1
|
Hao M, Lv Y, Xiong Y, Liu Y, Xu YJ, Ye Z. Comparative study of different pretreatment methods on peanut oil quality characteristics, anti-oxidation attributes, and phenolic compound compositions. Food Chem 2025; 464:141705. [PMID: 39503089 DOI: 10.1016/j.foodchem.2024.141705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
The peanuts heat pretreatment is a crucial step for the following oil extraction, influencing both efficiency and oil quality. The present study investigated the effects of oven roasting (OR, 150 °C, 25 min), infrared ray roasting (IRR, 150 °C, 25 min), and microwave roasting (MR, 700 W, 5 min) on the quality characteristics, anti-oxidation attributes, and phenolic compound compositions of peanut oil. All pretreatment methods changed the physicochemical properties and bioactive compounds of peanut oil. Notably, IRR resulted in the highest oxidation induction index (9.25 h) and enhanced free radical scavenging activity, with increases of 55 % (2,2-diphenyl-1-picrylhydrazyl (DPPH)) and 121 % (2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS)) compared with the control. Furthermore, the free phenolics content (Free-P) increased significantly, particularly with IRR, which was increased 6.00 times. Correlation analysis indicated that Free-P was the primary contributor to the anti-oxidation attributes of peanut oil. The results can provide valuable insights for optimizing peanut oil processing technologies.
Collapse
Affiliation(s)
- Mingfei Hao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center of cereal Fermentation and Food Biomanufacturing, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yaping Lv
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center of cereal Fermentation and Food Biomanufacturing, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Yuanyi Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center of cereal Fermentation and Food Biomanufacturing, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center of cereal Fermentation and Food Biomanufacturing, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center of cereal Fermentation and Food Biomanufacturing, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Zhan Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center of cereal Fermentation and Food Biomanufacturing, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
2
|
Cheng Q, Bao Y, Lin Q, Qi T, Zhang X. The effect of sesamol on endogenous substances and oxidative stability of walnut oil. Front Nutr 2024; 11:1476734. [PMID: 39483783 PMCID: PMC11525596 DOI: 10.3389/fnut.2024.1476734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
This study explored the effect of sesamol on the stability of walnut oil based on the changes of endogenous characteristics in the oxidation process, which provided a theoretical reference for the application of natural antioxidants in walnut oil. A total of 300 mg/kg sesamol (SP), compound antioxidant AC (sesamol 353.62 mg/kg, citric acid 149.60 mg/kg, and BHA 76.33 mg/kg) and 35% sesame oil (35%-SO) were added to walnut oil respectively; in addition, 200 mg/kg t-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), and citric acid were used as controls and blank walnut oil to study their effects on peroxide value, acid value, carbonyl compounds, conjugated olefins, phenols, flavonoids, sterols, vitamin E, β-carotene, and 51 fatty acids of walnut oil and their correlation between endogenous antioxidant components. The results showed that the addition of SP, 35%-SO, and AC could inhibit the increase of peroxide value, acid value, and carbonyl compounds in walnut oil, and could inhibit the decrease of β-carotene, total phenols, total sterols, and vitamin E. SP and 35%-SO could inhibit the decrease of total flavonoids, and several antioxidants could inhibit the decrease of endogenous antioxidant components in walnut oil. At the same time, it can better inhibit the change of unsaturated fatty acids in walnut oil. By the end of oxidation, the unsaturated fatty acids of blank walnut oil decreased by 10.31%, but AC, SP, and 35%-SO treatment groups increased by 10.90, 5.09 and 4.13%, respectively. Indicating that it had a certain protective effect on unsaturated fatty acids in walnut oil. There was a certain correlation between the endogenous substances of walnut oil. so the addition of several antioxidants can enhance the endogenous antioxidants of walnut oil, inhibit the oxidation of unsaturated fatty acids, and inhibit the increase of carbonyl compounds, codienes, acid value, and peroxide value. SP and AC have better antioxidant effects on walnut oil and improve the stability of walnut oil.
