1
|
Dou P, Wang K, Ding N, Zheng Y, Hong H, Liu H, Tan Y, Luo Y. Sensory improvement and antioxidant enhancement in silver carp hydrolysate using prebiotic oligosaccharides: insights from the Maillard reaction. Food Funct 2024; 15:9888-9902. [PMID: 39254213 DOI: 10.1039/d4fo01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Our previous studies have highlighted the potential of silver carp hydrolysate (SCH) in managing chronic diseases. Unfortunately, its fishy smell and bitter taste limited consumer acceptance. Prebiotic oligosaccharides are often used as dietary supplements, ignoring their role as carbonyl ligands in the Maillard reaction to enhance food's sensory and antioxidant properties. This study aimed to improve SCH's sensory attributes and investigate its physicochemical properties and antioxidant activities using prebiotic oligosaccharides via the Maillard reaction. The results showed that xylo-oligosaccharide (XOS) had the highest reactivity among the oligosaccharides tested, and it greatly enhanced the taste and flavor of SCH, as well as its antioxidant activities (0.45 to 16.5 times). Specifically, XOS effectively reduced the fishy smell and bitter taste, imparting a caramel-like flavor and overall acceptability to SCH. The improved flavor profile was attributed to the increased presence of sulfur-containing and nitrogen oxide volatile flavor compounds, such as benzothiazole, methional, and furans, which also contributed to antioxidant effects. Sensory evaluation results indicated that SCH obtained from papain exhibited a stronger bitter taste than that obtained from alcalase. Additionally, XOS imparted a reddish-brown color to SCH due to the higher browning intensity. This study is the first to demonstrate that XOS in the Maillard reaction can effectively improve the undesirable flavor and taste of SCH while enhancing its antioxidant activities, providing a theoretical basis for developing SCH as a market-acceptable functional food ingredient.
Collapse
Affiliation(s)
- Peipei Dou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kai Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ning Ding
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Hong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Huaigao Liu
- Anhui Guotai Biotechnology Co., Ltd, Xuancheng, Anhui 242100, China
| | - Yuqing Tan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yongkang Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Shi Q, Xiao Y, Zhou Y, Tang W, Jiang F, Zhou X, Lu H. Comparison of Ultra-High-Pressure and Conventional Cold Brew Coffee at Different Roasting Degrees: Physicochemical Characteristics and Volatile and Non-Volatile Components. Foods 2024; 13:3119. [PMID: 39410154 PMCID: PMC11475540 DOI: 10.3390/foods13193119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The impact of the roasting degree on ultra-high-pressure cold brew (UHP) coffee remains unclear, although it has been found that UHP technology accelerates the extraction of cold brew (CB) coffee. Therefore, this study investigated the effects of three different degrees of roasting (light, medium, and dark) on the physicochemical characteristics, volatile and non-volatile components, and sensory evaluation of UHP coffee. Orthogonal partial least-squares-discriminant analysis (OPLS-DA) and principal component analysis (PCA) were used to assess the effects of different roasting degrees. The results showed that most physicochemical characteristics, including total dissolved solids (TDSs), extraction yield (EY), total titratable acidity (TTA), total sugars (TSs), and total phenolic content (TPC), of UHP coffee were similar to those of conventional CB coffee regardless of the degree of roasting. However, the majority of physicochemical characteristics, non-volatile components, including the antioxidant capacity (measured based on DPPH and ABTS) and melanoidin, caffeine, trigonelline, and CGA contents increased significantly with an increase in roasting degree. The sensory evaluation revealed that as the roasting degree rose, the nutty flavor, astringency, bitterness, body, and aftertaste intensities increased, while floral, fruity, and sourness attributes decreased. The HS-SPME-GC/MS analysis showed that most volatile components increased from light to dark roasting. Moreover, 15 representative differential compounds, including hazelnut pyrazine, linalool, butane-2,3-dione, and 3-methylbutanal, were identified by calculating the odor-active values (OAVs), indicating that these contributed significantly to the odor. The PCA showed that the distance between the three roasting degree samples in UHP coffee was smaller than that in CB coffee. Overall, the effect of roasting degrees on UHP coffee was less than that on CB coffee, which was consistent with the results of physicochemical characteristics, volatile components, and sensory evaluation.
