10.1016/j.heliyon.2024.e28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Considering biosafety concerns and survivability limitations of probiotics (PRO) under different stresses, application of postbiotics and encapsulated PRO has received considerable attentions. Accordingly, the objective of the present study was to investigate the postbiotic capabilities of a potential PRO yeast isolate and the effect of encapsulation with alginate (Alg) and chitosan (Ch) on its survival under SGI conditions. Sequencing results of the PCR products led to the identification of Saccharomyces cerevisiae as the selected potential PRO yeast isolated from wheat germ sourdough. High survival of the isolate under simulated gastrointestinal (SGI) conditions (95.74%), its proper adhesion abilities, as well as its potent inhibitory activity against Listeria monocytogenes (75.84%) and Aspergillus niger (77.35%) were approved. Interestingly, the yeast cell-free supernatant (CFS) showed the highest antioxidant (84.35%) and phytate-degrading (56.19%) activities compared to the viable and heat-dead cells of the isolate. According to the results of the HPLC-based assay, anti-ochratoxin A (OTA) capability of the dead cells was also significantly (P < 0.05) higher than that of the viable cell. Meanwhile, the yeast CFS had no anti-OTA and antimicrobial activities against the foodborne bacteria and fungi tested. Further, microencapsulation of the yeast isolate in Alg beads coated layer-by-layer with Ch (with 77.02% encapsulation efficacy and diameter of 1059 μm based on the field emission scanning electron microscopy analysis) significantly enhanced its survivability under SGI conditions in comparison with the free cells. In addition, electrostatic cross-linking between negatively charged carboxylic groups of Alg and positively charged amino groups of Ch was verified in accordance with Fourier transform infrared and zeta potential data. Human and/or industrial food trials in future are needed for practical applications of these emerging ingredients.
Collapse
Affiliation(s)
- Delasa Rahimi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdi Kashaninejad
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Ebrahimi
- Food, Drug and Natural Products Health Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
14
|
Agarbati A, Moretti L, Canonico L, Ciani M, Comitini F. Agro-ecosystem of honeybees as source for native probiotic yeasts. World J Microbiol Biotechnol 2024; 40:147. [PMID: 38538981 PMCID: PMC10972988 DOI: 10.1007/s11274-024-03941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024]
Abstract
Probiotic microorganisms are used to improve the health and wellness of people and the research on this topic is of current relevance and interest. Fifty-five yeasts, coming from honeybee's ecosystem and belonging to Candida, Debaryomyces, Hanseniaspora, Lachancea, Metschnikowia, Meyerozyma, Starmerella and Zygosacchromyces genera and related different species, were evaluated for the probiotic traits. The resistance to gastrointestinal conditions, auto-aggregation, cell surface hydrophobicity or biofilm formation abilities as well as antimicrobial activity against common human pathogenic bacteria were evaluated. The safety analysis of strains was also carried out to exclude any possible negative effect on the consumer's health. The influence of proteinase treatment of living yeasts and their adhesion to Caco-2 cells were also evaluated. The greatest selection occurred in the first step of survival at the acidic pH and in the presence of bile salts, where more than 50% of the strains were unable to survive. Equally discriminating was the protease test which allowed the survival of only 27 strains belonging to the species Hanseniaspora guilliermondii, Hanseniaspora uvarum, Metschnikowia pulcherrima, Metschnikowia ziziphicola, Meyerozyma caribbica, Meyerozyma guilliermondii, Pichia kluyveri, Pichia kudriavzevii and Pichia terricola. An integrated analysis of the results obtained allowed the detection of seven yeast strains with probiotic aptitudes, all belonging to the Meyerozyma genus, of which three belonging to M. guillermondii and four belonging to M. caribbica species.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Laura Moretti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Laura Canonico
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
15
|
Leal Maske B, Murawski de Mello AF, da Silva Vale A, Prado Martin JG, de Oliveira Soares DL, De Dea Lindner J, Soccol CR, de Melo Pereira GV. Exploring diversity and functional traits of lactic acid bacteria in traditional vinegar fermentation: A review. Int J Food Microbiol 2024; 412:110550. [PMID: 38199016 DOI: 10.1016/j.ijfoodmicro.2023.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Vinegar has been used for centuries as a food preservative, flavor enhancer, and medicinal agent. While commonly known for its sour taste and acidic properties due to acetic acid bacteria metabolism, vinegar is also home to a diverse community of lactic acid bacteria (LAB). The main genera found during natural fermentation include Lactobacillus, Lacticaseibacillus, Lentilactobacillus, Limosilactbacillus, Leuconostoc, and Pedicoccus. Many of the reported LAB species fulfill the probiotic criteria set by the World Health Organization (WHO). However, it is crucial to acknowledge that LAB viability undergoes a significant reduction during vinegar fermentation. While containing LAB, none of the analyzed vinegar met the minimum viable amount required for probiotic labeling. To fully unlock the potential of vinegar as a probiotic, investigations should be focused on enhancing LAB viability during vinegar fermentation, identifying strains with probiotic properties, and establishing appropriate dosage and consumption guidelines to ensure functional benefits. Currently, vinegar exhibits substantial potential as a postbiotic product, attributed to the high incidence and growth of LAB in the initial stages of the fermentation process. This review aims to identify critical gaps and address the essential requirements for establishing vinegar as a viable probiotic product. It comprehensively examines various relevant aspects, including vinegar processing, total and LAB diversity, LAB metabolism, the potential health benefits linked to vinegar consumption, and the identification of potential probiotic species.
Collapse
Affiliation(s)
- Bruna Leal Maske
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil; SENAI Institute of Innovation in Electrochemistry, Curitiba, PR, Brazil
| | | | - Alexander da Silva Vale
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | | | | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná (UFPR), Department of Bioprocess Engineering and Biotechnology, Curitiba, PR, Brazil
| | | |
Collapse
|
16
|
Khedr M, Youssef FS, El-Kattan N, Abozahra MS, Selim MN, Yousef A, Khalil KMA, Mekky AE. FolE gene expression for folic acid productivity from optimized and characterized probiotic Lactobacillus delbrueckii. J Genet Eng Biotechnol 2023; 21:169. [PMID: 38108957 PMCID: PMC10728034 DOI: 10.1186/s43141-023-00603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Lactobacillus delbrueckii was one of the most common milk lactic acid bacterial strains (LAB) which characterized as probiotic with many health influencing properties. RESULTS Among seven isolates, KH1 isolate was the best producer of folic acid with 100 µg/ml after 48 h of incubation; FolE gene expression after 24 h of incubation was in the highest value in case of KH1 with three folds. Lactose was the best carbon source for this KH1, besides the best next isolates KH80 and KH98. The selected three LAB isolates were identified through 16S rDNA as Lactobacillus delbrueckii. These three isolates have high tolerance against acidic pH 2-3; they give 45, 10, and 22 CFUs at pH 3, besides 9, 6, and 4 CFUs at pH2, respectively. They also have resistance against elevated bile salt range 0.1-0.4%. KH1 recorded 99% scavenging against 97.3% 1000 µg/ml ascorbic acid. Docking study exhibits the binding mode of folic acid which exhibited an energy binding of - 8.65 kcal/mol against DHFR. Folic acid formed four Pi-alkyl, Pi-Pi, and Pi-sigma interactions with Ala9, Ile7, Phe34, and Ile60. Additionally, folic acid interacted with Glu30 and Asn64 by three hydrogen bonds with 1.77, 1.76, and 1.96 Å. CONCLUSION LAB isolates have probiotic properties, antioxidant activity, and desired organic natural source for folic acid supplementation that improve hemoglobin that indicated by docking study interaction.