Collapse
Affiliation(s)
- Qihan Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Ying Xiao
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Wenxiao Tang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Feng Jiang
- Coffee Professional Committee, Shanghai Technician Association, Shanghai 200050, China;
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Q.S.); (W.T.); (X.Z.)
| | - Hongxiu Lu
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China;
| |
Collapse
|
3
|
Narváez E, Zapata E, Dereix JD, Lopez C, Torijano-Gutiérrez S, Zapata J. A Comparative Analysis of Cold Brew Coffee Aroma Using the Gas Chromatography-Olfactometry-Mass Spectrometry Technique: Headspace-Solid-Phase Extraction and Headspace Solid-Phase Microextraction Methods for the Extraction of Sensory-Active Compounds. Molecules 2024; 29:3791. [PMID: 39202870 PMCID: PMC11357319 DOI: 10.3390/molecules29163791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coffee, one of the most widely consumed commodities globally, embodies a sensory experience deeply rooted in social, cultural, and hedonic contexts. The cold brew (CB) method, characterized by cold extraction, is a refreshing and unique alternative to traditional coffee. Despite its growing popularity, CB lacks defined preparation parameters and comprehensive analysis of its aromatic composition. In this study, we aimed to obtain a representative extract of the volatile matrix of CB and characterize the aroma of sensory-active compounds using advanced techniques such as headspace-solid-phase Microextraction (HS-SPME) and headspace-solid-phase extraction (HS-SPE) for volatile compound extraction, followed by gas chromatography-olfactometry-mass Spectrometry (GC-O-MS) for compound identification. Optimization of the HS-SPME parameters resulted in the identification of 36 compounds, whereas HS-SPE identified 28 compounds, which included both complementary and similar compounds. In HS-SPME, 15 compounds exhibited sensory activity with descriptors such as floral, caramel, sweet, and almond, whereas seven exhibited sensory activity with descriptors such as chocolate, floral, coffee, and caramel. This comprehensive approach to HS-SPME and HS-SPE aroma extraction with GC-O-MS offers an efficient methodology for characterizing the aroma profile of CB, paving the way for future research and quality standards for this innovative coffee beverage.
Collapse
Affiliation(s)
- Esteban Narváez
- Laboratory of Residue Analysis, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia; (E.N.); (E.Z.); (J.D.D.)
| | - Esteban Zapata
- Laboratory of Residue Analysis, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia; (E.N.); (E.Z.); (J.D.D.)
| | - Juan David Dereix
- Laboratory of Residue Analysis, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia; (E.N.); (E.Z.); (J.D.D.)
| | - Carlos Lopez
- Laboratory of Residue Analysis, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia; (E.N.); (E.Z.); (J.D.D.)
| | - Sandra Torijano-Gutiérrez
- SINBIOTEC Research Group, School of Engineering and Basic Sciences, University EIA, Calle 25 Sur # 42-73, Envigado 055428, Colombia;
| | - Julián Zapata
- Laboratory of Residue Analysis, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia; (E.N.); (E.Z.); (J.D.D.)
| |
Collapse
|
4
|
Amiri R, Akbari M, Moradikor N. Bioactive potential and chemical compounds of coffee. PROGRESS IN BRAIN RESEARCH 2024; 288:23-33. [PMID: 39168557 DOI: 10.1016/bs.pbr.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
For decades, coffee has held the distinction of being the most commercially prominent food product and the most universally consumed beverage worldwide. Since the inauguration of the inaugural coffee house in Mecca toward the conclusion of the 15th century, coffee consumption has experienced exponential growth across the globe. Coffee, renowned globally as a beloved beverage, contains a diverse array of compounds known to benefit health. Its prominent phytochemistry contributes to its favorable reputation. Caffeine, a primary constituent, leads this intricate blend of bioactive substances, each exerting various physiological effects. Coffee is rich in potassium, magnesium, and vitamin B3. It encompasses lactones, diterpenes (such as cafestol and kahweol), niacin, and trigonellin, serving as a precursor to vitamin B3. This chapter aims to review and investigate the bioactive potential and chemical compounds of coffee. In the current study, different compounds are discussed. In conclusion, coffee is containing different compounds that can be impacted by different factors such as geographical condition, processing condition, etc.
Collapse
Affiliation(s)
- Roonak Amiri
- Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran
| | - Mohsen Akbari
- Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran.
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
5
|
Marie L, Breitler JC, Bamogo PKA, Bordeaux M, Lacombe S, Rios M, Lebrun M, Boulanger R, Lefort E, Nakamura S, Motoyoshi Y, Mieulet D, Campa C, Legendre L, Bertrand B. Combined sensory, volatilome and transcriptome analyses identify a limonene terpene synthase as a major contributor to the characteristic aroma of a Coffea arabica L. specialty coffee. BMC PLANT BIOLOGY 2024; 24:238. [PMID: 38566027 PMCID: PMC10988958 DOI: 10.1186/s12870-024-04890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.
Collapse
Affiliation(s)
- Lison Marie
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France.
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France.
| | - Jean-Christophe Breitler
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Pingdwende Kader Aziz Bamogo
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | | | - Séverine Lacombe
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | - Maëlle Rios
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | - Marc Lebrun
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- QualiSud, University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, University of La Réunion, University of Avignon, Montpellier, F-34398, France
| | - Renaud Boulanger
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- QualiSud, University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, University of La Réunion, University of Avignon, Montpellier, F-34398, France
| | - Eveline Lefort
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Sunao Nakamura
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Yudai Motoyoshi
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Delphine Mieulet
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Claudine Campa
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Laurent Legendre
- INRAE, UR 1115 Plantes et Systèmes de Culture Horticoles, Site Agroparc, Avignon, 84914, France
| | - Benoît Bertrand
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| |
Collapse
|
6
|
Park H, Noh E, Kim M, Lee KG. Analysis of volatile and nonvolatile compounds in decaffeinated and regular coffee prepared under various roasting conditions. Food Chem 2024; 435:137543. [PMID: 37742465 DOI: 10.1016/j.foodchem.2023.137543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
This study investigated the effect of various roasting conditions on regular and decaffeinated green beans. Regular and decaffeinated green beans from Guatemala, Brazil, Ethiopia, and Colombia were prepared under light, medium, and dark roasting conditions. Analysis of the decaffeination-induced changes in nonvolatile compounds revealed that decaffeinated green coffee beans had significantly lower concentrations of trigonelline (25%) and total carbohydrates (16%) but a higher chlorogenic acid content (10-14%) than regular green coffee beans (bothp < 0.05). Flavor differences between regular and decaffeinated coffee were investigated by analysis of the volatile and nonvolatile compounds in roasted coffee beans. From the odor impact ratio values, 3-ethyl-2,5-dimethyl pyrazine, 5-methyl furfural, and guaiacol were primarily responsible for coffee flavor. 3-Ethyl-2,5-dimethyl pyrazine had 58% lower concentration in decaffeinated coffee than in regular coffee. This study is valuable in providing the chemical composition of decaffeinated coffee and way to improve the quality of decaffeinated coffee.
Collapse
Affiliation(s)
- Hyunbeen Park
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Eunjeong Noh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Mingyu Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
7
|
Chen S, Xiao Y, Tang W, Jiang F, Zhu J, Zhou Y, Ye L. Evaluation of Physicochemical Characteristics and Sensory Properties of Cold Brew Coffees Prepared Using Ultrahigh Pressure under Different Extraction Conditions. Foods 2023; 12:3857. [PMID: 37893750 PMCID: PMC10606293 DOI: 10.3390/foods12203857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Although cold brew coffee is becoming increasingly popular among consumers, the long coffee extraction time is not conducive to the further development of the market. This study explored the feasibility of ultrahigh pressure (UHP) to shorten the time required for preparing cold brew coffee. The effects of pressure and holding time on the physicochemical characteristics and sensory evaluation of UHP-assisted cold brew coffee were also determined. The extraction yield; total dissolved solid, total phenol, and melanoid content; antioxidant capacity; and trigonelline and chlorogenic acid contents of UHP-assisted cold brew coffee increased as the pressure increased. The extraction yield and the total dissolved solid, total phenol, total sugar, and chlorogenic acid and trigonelline contents were higher when the holding time was longer. The HS-SPME-GC/MS analysis demonstrated that the furan, aldehyde, and pyrazine contents in coffee increased as the pressure and holding time increased. The pressure did not significantly impact the concentrations of volatile components of esters and ketones in coffee samples. However, the increase in holding time significantly increased the ester and ketone contents. The sensory evaluation results revealed that as pressure rose, the intensities of nutty, fruity, floral, caramel, and sourness flavors increased, whereas bitterness and sweetness decreased. Longer holding time increased nutty, caramel, sour, bitter, sweet, and aftertaste flavors. Principal component analysis (PCA) results indicated that holding time is a more crucial factor affecting the physiochemical indices and flavor characteristics of coffee. UHP can shorten the preparation time of cold brew coffee. Pressure and holding time significantly affected the physiochemical indices and volatile components of UHP-assisted cold brew coffee. UHP-assisted cold brew coffee had lower bitterness, higher sweetness, and a softer taste than conventional cold brew coffee.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China (Y.Z.)