Collapse
Affiliation(s)
- Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt.
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University, Giza, 1221, Egypt
| | - Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza, Egypt
| | - Mahmoud S Abozahra
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt
| | - Mohammed N Selim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33433, USA
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, 12622, Cairo, Egypt
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Al ryada, Egypt
| | - Kamal M A Khalil
- Genetic Engineering and Biotechnology Division, Genetics and Cytology Department, National Research Centre, 33 El-Buhouth Street, Dokki, 12622, Cairo, Egypt
| | - Alsayed E Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt
| |
Collapse
|
17
|
Asghari KM, Dolatkhah N, Ayromlou H, Mirnasiri F, Dadfar T, Hashemian M. The effect of probiotic supplementation on the clinical and para-clinical findings of multiple sclerosis: a randomized clinical trial. Sci Rep 2023; 13:18577. [PMID: 37903945 PMCID: PMC10616192 DOI: 10.1038/s41598-023-46047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelination disease of the central nervous system (CNS). The gut-brain axis involves communication between the nervous, endocrine, and immune systems. Probiotics can positively impact immune and inflammatory responses by regulating gut microbiota. A total of 40 MS patients (average age of 34.38 ± 6.65) were examined to determine the effect of the Saccharomyces boulardii supplement for four months compared to a placebo. The results showed that the Saccharomyces boulardii significantly decreased the inflammatory marker high-sensitivity C-reactive protein (hs-CRP) compared to the placebo (P < 0.001). The serum antioxidant capacity (TAC) also increased significantly in the probiotic group compared to the placebo (p = 0.004). Both the probiotic and placebo groups showed a reduction in the oxidative stress indicator malondialdehyde (MDA), but there was no significant difference between the two groups. Pain intensity (measured by Visual Analogue Scale) and fatigue severity (measured by Fatigue Severity Scale) significantly decreased in the probiotic group compared to the placebo (p = 0.004 and p = 0.01, respectively). The probiotic group experienced significant improvement in some quality of life scales (measured by 36-Item Short Form Survey) and somatic and social dysfunction subscale of General Health Questionnaire scores compared to the placebo group (p = 0.01). The study suggests that the Saccharomyces boulardii probiotic supplement may benefit inflammatory markers, oxidative stress indicators, pain, fatigue, and quality of life in MS patients.
Collapse
Affiliation(s)
- Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran.
| | - Hormoz Ayromlou
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mirnasiri
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Dadfar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, USA
| |
Collapse
|
18
|
Gopalan S, Ganapathy S, Mitra M, Neha, Kumar Joshi D, Veligandla KC, Rathod R, Kotak BP. Unique Properties of Yeast Probiotic Saccharomyces boulardii CNCM I-745: A Narrative Review. Cureus 2023; 15:e46314. [PMID: 37927652 PMCID: PMC10621882 DOI: 10.7759/cureus.46314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
Probiotics, both bacterial and yeast, have long been associated with a beneficial health history and human well-being. Among yeasts, Saccharomyces is a genus that is efficacious in rendering better human health, with Saccharomyces boulardii (S. boulardii) CNCM I-745 being classified as a probiotic agent. The present review highlights the unique properties of S. boulardii and its rolein the prevention of antibiotic-associated diarrhea (AAD) and pediatric acute gastroenteritis (PAGE) in comparison to bacterial probiotics. Its unique properties,such as viability over a wide pH range, inability to acquire antibiotic resistance genes, and property to achieve a steady state rapidly, have given S. boulardii an edge over bacterial probiotics. In AAD patients, prophylactic use of S. boulardii has shown a significantly lower risk of AAD (in comparison to controls) and restored the diversity of gut microbiota. Among Indian children with PAGE, S. boulardii CNCM I-745 was found superior to Lactobacillus rhamnosus GG and four strains of Bacillus clausii in shortening the duration of diarrhea and reducing the length of hospital stay. S. boulardii CNCM I-745 being considered a safe probiotic for use in children and adults also finds recommendations in several international guidelines for the management of acute diarrhea. The current review discusses evidence for the proven efficacy and safety of S. boulardii CNCM I-745 as a probiotic for preventing gastrointestinal disorders.
Collapse
Affiliation(s)
- Sarath Gopalan
- Pediatrics, Madhukar Rainbow Children's Hospital, New Delhi, IND
| | | | - Monjori Mitra
- Pediatrics, Institute of Child Health (ICH), Kolkata, IND
| | - Neha
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | | | | | - Rahul Rathod
- Ideation and Clinical Research/Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | - Bhavesh P Kotak
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| |
Collapse
|
19
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
20
|
Staniszewski A, Kordowska-Wiater M. Probiotic Yeasts and How to Find Them-Polish Wines of Spontaneous Fermentation as Source for Potentially Probiotic Yeasts. Foods 2023; 12:3392. [PMID: 37761101 PMCID: PMC10529123 DOI: 10.3390/foods12183392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
One approach towards maintaining healthy microbiota in the human gastrointestinal tract is through the consumption of probiotics. Until now, the majority of probiotic research has focused on probiotic bacteria, but over the last few years more and more studies have demonstrated the probiotic properties of yeast, and also of species besides the well-studied Saccharomyces cerevisiae var. boulardii. Probiotic strains have to present the ability to survive in harsh conditions of the host body, like the digestive tract. Must fermentation might be an example of a similar harsh environment. In the presented study, we examined the probiotic potential of 44 yeast strains isolated from Polish wines. The tested isolates belonged to six species: Hanseniaspora uvarum, Pichia kluyveri, Metschnikowia pulcherrima, Metschnikowia ziziphicola, Saccharomyces cerevisiae and Starmerella bacillaris. The tested strains were subjected to an assessment of probiotic properties, their safety and their other properties, such as enzymatic activity or antioxidant properties, in order to assess their potential usefulness as probiotic yeast candidates. Within the most promising strains were representatives of three species: H. uvarum, M. pulcherrima and S. cerevisiae. H. uvarum strains 15 and 16, as well as S. cerevisiae strain 37, showed, among other features, survivability in gastrointestinal tract conditions exceeding 100%, high hydrophobicity and autoaggregation, had no hemolytic activity and did not produce biogenic amines. The obtained results show that Polish wines might be a source of potential probiotic yeast candidates with perspectives for further research.
Collapse
Affiliation(s)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
21
|
Muche N, Geremew T, Jiru TM. Isolation and characterization of potential probiotic yeasts from Ethiopian injera sourdough. 3 Biotech 2023; 13:300. [PMID: 37581092 PMCID: PMC10423192 DOI: 10.1007/s13205-023-03729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
This study aimed to isolate and characterize potential probiotic yeasts from Ethiopian injera sourdough and the study was conducted by collecting samples from Gondar and Bahir Dar cities, Ethiopia. The potential yeasts were isolated and identified using morphological, physiological, biochemical and molecular based analysis. Promising isolates were selected to further investigate their in vitro probiotic properties, including survival at different temperatures (25, 30, 37, and 42 °C), acidic pH (2, 3, 4 and 5), bile salt (0.1, 0.3, and 0.5%), and osmotolerance (20, 30, 40, and 50% glucose concentration), antimicrobial activities, proteolytic and lipolytic activities as well as resistance to four antibiotics. From 20 samples, 38 isolates were obtained. Among these, 10 produced low or non-hydrogen sulfide and were selected for further work. Further screening tests revealed that five isolates (G1N1, G2N4, G3N1, G8N1, and B6N3) were able tolerate and grow at 37 °C, with harsh conditions of the human digestive tract like low pH, bile salt, and higher osmotic effect. The maximum growth OD values were recorded at 37 °C by isolate G4N1 (OD value (0.6667), while G3N1 exhibited a maximum growth OD value of 0.4227 at pH 2. On the other hand, G2N4 gave a maximum OD value of 0.8800 at 0.3% bile salt concentration. The promising isolates were sequenced and identified to species level. Based on phylogenetic tree analysis, all the five probiotic yeast isolates had one common ancestor and belonging to Saccharomyces cerevisiae (G1N1 and G2N4), Candida humilis (G3N1 and B6N3), and Pichia kudriavzevii (G8N1). This study revealed that Ethiopian injera sourdough could be potential source of different probiotic yeast strains. Strong emphasis should be given about the use of probiotic yeasts that are isolated from Ethiopian fermented foods.
Collapse
Affiliation(s)
- Nigus Muche
- Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| | - Tsehayneh Geremew
- Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| | - Tamene Milkessa Jiru
- Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, P.O.Box:196, Gondar, Ethiopia
| |
Collapse
|
22
|
Latif AS, Saparbekova AA, Akhmedova ZR, Kaldybekova G, Daugaliyeva ST. Probiotic yeast Saccharomyces cerevisiae Az-12 isolated from pomegranate juice presented inhibitory effects against pathogenic bacteria. BRAZ J BIOL 2023; 83:e271997. [PMID: 37585928 DOI: 10.1590/1519-6984.271997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/04/2023] [Indexed: 08/18/2023] Open
Abstract
The potential probiotic yeast was isolated from the Kyzyl Anor pomegranate variety growing in the Turkestan region (Kazakhstan). The yeast strain was identified as Saccharomyces cerevisiae Az-12. Molecular genetic identification was carried out using the Sanger sequencing method. The degree of homology of the S. cerevisiae Az-12 strain with the strain MH608341.1 Saccharomyces cerevisiae isolate extr03 was 99.65%. Antagonistic effect of the yeast against pathogenic bacteria was confirmed according inhibition zones for Staphylococcus aureus 13.5 ± 0.05 mm; the inhibition zones for Escherichia coli 12.8 ± 0.05 mm; and 10.7 ± 0.05 mm for Pseudomonas aeruginosa. Scanning microscopy of S. cerevisiae Az-12 and S. aureus confirmed the adhesive ability of the yeast cell surface to S. aureus. S. cerevisiae Az-12 were chosen as the most promising, as they are able to quickly ferment juices. Functional drinks containing pomegranate juice and yeast with a probiotic effect can be considered as a useful synbiotic product formulation.
Collapse
Affiliation(s)
- A S Latif
- M. Auezov South Kazakhstan University, Department of Biotechnology, Shymkent, Kazakhstan
| | - A A Saparbekova
- M. Auezov South Kazakhstan University, Department of Biotechnology, Shymkent, Kazakhstan
| | - Z R Akhmedova
- Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Department of Environmental Biotechnology, Tashkent, Uzbekistan
| | - G Kaldybekova
- M. Auezov South Kazakhstan University, Department of Biotechnology, Shymkent, Kazakhstan
| | - S T Daugaliyeva
- Institute of Microbiology and Virology, Laboratory of Molecular Genetics, Almaty, Kazakhstan
| |
Collapse
|
23
|
Egea MB, de Oliveira Filho JG, Lemes AC. Investigating the Efficacy of Saccharomyces boulardii in Metabolic Syndrome Treatment: A Narrative Review of What Is Known So Far. Int J Mol Sci 2023; 24:12015. [PMID: 37569390 PMCID: PMC10418856 DOI: 10.3390/ijms241512015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is characterized by complex metabolic changes involving a cluster of co-occurring conditions, such as abdominal obesity, high blood pressure, high fasting plasma glucose, high serum triglycerides, and high LDL cholesterol levels or low HDL cholesterol levels. The incidence and risk factors of MetS occurrence increase every year. It is estimated that MetS affects approximately 30% of the population of some countries. Therefore, novel strategies are being studied to reduce the negative impact of having an unbalanced diet and a lack of physical activity. One of these strategies is the administration of probiotic microorganisms, such as the yeast Saccharomyces boulardii, which has been associated with several beneficial health effects (including modulation of the intestinal microbiota and improvement of the inflammatory, antioxidant, antibacterial, antitumor, and anti-inflammatory profiles). Thus, the objective of this study was to review the risk factors of MetS occurrence and the beneficial effects of S. boulardii ingestion in the treatment of MetS. Here, we critically evaluate the treatment necessary to promote these benefits. Using the pre-established inclusion criteria, eight studies were reviewed, including five animal and three human studies. The results reported the regulation of the lipid profile, modulation of the intestinal microbiota and gene expression, and a decrease in mass gain as positive results when S. boulardii was administered. Although more experiments are needed to validate these results, especially using human models, there is a trend toward improvement in MetS and a reduction in its risk factors with the administration of S. boulardii.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde 75901-970, Brazil
| | | | - Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
| |
Collapse
|
24
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Tenea GN, Anrango Cajas B, Carlosama Sanchez B. Inhibitory-like Substances Produced by Yeasts Isolated from Andean Blueberries: Prospective Food Antimicrobials. Foods 2023; 12:2435. [PMID: 37444173 DOI: 10.3390/foods12132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Natural agents from microorganisms have emerged as suitable options to replace chemical preservatives in foods. In this study, the antibacterial activity of cell-free supernatant (CFS) from five native yeasts (Saccharomyces cerevisiae Lev6 and Lev30, C. pseudointermedia Lev8, Candida intermedia Lev9, C. parapsilosis Lev15) and the reference S. boulardi SSB, was evaluated against some indicator food pathogens. The generation of antimicrobials was reliant on strain-, and sugar-supplemented media, which supported yeast growth established at 30 °C and 200 rpm for 48 h. Treatment with proteinase K and catalase was unable to completely abolish the inhibitory effect, indicating that the active components are likely complex combinations of acids, proteins, hydrogen peroxide, and other metabolites. Although there was no impact on Listeria monocytogenes, exposure to CFS and extracellular fractions obtained through precipitation with methanol (PPm) at 120 °C for 60 min significantly (p < 0.05) increased the inhibitory activity against Escherichia coli, Salmonella enterica, Kosakonia cowanii, and Staphylococcus aureus, indicating that the inhibitory activity was stimulated by heat. Likewise, a synergistic inhibitory action against Listeria was obtained following the pretreatment of PPm with EDTA (ethylenediaminetetraacetic acid). These activities were yeast strain-dependent, with Lev6, Lev8, and Lev30 showing the highest activity. In addition, a heat-stable low-molecular-mass molecule under 5 kDa was detected in Lev30. Further research is required to evaluate the mode of action and characterize the composition of the released molecules in the CFS in order to develop a novel biocontrol agent based on yeasts.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| | - Blanca Anrango Cajas