| | - Ying Xiao
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Wenxiao Tang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China (Y.Z.)
| | - Feng Jiang
- Coffee Professional Committee, Shanghai Technician Association, Shanghai 200050, China
| | - Jing Zhu
- Shanghai Acme Academic School, Shanghai 200062, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China (Y.Z.)
| | - Lin Ye
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China (Y.Z.)
| |
Collapse
|
8
|
Jiménez-Mendoza JA, Santos-Sánchez NF, Pérez-Santiago AD, Sánchez-Medina MA, Matías-Pérez D, García-Montalvo IA. Preliminary Analysis of Unsaturated Fatty Acid Profiles of Coffea arabica L., in Samples with a Denomination of Origin and Speciality of Oaxaca, Mexico. J Oleo Sci 2023; 72:153-160. [PMID: 36740249 DOI: 10.5650/jos.ess22254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In February 2020, Coffea arabica L. grown on the coast and in the Southern Sierra Madre of the state of Oaxaca, Mexico obtained the denomination of origin. Which does not have data on color and chemical composition, the first associated with the degree of roasting and the second with lipids (17-18%), as the group of compounds responsible, in part, for flavor, consistency, and may contribute to health benefits. In the present work, color was determined on the CIE L*a*b* scale and the unsaturated fatty acids by Nuclear Magnetic Resonance (NMR) of 1H and 13C in samples of medium roasted specialty coffee from the "Pluma" coffee-growing region, Oaxaca, Mexico. The average value of L* luminosity in ground coffee was 42.1 ± 0.1 reported for a light roast. Unsaturated fatty acids were quantified from the lipid fraction of the gr1 ound grain by NMR 1H and 13C, obtaining on average the highest abundance of linoleic (41.7 ± 0.5 by 1 H and 41.24 ± 0.5 by 13C), followed by oleic (9.2 ± 0.2 by 1H and 7.4 ± 0.2 by 13C) and linolenic (1.5 ± 0.1 by H and 1.1 ± 0.2 by 13C). This study indicates that 1H and 13C NMR spectroscopy is a useful tool for the quantification of linolenic, linoleic, and oleic fatty acids by the method of key signal shifts of these acids found in lipid samples in roasted coffee grains.
Collapse
Affiliation(s)
- Jesica Ariadna Jiménez-Mendoza
- Bioactive Principles Laboratory, Institute of Agroindustry. Technological University of the Mixteca.,Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | | | - Alma Dolores Pérez-Santiago
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Marco Antonio Sánchez-Medina
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Diana Matías-Pérez
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| | - Iván Antonio García-Montalvo
- Graduate Studies and Research Division, National Technological Institute of Mexico/Technological Institute of Oaxaca
| |
Collapse
|
9
|
Stępień KA, Krawczyk W, Giebułtowicz J. Dietary Supplements with Proline-A Comprehensive Assessment of Their Quality. Life (Basel) 2023; 13:life13020263. [PMID: 36836622 PMCID: PMC9958592 DOI: 10.3390/life13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Dietary supplements are food products commonly used worldwide to obtain nutritional and physiological effects. They can contain a wide variety of active substances and can be administered for health and disease. Their use can be beneficial if justified, and their quality is adequate. Unfortunately, data on the quality of supplements is scarce. As part of this work, we assess the quality of seven dietary supplements containing proline. The preparations were produced in the EU and the USA. The quality assessment consisted of the detection of potential impurities, the determination of the content of the main ingredient, and the release of proline. The technique used to analyse impurities and proline (Pro) content was liquid chromatography coupled with tandem mass spectrometry. We detected five contaminants. The main ingredient content was in the range of 73-121% in capsules and 103-156% in tablets. Five of the seven analysed dietary supplements released below 80% Pro (for each tablet/capsule at pH 1.2). One of the supplements may be inactive because a very low release of Pro was reported. The results, we hope, will increase consumer awareness of the quality of these preparations and result in a change in the regulations governing the marketing of these preparations, at least by making release testing mandatory.