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| | - Bladimir Carlosama Sanchez
- Biofood and Nutraceutics Research and Development Group (GIDIBAN), Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Av. 17 de Julio s-21, Barrio El Olivo, Ibarra 100150, Ecuador
| |
Collapse
|
27
|
Lee K, Jeong JW, Shim JJ, Hong HS, Kim JY, Lee JL. Lactobacillus fermentum HY7302 Improves Dry Eye Symptoms in a Mouse Model of Benzalkonium Chloride-Induced Eye Dysfunction and Human Conjunctiva Epithelial Cells. Int J Mol Sci 2023; 24:10378. [PMID: 37373526 DOI: 10.3390/ijms241210378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
(1) We investigated the effects of the Lactobacillus fermentum HY7302 (HY7302) in a mouse model of benzalkonium chloride (BAC)-induced dry eye, and the possibility of using HY7302 as a food supplement for preventing dry eye. (2) The ocular surface of Balb/c mice was exposed to 0.2% BAC for 14 days to induce dry eye (n = 8), and the control group was treated with the same amount of saline (n = 8). HY7302 (1 × 109 CFU/kg/day, 14 days, n = 8) was orally administered daily to the mice, and omega-3 (200 mg/kg/day) was used as a positive control. To understand the mechanisms by which HY7302 inhibits BAC-induced dry eye, we performed an in vitro study using a human conjunctival cell line (clone-1-5c-4). (3) The probiotic HY7302 improved the BAC-induced decreases in the corneal fluorescein score and tear break-up time. In addition, the lactic acid bacteria increased tear production and improved the detached epithelium. Moreover, HY7302 lowered the BAC-induced increases in reactive oxygen species production in a conjunctival cell line and regulated the expression of several apoptosis-related factors, including phosphorylated protein kinase B (AKT), B-cell lymphoma protein 2 (Bcl-2), and activated caspase 3. Also, HY7302 alleviated the expression of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and IL-8, and also regulated the matrix metallopeptidase-9 production in the conjunctival cell line. (4) In this study, we showed that L. fermentum HY7302 helps prevent dry eye disease by regulating the expression of pro-inflammatory and apoptotic factors, and could be used as a new functional food composition to prevent dry eye disease.
Collapse
Affiliation(s)
- Kippeum Lee
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Ji Woong Jeong
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jae Jung Shim
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Hyun Sook Hong
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Joo Yun Kim
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| | - Jung Lyoul Lee
- R & BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea
| |
Collapse
|
28
|
Comitini F, Canonico L, Agarbati A, Ciani M. Biocontrol and Probiotic Function of Non- Saccharomyces Yeasts: New Insights in Agri-Food Industry. Microorganisms 2023; 11:1450. [PMID: 37374952 DOI: 10.3390/microorganisms11061450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Fermented food matrices, including beverages, can be defined as the result of the activity of complex microbial ecosystems where different microorganisms interact according to different biotic and abiotic factors. Certainly, in industrial production, the technological processes aim to control the fermentation to place safe foods on the market. Therefore, if food safety is the essential prerogative, consumers are increasingly oriented towards a healthy and conscious diet driving the production and consequently the applied research towards natural processes. In this regard, the aim to guarantee the safety, quality and diversity of products should be reached limiting or avoiding the addition of antimicrobials or synthetic additives using the biological approach. In this paper, the recent re-evaluation of non-Saccharomyces yeasts (NSYs) has been reviewed in terms of bio-protectant and biocontrol activity with a particular focus on their antimicrobial power using different application modalities including biopackaging, probiotic features and promoting functional aspects. In this review, the authors underline the contribution of NSYs in the food production chain and their role in the technological and fermentative features for their practical and useful use as a biocontrol agent in food preparations.
Collapse
Affiliation(s)
- Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alice Agarbati
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
29
|
Sales AL, Iriondo-DeHond A, DePaula J, Ribeiro M, Ferreira IMPLVO, Miguel MAL, Del Castillo MD, Farah A. Intracellular Antioxidant and Anti-Inflammatory Effects and Bioactive Profiles of Coffee Cascara and Black Tea Kombucha Beverages. Foods 2023; 12:foods12091905. [PMID: 37174444 PMCID: PMC10177953 DOI: 10.3390/foods12091905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Kombucha is a functional beverage obtained through fermentation of sweetened Camellia sinensis infusion by a symbiotic culture of bacteria and yeasts that exerts many beneficial biological effects, mostly related to its antioxidant and anti-inflammatory effects. Alternative raw materials have been used to create new kombucha or kombucha-like products. Coffee is the most important food commodity worldwide and generates large amounts of by-products during harvest and post-harvest processing. The main coffee by-product is the dried fruit skin and pulp, popularly known as cascara. To date, no studies have evaluated the potential bioactivity of coffee cascara kombucha. In this study, we aimed to measure and compare the effects of infusions and kombuchas made with arabica coffee cascaras (n = 2) and black tea leaves (n = 1), fermented for 0, 3, 6, and 9 days on the intracellular production of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) in model cells. Oxidative stress was induced in HK-2 cells with indoxyl sulfate (IS) and high glucose (G). Inflammation was induced with lipopolysaccharide (LPS) in RAW 264.7 macrophage. The contents of phenolic compounds, caffeine, and other physicochemical parameters were evaluated. To the best of our knowledge, this is the first study providing information on the bioactive profile and on the potential biological effects of coffee cascara kombucha. Fermentation caused the release of bound phenolic compounds from the infusions, especially total chlorogenic acids, with an average increase from 5.4 to 10.7 mg/100 mL (98%) and 2.6-3.4 mg/100 mL (30%) in coffee cascara and black tea kombucha, respectively, up to day 9. All evaluated beverages reduced (p < 0.0001) similarly the intracellular ROS (41% reduction, on average) and uric acid (10-55%) concentrations in HK-2 model cells, reversing the induced oxidative stress. All beverages also reduced (p < 0.0001, 81-90%) NO formation in LPS-induced macrophages, exhibiting an anti-inflammatory effect. These potential health benefits may be mostly attributed to polyphenols and caffeine, whose contents were comparable in all beverages. Coffee cascara showed similar potential to C. sinensis to produce healthy beverages and support sustainable coffee production.
Collapse
Affiliation(s)
- Amanda L Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Juliana DePaula
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Ribeiro
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal
| | - Marco Antonio L Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro21941-902, Brazil
| | - María Dolores Del Castillo
- Laboratório de Biociencia de Alimentos, Instituto de Investigación em Ciencias de La Alimentación (CIAL) CSIC-UAM, Calle Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
30
|
Hu Q, Yu L, Zhai Q, Zhao J, Tian F. Anti-Inflammatory, Barrier Maintenance, and Gut Microbiome Modulation Effects of Saccharomyces cerevisiae QHNLD8L1 on DSS-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2023; 24:ijms24076721. [PMID: 37047694 PMCID: PMC10094816 DOI: 10.3390/ijms24076721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The use of probiotics has been considered as a new therapy option for ulcerative colitis (UC), and yeast has recently received widespread recommendation for human health. In this study, the probiotic characteristics of four yeast strains, Saccharomyces boulardii CNCMI-745, Kluyveromyces marxianus QHBYC4L2, Saccharomyces cerevisiae QHNLD8L1, and Debaryomyces hansenii QSCLS6L3, were evaluated in vitro; their ability to ameliorate dextran sulfate sodium (DSS)-induced colitis was investigated. Among these, S. cerevisiae QHNLD8L1 protected against colitis, which was reflected by increased body weight, colon length, histological injury relief, decreased gut inflammation markers, and intestinal barrier restoration. The abundance of the pathogenic bacteria Escherichia–Shigella and Enterococcaceae in mice with colitis decreased after S. cerevisiae QHNLD8L1 treatment. Moreover, S. cerevisiae QHNLD8L1 enriched beneficial bacteria Lactobacillus, Faecalibaculum, and Butyricimonas, enhanced carbon metabolism and fatty acid biosynthesis function, and increased short chain fatty acid (SCFAs) production. Taken together, our results indicate the great potential of S. cerevisiae QHNLD8L1 supplementation for the prevention and alleviation of UC.
Collapse
Affiliation(s)
- Qianjue Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Mogmenga I, Somda MK, Ouattara CAT, Keita I, Dabiré Y, Diguță CF, Toma RC, Ezeogu LI, Ugwuanyi JO, Ouattara AS, Matei F. Promising Probiotic Properties of the Yeasts Isolated from Rabilé, a Traditionally Fermented Beer Produced in Burkina Faso. Microorganisms 2023; 11:microorganisms11030802. [PMID: 36985375 PMCID: PMC10051331 DOI: 10.3390/microorganisms11030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, research on yeasts as probiotics has gained more and more interest, which will allow the development of "new" products in the probiotics market. In this context, seventeen yeast strains isolated from Rabilé, a traditional beer produced in Burkina Faso, were assessed for their probiotic attributes. The yeast identification was performed by molecular methods, including PCR-RFLP and 5.8S-ITS region sequencing. Saccharomyces cerevisiae (14 strains) was the predominantly identified species, followed by Pichia kudriavzevii (2 strains) and Rhodotorula mucilaginosa (1 strain). Except for R. mucilaginosa, all yeast strains grew well at human temperature. The yeast strains showed high resistance when they were exposed to simulated gastrointestinal conditions. Auto-aggregation ability was between 70.20 ± 10.53% and 91.82 ± 1.96%, while co-aggregation with E. coli ranged from 24.92 ± 3.96% to 80.68 ± 9.53% and with S. enterica serovar Typhimurium from 40.89 ± 8.18% to 74.06 ± 7.94%. Furthermore, the hydrophobicity of isolated strains toward n-hexane was in the range from 43.17 ± 5.07% to 70.73 ± 2.42%. All yeast strains displayed high antioxidant capabilities, and the strains did not show hemolysis halos, such that they can be considered safe. Additionally, S. cerevisiae strains strongly inhibited the growth of foodborne pathogens. This is the first preliminary study to identify and characterize the yeast strains isolated from Rabilé with interesting probiotic properties.
Collapse
Affiliation(s)
- Iliassou Mogmenga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Centre Universitaire de Banfora, Université Nazi BONI, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Marius Kounbèsiounè Somda
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Cheik Amadou Tidiane Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Ibrahim Keita
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Yérobessor Dabiré
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Radu Cristian Toma
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Lewis I Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Jerry O Ugwuanyi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Aboubakar S Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| |
Collapse
|
32
|
Balli D, Cecchi L, Pieraccini G, Venturi M, Galli V, Reggio M, Di Gioia D, Furlanetto S, Orlandini S, Innocenti M, Mulinacci N. Millet Fermented by Different Combinations of Yeasts and Lactobacilli: Effects on Phenolic Composition, Starch, Mineral Content and Prebiotic Activity. Foods 2023; 12:foods12040748. [PMID: 36832825 PMCID: PMC9956183 DOI: 10.3390/foods12040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Millet is the sixth-highest yielding grain in the world and a staple crop for millions of people. Fermentation was applied in this study to improve the nutritional properties of pearl millet. Three microorganism combinations were tested: Saccharomyces boulardii (FPM1), Saccharomyces cerevisiae plus Campanilactobacillus paralimentarius (FPM2) and Hanseniaspora uvarum plus Fructilactobacillus sanfranciscensis (FPM3). All the fermentation processes led to an increase in minerals. An increase was observed for calcium: 254 ppm in FPM1, 282 ppm in FPM2 and 156 ppm in the unfermented sample. Iron increased in FPM2 and FPM3 (approx. 100 ppm) with respect the unfermented sample (71 ppm). FPM2 and FPM3 resulted in richer total phenols (up to 2.74 mg/g) compared to the unfermented sample (2.24 mg/g). Depending on the microorganisms, it was possible to obtain different oligopeptides with a mass cut off ≤10 kDalton that was not detected in the unfermented sample. FPM2 showed the highest resistant starch content (9.83 g/100 g) and a prebiotic activity on Bifidobacterium breve B632, showing a significant growth at 48 h and 72 h compared to glucose (p < 0.05). Millet fermented with Saccharomyces cerevisiae plus Campanilactobacillus paralimentarius can be proposed as a new food with improved nutritional properties to increase the quality of the diet of people who already use millet as a staple food.