Collapse
|
10
|
The Impact of Wet Fermentation on Coffee Quality Traits and Volatile Compounds Using Digital Technologies. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fermentation is critical for developing coffee’s physicochemical properties. This study aimed to assess the differences in quality traits between fermented and unfermented coffee with four grinding sizes of coffee powder using multiple digital technologies. A total of N = 2 coffee treatments—(i) dry processing and (ii) wet fermentation—with grinding levels (250, 350, 550, and 750 µm) were analysed using near-infrared spectrometry (NIR), electronic nose (e-nose), and headspace/gas chromatography–mass spectrometry (HS-SPME-GC-MS) coupled with machine learning (ML) modelling. Most overtones detected by NIR were within the ranges of 1700–2000 nm and 2200–2396 nm, while the enhanced peak responses of fermented coffee were lower. The overall voltage of nine e-nose sensors obtained from fermented coffee (250 µm) was significantly higher. There were two ML classification models to classify processing and brewing methods using NIR (Model 1) and e-nose (Model 2) values as inputs that were highly accurate (93.9% and 91.2%, respectively). Highly precise ML regression Model 3 and Model 4 based on the same inputs for NIR (R = 0.96) and e-nose (R = 0.99) were developed, respectively, to assess 14 volatile aromatic compounds obtained by GC-MS. Fermented coffee showed higher 2-methylpyrazine (2.20 ng/mL) and furfuryl acetate (2.36 ng/mL) content, which induces a stronger fruity aroma. This proposed rapid, reliable, and low-cost method was shown to be effective in distinguishing coffee postharvest processing methods and evaluating their volatile compounds, which has the potential to be applied for coffee differentiation and quality assurance and control.
Collapse
|
11
|
Occurrence of Furfural and Its Derivatives in Coffee Products in China and Estimation of Dietary Intake. Foods 2023; 12:foods12010200. [PMID: 36613415 PMCID: PMC9818524 DOI: 10.3390/foods12010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This is the first report on the content of furfural and its derivatives in coffee products in China. The concentrations of furfural and its derivatives in 449 sampled, commercially available coffee products in China were analyzed through a GC-MS technique, and the associated health risks were estimated. As a result, 5-hydroxymethyl furfural (5-HMF) was identified as the predominant derivative compound, with the highest concentration of 6035.0 mg/kg and detection frequency of 98.7%. The mean dietary exposures of 5-HMF, 5-MF(5-methylfurfural), and 2-F(2-furfural) in coffee products among Chinese consumers were 55.65, 3.00, and 3.23 μg/kg bw/day, respectively. The ranges of mean dietary intake of furfural and its derivatives based on age groups were all lower than the acceptable daily intake (ADI) and the toxicological concern threshold (TTC). Risk evaluation results indicate that coffee product intake did not pose potential risks to consumers. Notably, the analysis revealed that children aged 3-6 years had the highest mean exposure due to their low body weight.
Collapse
|
12
|
Rusinek R, Dobrzański B, Oniszczuk A, Gawrysiak-Witulska M, Siger A, Karami H, Ptaszyńska AA, Żytek A, Kapela K, Gancarz M. How to Identify Roast Defects in Coffee Beans Based on the Volatile Compound Profile. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238530. [PMID: 36500625 PMCID: PMC9737409 DOI: 10.3390/molecules27238530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Abstract
The aim of this study was to detect and identify the volatile compounds in coffee that was obtained in defect roast processes versus standard roasting and to determine the type and strength of the correlations between the roast defects and the volatile compound profile in roasted coffee beans. In order to achieve this goal, the process of coffee bean roasting was set to produce an underdeveloped coffee defect, an overdeveloped coffee defect, and defectless coffee. The "Typica" variety of Arabica coffee beans was used in this study. The study material originated from a plantation that is located at an altitude of 1400-2000 m a.s.l. in Huehuetenango Department, Guatemala. The analyses were carried out with the use of gas chromatography/mass spectrometry (GC-MS) and an electronic nose. This study revealed a correlation between the identified groups of volatile compounds and the following coffee roasting parameters: the time to the first crack, the drying time, and the mean temperatures of the coffee beans and the heating air. The electronic nose helped to identify the roast defects.