Collapse
Affiliation(s)
- Diletta Balli
- Department of NEUROFARBA and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.-Ce.R.A), University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Manuel Venturi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Viola Galli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy
| | - Marta Reggio
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Serena Orlandini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Marzia Innocenti
- Department of NEUROFARBA and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.-Ce.R.A), University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.-Ce.R.A), University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
- Correspondence:
| |
Collapse
|
33
|
Siangpro N, Chuakrut S, Sirimanapong W, Tanasupawat S, Phongsopitanun W, Meksiriporn B, Boonnorat J, Sarin S, Kucharoenphaibul S, Jutakanoke R. Lactiplantibacillus argentoratensis and Candida tropicalis Isolated from the Gastrointestinal Tract of Fish Exhibited Inhibitory Effects against Pathogenic Bacteria of Nile Tilapia. Vet Sci 2023; 10:vetsci10020129. [PMID: 36851433 PMCID: PMC9958883 DOI: 10.3390/vetsci10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Nile tilapia is one of the most consumed farmed fish in the world. The outbreak of pathogenic bacterial diseases causes high mortality rates and economic losses in Nile tilapia farming. Antibiotic administrations are commonly utilized to inhibit and prevent bacterial infections. However, antibiotics are expensive and cause serious concerns for antibiotic resistance in fish that can be potentially transferred to humans. As an alternative solution, probiotics can be used to prevent infection of pathogenic bacteria in fish. In this work, both bacteria and yeast were isolated from fish gastrointestinal tracts and their inhibitory activity against Nile tilapia pathogenic bacteria was evaluated, as well as other probiotic properties. In this study, 66 bacteria and 176 acid tolerant yeasts were isolated from fish gastrointestinal tracts. Of all isolated microorganisms, 39 bacterial and 15 yeast isolates with inhibitory effect against pathogens were then examined for their probiotic properties (acidic and bile salt resistance, adhesion potential, and biofilm formation), formation of antibacterial factor survival rate under simulated gastrointestinal fluid, and safety evaluation. AT8/5 bacterial isolate demonstrated probiotic properties and the highest inhibition against all 54 tested pathogens while YON3/2 yeast isolate outperformed the inhibitory effect among all yeast isolates. These two probiotic isolates were further identified by 16S rDNA and the D1/D2 domain of 26S rDNA sequence analysis for bacterial and yeast identification, respectively. AT8/5 and YON3/2 showed the highest similarity to Lactiplantibacillus argentoratensis and Candida tropicalis, respectively. This is the first report on isolated L. argentoratensis and C. tropicalis with antipathogenic bacteria of Nile tilapia properties. Collectively, AT8/5 and YON3/2 could be potentially used as promising alternatives to existing antibiotic methods to prevent pathogenic bacteria infection in Nile tilapia farming.
Collapse
Affiliation(s)
- Noppadon Siangpro
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Songkran Chuakrut
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73110, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyarit Meksiriporn
- Department of Biology, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Siripun Sarin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Siriwat Kucharoenphaibul
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Fungal Research, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964614
| |
Collapse
|
34
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
35
|
Cheirsilp B, Mekpan W, Sae-ear N, Billateh A, Boukaew S. Enhancing Functional Properties of Fermented Rice Cake by Using Germinated Black Glutinous Rice, Probiotic Yeast, and Enzyme Technology. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Vergara SC, Leiva MJ, Mestre MV, Vazquez F, Nally MC, Maturano YP. Non-saccharomyces yeast probiotics: revealing relevance and potential. FEMS Yeast Res 2023; 23:foad041. [PMID: 37777839 DOI: 10.1093/femsyr/foad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.
Collapse
Affiliation(s)
- Silvia Cristina Vergara
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María José Leiva
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
37
|
Diguță CF, Mihai C, Toma RC, Cîmpeanu C, Matei F. In Vitro Assessment of Yeasts Strains with Probiotic Attributes for Aquaculture Use. Foods 2022; 12:foods12010124. [PMID: 36613340 PMCID: PMC9818403 DOI: 10.3390/foods12010124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate in vitro the probiotic potential of three yeasts strains (BB06, OBT05, and MT07) isolated from agro-food natural sources. Screening was performed, including several functional, technological, and safety aspects of the yeast strains, in comparison to a reference Saccharomyces boulardii, to identify the ones with suitable probiotic attributes in aquaculture. The yeast strains were identified by 5.8S rDNA-ITS region sequencing as Metschnikowia pulcherrima OBT05, Saccharomyces cerevisiae BB06, and Torulaspora delbrueckii MT07. All yeast strains were tolerant to different temperatures, sodium chloride concentrations, and wide pH ranges. S. cerevisiae BB06 showed a strong and broad antagonistic activity. Moreover, the S. cerevisiae strain exhibited a high auto-aggregation ability (92.08 ± 1.49%) and good surface hydrophobicity to hexane as a solvent (53.43%). All of the yeast strains have excellent antioxidant properties (>55%). The high survival rate in the gastrointestinal tract (GIT) can promote yeast isolates as probiotics. All yeast strains presented a resistance pattern to the antibacterial antibiotics. Non-hemolytic activity was detected. Furthermore, freeze-drying with cryoprotective agents maintained a high survival rate of yeast strains, in the range of 74.95−97.85%. According to the results obtained, the S. cerevisiae BB06 strain was found to have valuable probiotic traits.
Collapse
Affiliation(s)
- Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Constanța Mihai
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Correspondence:
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Carmen Cîmpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
38
|
Poshadri A, H. W D, U. M K, S.D K. Bacillus Coagulans and its Spore as Potential Probiotics in the Production of Novel Shelf- Stable Foods. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synbiotic foods with therapeutic activities have been beneficial to gut health and immunity development, including Bacillus coagulans as the probiotic microorganism. It is preferred over other lactic acid bacteria (LAB) as it can produce spores. It is grown in the pH range of 5.5 to 6.2 and releases spores at 37 °C. These microbial spores can withstand environments with high temperatures, acidic conditions, and salinity, making it a viable probiotic organism for production of novel shelf-stable foods. It has become an essential ingredient in the functional food industry due to its probiotic characteristics and great resistance to stressful conditions. For extensive commercial use and a wide range of food applications, apart from probiotic characteristics, a probiotic organism must be cost-effective, convenient and remain viable throughout the processing, storage and consumption. The non-spore- forming lactic acid bacteria can be utilized to make probiotic products and fermented dairy products under controlled processing and storage conditions. The spore- forming probiotic organism can be delivered into the human gut through novel food products derived from cereals, legumes, fruits and vegetables, confectionery products, and meat and non-dairy products. This has led to the development of convenient and shelf-stable non-dairy probiotics. These non-dairy-based probiotics are cheaper, resilient against various processing conditions, high in bioactive components, and can mitigate the risk of lifestyle diseases and reduce. Further, lactose intolerance is associated with the consumption of dairy probiotics. Therefore, this review aimed to assess the utilization of probiotic Bacillus coagulans spores in emerging shelf-stable novel non-dairy products with probiotic potential.
Collapse
Affiliation(s)
- A. Poshadri
- 1Department of Food Processing Technology, Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Deshpande H. W
- 2Department of Food Microbiology and Safety, Vasantrao Naik Marathwada Agricultural University, Parbhani, India
| | - Khodke U. M
- 3College of Food Technology, Vasantrao Naik Marathwada Agricultural University, Parbhani, India
| | - Katke S.D
- 1Department of Food Processing Technology, Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| |
Collapse
|
39
|
Isolation of Yeasts from Some Homemade Fermented Cow-Milk Products of Sikkim and Their Probiotic Characteristics. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dahi and chhurpi are the homemade, mildly acidic and mouthfeel fermented dairy products of Sikkim in India. Since yeasts co-exist among traditional fermented dairy foods, we believe that some species of yeasts may have some probiotic properties. Hence, the present study is aimed at screening some probiotic yeasts from dahi and chhurpi. A total of 3438 yeasts were isolated from 40 samples of dahi (1779 isolates) and 40 chhurpi (1659 isolates) and were preliminarily screened for probiotic properties on the basis of survival in low pH, resistance to bile salts and the percentage of hydrophobicity, out of which only 20 yeasts were selected for in vitro and genetic screening of probiotic properties. Saccharomyces cerevisiae DJT-2 and Debaryomyces prosopidis CPA-55 showed the highest hydrophobicity of 97.54% and 98.33%, respectively. S. cerevisiae DRC-42 and S. cerevisiae CGI-29 showed 93.88% and 91.69% auto-aggregation, respectively. All yeasts showed co-aggregation properties against pathogenic bacteria. Kluyveromyces marxianus DPA-41 and Pichia kudriavzevii CNT-3 showed excellent deconjugation activities. Probiotic genes for acid tolerance, bile tolerance, adhesion and antimicrobial activity were detected in S. cerevisiae DAO-17, K. marxianus DPA-41, S. cerevisiae CKL-10 and P. kudriavzevii CNT-3. Based on the results of in vitro and genetic screening of probiotic yeasts strains, S. cerevisiae DAO-17 (dahi), S. cerevisiae CKL-10 (chhurpi), P. kudriavzevii CNT-3 (chhurpi) and K. marxianus DPA-41(dahi) were selected as the potential probiotic yeasts.
Collapse
|
40
|
Gong C, Guan W, Liu X, Zheng Y, Li Z, Zhang Y, Zhu S, Jiang H, Cui Z, Wu S. Biomimetic Bacteriophage-Like Particles Formed from Probiotic Extracts and NO Donors for Eradicating Multidrug-Resistant Staphylococcus aureus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206134. [PMID: 36111564 DOI: 10.1002/adma.202206134] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/27/2022] [Indexed: 05/22/2023]
Abstract
Effectively clearing multidrug-resistant bacteria through nonantibiotic treatments is crucial for the recovery of infected tissues in favorable biological environments. Herein, a thermally responsive donor of cell-messenger nitric oxide (NO) is combined with extracts of food-grade Lactobacillus casei to form biomimetic phage-like microparticles with a tailspike structure. These particles can invade bacterial membranes and release NO to disrupt nitrogen and respiratory metabolisms, which initiates the programmed death of multidrug-resistant Staphylococcus aureus (MRSA) for inducing lysis, like the bacterial virus. Experiments suggest that these microparticles can also weaken bacterial toxicity and provide favorable conditions for cell proliferation because of the continuously released NO. By encapsulating these microparticles into graphene-oxide-doped polymers, a dual-mode antibacterial hydrogel (DMAH) can be constructed. In vivo results reveal that the DMAH achieves a long-time sterilization of MRSA with 99.84 ± 0.13% antibacterial rate in the dark because of the phage-like performance of the biomimetic microparticles. In its other antibacterial mode, DMAH subjected to 20 min of near-infrared irradiation release NO, which, together with the photothermal effect, synergistically damages bacterial cell membranes to achieve very fast disinfection (97.13 ± 0.41% bactericidal rate). This multifunctional hydrogel can also significantly accelerate wound healing due to the phage-like particles.
Collapse
Affiliation(s)
- Caixin Gong
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Wei Guan
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd Road 106#, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| |
Collapse
|
41
|
Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Cai J, Xing L, Zhang W, Fu L, Zhang J. Selection of Potential Probiotic Yeasts from Dry-Cured Xuanwei Ham and Identification of Yeast-Derived Antioxidant Peptides. Antioxidants (Basel) 2022; 11:antiox11101970. [PMID: 36290693 PMCID: PMC9598758 DOI: 10.3390/antiox11101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to select potential probiotic yeasts from dry-cured Xuanwei ham and investigate yeast-derived antioxidant peptides. The results showed that two strains (XHY69 and XHY79) were selected as potential probiotic yeasts and identified as Yamadazyma triangularis. The two yeasts showed tolerance under pH 2.5 and 1% bile salt, in addition to protease activity, auto-aggregation, antibacterial, and antioxidant activities. The peptide fraction (MW < 3 kDa) isolated from XHY69 fermentation broth, named XHY69AP, showed higher radical scavenging activities than glutathione at a concentration of 4.5 mg/mL (p < 0.05). The fraction (AP-D10) was purified from XHY69AP by gel filtration chromatography and reversed-phase high performance liquid chromatography, and then further identified by a UHPLC-LTQ-Orbitrap mass spectrometer. The molecular weight of all 55 purified sequences was distributed between 0.370 and 0.735 kDa. Among these seven novel peptides, Tyr-Pro-Leu-Pro (YPLP), Ala-Gly-Pro-Leu (AGPL), Gly-Pro-Phe-Pro (GPFP), and Ala-Pro-Gly-Gly-Phe (APGGF) were identified. All sequences were abundant in hydrophobic amino acids, especially proline residue. Among these novel peptides, YPLP possessed the highest ABTS scavenging rate (75.48%). The present work selects two new probiotic potential yeasts from dry-cured Xuanwei ham that are effective to yield novel antioxidant peptides.
Collapse
|
44
|
Luo S, Wang Y, Kang X, Liu P, Wang G. Research progress on the association between mastitis and gastrointestinal microbes in dairy cows and the effect of probiotics. Microb Pathog 2022; 173:105809. [PMID: 36183956 DOI: 10.1016/j.micpath.2022.105809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Mastitis in dairy cows affects milk quality and thereby constrains the development of the dairy industry. A clear understanding of the pathogenesis of mastitis can help its treatment. Mastitis is caused by the invasion of pathogenic bacteria into the mammary gland through the mammary ducts. However, recent studies suggested that an endogenous entero-mammary pathway in dairy cattle might also be playing an important role in regulating mastitis. Also, probiotic intervention regulating host gut microbes has become an interesting tool to control mastitis. This review discusses the association of gastrointestinal microbes with mastitis and the mechanism of action of probiotics in dairy cows to provide new ideas for the management of mastitis in large-scale dairy farms.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yuxia Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Panpan Liu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
45
|
Methner Y, Weber N, Kunz O, Zarnkow M, Rychlik M, Hutzler M, Jacob F. Investigations into metabolic properties and selected nutritional metabolic byproducts of different non-Saccharomyces yeast strains when producing nonalcoholic beer. FEMS Yeast Res 2022; 22:6675809. [PMID: 36007922 PMCID: PMC9629496 DOI: 10.1093/femsyr/foac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Nonalcoholic beers are becoming increasingly popular, in part due to consumers' awareness of a healthier lifestyle. Additionally, consumers are demanding diversification in the product range, which can be offered by producing nonalcoholic beers using non-Saccharomyces yeasts for fermentation to create a wide variety of flavors. So far, little is known about the nutritionally relevant byproducts that these yeasts release during wort fermentation and whether these yeasts can be considered safe for food fermentations. To gain insights into this, the B vitamins of four different nonalcoholic beers fermented with the yeast species Saccharomycodes ludwigii, Cyberlindnera saturnus (two strains), and Kluyveromyces marxianus were analyzed. Furthermore, a total of 16 beers fermented with different non-Saccharomyces yeast strains were analyzed for biogenic amines. Additionally, stress tolerance tests were performed at 37°C and in synthetic human gastric juice in vitro. B vitamins were found in the four nonalcoholic beers in nutritionally relevant amounts so they could serve as a supplement for a balanced diet. Biogenic amines remained below the limit of determination in all 16 beers, and thus likely had no influence, while the stress tolerance tests gave a first indication that seven yeast strains could possibly tolerate the human gastric juice milieu.