Collapse
Affiliation(s)
- Robert Rusinek
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Correspondence: ; Tel.: +48-81-744-50-61; Fax: +48-744-50-67
| | - Bohdan Dobrzański
- Pomology, Nursery and Enology Department, University of Life Sciences in Lublin, Głęboka 28, 20-400 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Marzena Gawrysiak-Witulska
- Department of Dairy and Process Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Hamed Karami
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Aleksandra Żytek
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Krzysztof Kapela
- Faculty of Agrobioengineering and Animal Husbandry, University of Natural Sciences and Humanities in Siedlce, ul. Prusa 14, 08-110 Siedlce, Poland
| | - Marek Gancarz
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| |
Collapse
|
13
|
Benefit-risk of coffee consumption and all-cause mortality: A systematic review and disability adjusted life year analysis. Food Chem Toxicol 2022; 170:113472. [DOI: 10.1016/j.fct.2022.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022]
|
14
|
Dippong T, Dan M, Kovacs MH, Kovacs ED, Levei EA, Cadar O. Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity. Foods 2022; 11:foods11193146. [PMID: 36230221 PMCID: PMC9563260 DOI: 10.3390/foods11193146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to investigate the ways in which the thermal behavior, composition, and volatile compound contents of roasted coffee beans depend on variety and roasting intensity. The thermal analysis revealed various transformations in coffee composition, namely, drying, water loss, and decomposition of polysaccharides, lipids, amino acids, and proteins. The results showed that volatile compounds are released differently in coffee depending on coffee type and degree of roasting. The most abundant volatile compounds present in the samples were 2-butanone, furan, 2-methylfuran, methyl formate, 2.3-pentanedione, methylpyrazine, acetic acid, furfural, 5-methyl furfural, and 2-furanmethanol. The total polyphenol contents ranged between 13.3 and 18.9 g gallic acid/kg, being slightly higher in Robusta than in Arabica varieties and in more intensely roasted beans compared to medium-roasted beans. The Robusta variety has higher mineral contents than Arabica, and the contents of most minerals (K, Ca, Mg, Fe, Cu, P, N, and S) increased with roasting intensity. Discrimination between coffee varieties and roasting intensities is possible based on mineral and polyphenol contents.
Collapse
Affiliation(s)
- Thomas Dippong
- Faculty of Science, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania
- Correspondence:
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Melinda Haydee Kovacs
- Research Institute for Analytical Instrumentation, National Institute for Research and Development in Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Emoke Dalma Kovacs
- Research Institute for Analytical Instrumentation, National Institute for Research and Development in Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Erika Andrea Levei
- Research Institute for Analytical Instrumentation, National Institute for Research and Development in Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation, National Institute for Research and Development in Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Galarza G, Figueroa JG. Volatile Compound Characterization of Coffee ( Coffea arabica) Processed at Different Fermentation Times Using SPME-GC-MS. Molecules 2022; 27:molecules27062004. [PMID: 35335365 PMCID: PMC8954866 DOI: 10.3390/molecules27062004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Coffee is a beverage that is consumed due to its flavor and fragrance. In this investigation, we demonstrated the relations between different dry fermentation processes of coffee (aerobic, anaerobic, and atmosphere modified with CO2) and fermentation times (0, 24, 48, 72, and 96 h), with pH, acidity, and seven volatile marker compounds of coffee. Volatile compounds were extracted by solid phase microextraction (SPME) and an analysis was performed by gas chromatography−mass spectrometry (GC−MS). A significant effect (p < 0.05) between the fermentation time and a decrease in pH was demonstrated, as well as between the fermentation time and increasing acidity (p < 0.05). Acetic acid was positively correlated with the fermentation time, unlike 2-methylpyrazine, 2-furanmethanol, 2,6-dimethylpyrazine, and 5-methylfurfural, which were negatively correlated with the fermentation time. The aerobic and anaerobic fermentation treatments obtained high affinity with the seven volatile marker compounds analyzed due to the optimal environment for the development of the microorganisms that acted in this process. In contrast, in the fermentation process in an atmosphere modified with CO2, a negative affinity with the seven volatile compounds was evidenced, because this gas inactivated the development of microorganisms and inhibited their activity in the fermentation process.