Collapse
Affiliation(s)
- Yvonne Methner
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Nadine Weber
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Oliver Kunz
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 306 Carmody Road, St Lucia QLD 4072, Australia
| | - Mathias Hutzler
- Corresponding author: Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany. Tel: +49 8161 71-3100; Fax: +49 8161 71-4181; E-mail:
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| |
Collapse
|
46
|
Chan MZA, Liu SQ. Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Tamang JP, Lama S. Probiotic Properties of Yeasts in Traditional Fermented Foods and Beverages. J Appl Microbiol 2022; 132:3533-3542. [DOI: 10.1111/jam.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| | - Sonam Lama
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| |
Collapse
|
48
|
Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Front Bioeng Biotechnol 2022; 10:851768. [PMID: 35519613 PMCID: PMC9065261 DOI: 10.3389/fbioe.2022.851768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Kluyveromyces marxianus is an emerging non-conventional food-grade yeast that is generally isolated from diverse habitats, like kefir grain, fermented dairy products, sugar industry sewage, plants, and sisal leaves. A unique set of beneficial traits, such as fastest growth, thermotolerance, and broad substrate spectrum (i.e., hemi-cellulose hydrolysates, xylose, l-arabinose, d-mannose, galactose, maltose, sugar syrup molasses, cellobiose, and dairy industry) makes this yeast a particularly attractive host for applications in a variety of food and biotechnology industries. In contrast to Saccharomyces cerevisiae, most of the K. marxianus strains are apparently Crabtree-negative or having aerobic-respiring characteristics, and unlikely to endure aerobic alcoholic fermentation. This is a desirable phenotype for the large-scale biosynthesis of products associated with biomass formation because the formation of ethanol as an undesirable byproduct can be evaded under aerobic conditions. Herein, we discuss the current insight into the potential applications of K. marxianus as a robust yeast cell factory to produce various industrially pertinent enzymes, bioethanol, cell proteins, probiotic, fructose, and fructo-oligosaccharides, and vaccines, with excellent natural features. Moreover, the biotechnological improvement and development of new biotechnological tools, particularly CRISPR-Cas9-assisted precise genome editing in K. marxianus are delineated. Lastly, the ongoing challenges, concluding remarks, and future prospects for expanding the scope of K. marxianus utilization in modern biotechnology, food, feed, and pharmaceutical industries are also thoroughly vetted. In conclusion, it is critical to apprehend knowledge gaps around genes, metabolic pathways, key enzymes, and regulation for gaining a complete insight into the mechanism for producing relevant metabolites by K. marxianus.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
- *Correspondence: Hairong Cheng, ; Muhammad Bilal,
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Lin
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hairong Cheng, ; Muhammad Bilal,
| |
Collapse
|
49
|
Akter B, Mohd Salleh R, Ng Wai Chun C, Abu Bakar MH, Furusawa G. Identification and growth study of potential probiotic isolated from pineapple, watermelon, and banana peels. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Beauty Akter
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Rabeta Mohd Salleh
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Charles Ng Wai Chun
- Bioprocess Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Go Furusawa
- Centre For Chemical Biology Universiti Sains Malaysia Gelugor Penang Malaysia
| |
Collapse
|
50
|
Effect of Nanoencapsulated Alginate-Synbiotic on Gut Microflora Balance, Immunity, and Growth Performance of Growing Rabbits. Polymers (Basel) 2021; 13:polym13234191. [PMID: 34883694 PMCID: PMC8659830 DOI: 10.3390/polym13234191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
A synbiotic comprising Saccharomyces cerevisiae yeast (SCY) and Moringa oleifera leaf extract (MOLE) has been encapsulated using nanotechnology. This duo is used as a dietary supplement for growing rabbits. Physicochemical analyses, in vitro antimicrobial activity, and gastrointestinal system evaluation were used to evaluate the quality of the nanofabricated synbiotic. The in vivo study was conducted using 40-day-old male growing rabbits (n = 16 rabbits/group) to evaluate the effect of the nanofabricated synbiotic on the health and growth performance of examined rabbits. Rabbits were equally allocated into four groups; (a) NCS, which received a basal diet supplemented with a noncapsulated 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, (b) LCS: those receiving a nanoencapsulated 5.5 × 1012 CFU SCY + 0.075 g MOLE/kg diet, (c) HCS: those receiving an 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, and (d) CON: those receiving a basal diet without treatment (control). The treatments continued from day 40 to day 89 of age. During the experimental period, growth performance variables, including body weight (BW), feed consumption, BW gain, and feed conversion ratio were recorded weekly. Blood samples were collected on day 40 of age and immediately before the start of the treatments to confirm the homogeneity of rabbits among groups. On day 89 of age, blood samples, intestinal, and cecal samples were individually collected from eight randomly selected rabbits. The size and polydispersity index of the nanofabricated synbiotic were 51.38 nm and 0.177, respectively. Results revealed that the encapsulation process significantly improved yeast survival through the gastrointestinal tract, specifically in stomach acidic conditions, and significantly increased in vitro inhibitory activities against tested pathogens. Furthermore, treatments had no negative effects on hematobiochemical variables but significantly improved levels of blood plasma, total protein, and insulin-like growth factor-l. Compared to the CON, NCS, and LCS treatments, the HCS treatment increased the amount of intestinal and cecal yeast cells (p < 0.05) and Lactobacillus bacteria (p < 0.05) and decreased number of Salmonella (p < 0.05) and Coliform (p = 0.08) bacteria. Likewise, both LCS and HCS significantly improved the small intestine and cecum lengths compared to CON and NCS. The HCS treatment also significantly improved BW gain and feed conversion compared to CON treatment, whereas the NCS and LCS treatments showed intermediate values. Conclusively, the nanoencapsulation process improved the biological efficiency of the innovative synbiotic used in this study. A high dose of encapsulated synbiotic balanced the gut microflora, resulting in the growth of rabbits during the fattening period.
Collapse
|