Collapse
|
16
|
Zhai X, Yang M, Zhang J, Zhang L, Tian Y, Li C, Bao L, Ma C, Abd El-Aty AM. Feasibility of Ultrasound-Assisted Extraction for Accelerated Cold Brew Coffee Processing: Characterization and Comparison With Conventional Brewing Methods. Front Nutr 2022; 9:849811. [PMID: 35369098 PMCID: PMC8973412 DOI: 10.3389/fnut.2022.849811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
A long extraction time for traditional cold coffee brewing considerably reduces the production efficiency of this type of beverage. Herein, a new ultrasound-assisted cold brewing (UAC) method was established. The feasibility of UAC was assessed by comparison with main physicochemical characteristics, non-volatile and volatile compounds in coffee extracts produced by hot brewing and conventional static cold brewing methods. Compared to the static cold brews, the levels of total dissolved solids, total lipids, proteins, and titrated acids of UAC coffee extracts increased by 6-26%, 10-21%, 26-31%, and 12-15%, respectively. Caffeine, chlorogenic acid, and trigonelline concentrations were also determined by HPLC. Based on the volatile profiles obtained by HS-SPME-GC/MS, the aroma compounds in UAC was significantly different (p < 0.05) from hot brews but similar to static cold ones, suggesting that ultrasonication compensated for the time of the static cold brewing, thereby considerably shortening the extraction time (1 h vs. 12 h). This work demonstrated that the combination of ultrasound-assisted with cold brew could produce coffee with good flavor and increase the extraction efficiency, which may provide an option for the acceleration of the cold brew coffee process.
Collapse
Affiliation(s)
- Xingchen Zhai
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Mengnan Yang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Lulu Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Yarong Tian
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Chaonan Li
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Lina Bao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Chao Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
17
|
Farag MA, Zayed A, Sallam IE, Abdelwareth A, Wessjohann LA. Metabolomics-Based Approach for Coffee Beverage Improvement in the Context of Processing, Brewing Methods, and Quality Attributes. Foods 2022; 11:foods11060864. [PMID: 35327289 PMCID: PMC8948666 DOI: 10.3390/foods11060864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Coffee is a worldwide beverage of increasing consumption, owing to its unique flavor and several health benefits. Metabolites of coffee are numerous and could be classified on various bases, of which some are endogenous to coffee seeds, i.e., alkaloids, diterpenes, sugars, and amino acids, while others are generated during coffee processing, for example during roasting and brewing, such as furans, pyrazines, and melanoidins. As a beverage, it provides various distinct flavors, i.e., sourness, bitterness, and an astringent taste attributed to the presence of carboxylic acids, alkaloids, and chlorogenic acids. To resolve such a complex chemical makeup and to relate chemical composition to coffee effects, large-scale metabolomics technologies are being increasingly reported in the literature for proof of coffee quality and efficacy. This review summarizes the applications of various mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolomics technologies in determining the impact of coffee breeding, origin, roasting, and brewing on coffee chemical composition, and considers this in relation to quality control (QC) determination, for example, by classifying defected and non-defected seeds or detecting the adulteration of raw materials. Resolving the coffee metabolome can aid future attempts to yield coffee seeds of desirable traits and best flavor types.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
- Correspondence: (M.A.F.); (L.A.W.)
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt;
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Ibrahim E. Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City 12566, Egypt;
| | - Amr Abdelwareth
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Ludger A. Wessjohann
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle, Germany
- Correspondence: (M.A.F.); (L.A.W.)
| |
Collapse
|
18
|
Wang X, Wang Y, Hu G, Hong D, Guo T, Li J, Li Z, Qiu M. Review on factors affecting coffee volatiles: from seed to cup. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1341-1352. [PMID: 34778973 DOI: 10.1002/jsfa.11647] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 05/05/2023]
Abstract
The objective of this review is to evaluate the influence of six factors on coffee volatiles. At present, the poor aroma from robusta or low-quality arabica coffee can be significantly improved by advanced technology, and this subject will continue to be further studied. On the other hand, inoculating various starter cultures in green coffee beans has become a popular research direction for promoting coffee aroma and flavor. Several surveys have indicated that shade and altitude can affect the content of coffee aroma precursors and volatile organic compounds (VOCs), which remain to be fully elucidated. The emergence of the new roasting process has greatly enriched the aroma composition of coffee. Cold-brew coffee is one of the most popular trends in coffee extraction currently, and its influence on coffee aroma is worthy of in-depth and detailed study. Omics technology will be one of the most important means to analyze coffee aroma components and their quality formation mechanism. A better understanding of the effect of each parameter on VOCs would assist coffee researchers and producers in the optimal selection of post-harvest parameters that favor the continuous production of flavorful and top-class coffee beans and beverages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Yanbing Wang
- College of Agriculture, Guangxi University, Nanning, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhongrong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|