Collapse
Affiliation(s)
- Qin Cheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyuan Bao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qi Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tingmei Qi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinyong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Ma X, Zheng C, Zhou Q, Huang C, Wang W, Huang Y, Liu C. Comparison evaluation pretreatments on the quality characteristics, oxidative stability, and volatile flavor of walnut oil. Food Chem 2024; 448:139124. [PMID: 38554586 DOI: 10.1016/j.foodchem.2024.139124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
In this study, we applied various thermal pretreatment methods (e.g., hot-air, microwave, and stir-frying) to process walnut kernels, and conducted comparative analysis of the physicochemical properties, nutritional components, in vitro antioxidant activity, and flavor substances of the extracted walnut oil (WO). The results indicated that, thermal pretreatment significantly increased the extraction of total trace nutrients (e.g., total phenols, tocopherols, and phytosterols) in WO. The WO produced using microwave had 2316.71 mg/kg of total trace nutrients, closely followed by the stir-frying method, which yielded an 11.22% increase compared to the untreated method. The WO obtained by the microwave method had a higher Oxidative inductance period (4.05 h) and oil yield (2.48%). After analyzing the flavor in WO, we found that aldehydes accounted for 28.77% of the 73 of volatile compounds and 58.12% of the total flavor compound content in microwave-pretreated WO, these percentages were higher than those recorded by using other methods. Based on the comprehensive score obtained by the PCA, microwave-pretreatment might be a promising strategy to improve the quality of WO based on aromatic characteristics.
Collapse
Affiliation(s)
- Xuan Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chongbo Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Weijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Ying Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Changsheng Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
4
|
Lu X, Gao P, Lv Y, Zhang Y, Wang F. Comparison of chemical compositions and aroma characteristics of walnut oil prepared by different roasting processes. J Food Sci 2024; 89:4884-4898. [PMID: 39004805 DOI: 10.1111/1750-3841.17186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Walnut oil is an edible oil with high nutritional value, and the roasting process influences its quality and flavor. This study aimed to investigate the effects of roasting on the fatty acid composition, bioactive compounds (tocopherols, polyphenols, and phytosterols), and antioxidant capacity of walnut oil. Additionally, the aroma compounds and sensory characteristics were evaluated to comprehensively assess the variations in walnut oil after roasting. Roasting resulted in no notable impact on the fatty acid composition of walnut oil but increased the content of tocopherols and polyphenols in walnut oil, increasing its antioxidant capacity. Heavy roasting (160°C/20 min) reduced the phytosterol content in walnut oil by 2.3%. In total, 146 volatile compounds were detected in both cold-pressed and roasted walnut oil using headspace solid-phase microextraction-gas chromatography-mass spectrometry, and 32 key aroma compounds were identified. Aromatic aldehydes, aliphatic aldehydes, and heterocyclic compounds significantly contributed to fragrant walnut oil. Furthermore, the principal component analysis based on quality characteristics and sensory evaluation indicated that moderate roasting (130°C/20 min, 130°C/30 min, and 160°C/10 min) provided walnut oil with a sweet, nutty, and roasted aroma, as well as high levels of linoleic acid, phytosterols, and γ-tocopherol. Although heavy roasting (160°C/15 min and 160°C/20 min) enhanced the antioxidant capacities of walnut oils due to high levels of polyphenols, the oils exhibited an unpleasant burnt aroma. This study showed that roasting promoted the quality and flavor of walnut oil, and moderate conditions endowed walnut oil with a characteristic-rich flavor while maintaining excellent quality.
Collapse
Affiliation(s)
- Xinzhu Lu
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Gao
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, P. R. China
| | - Yaru Lv
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, P. R. China
| | - Yu Zhang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, P. R. China
| | - Fengjun Wang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
5
|
Lukheli RT, Tavengwa NT, Mokgehle TM. Application of a kosmotrope (Na 2CO 3) and chaotrope (NaCl) in chemometric optimization of aqueous two-phase extraction of bioactive compounds in Hypoxis iridifolia. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400006. [PMID: 39221001 PMCID: PMC11361365 DOI: 10.1002/ansa.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Enterolactone, coumaric acid and vitexin are polyphenolic compounds present in a variety of fruits, vegetables, cereals and plants. These bioactive compounds are in high demand due to their antioxidant property in various tissues and organs. The purpose of this study was to develop a simultaneous extraction method, an aqueous two-phase extraction (ATPE) method, that would enable the extraction of these compounds from Hypoxis iridifolia. This environmentally friendly extraction method only applied water and ethanol as extraction solvents for these analytes from the plant matrix. After phase separation, the analytes were salted-out from the aqueous phase into the organic phase with the aid of a chaotrope (NaCl) or kosmotrope (Na2CO3). Thereafter, the analytes were withdrawn by a micro-pipette for analysis on the high-performance liquid chromatography-photodiode array detector. Optimization was conducted using a central composite design, where three parameters were examined which involved percentage ethanol, centrifugation time and salt type. Generally, the optimized conditions for extraction were an ethanol percentage of 100% and a centrifugation time of 10 min, which yielded concentrations of 2942, 23,823 and 8881 mg kg-1 for enterolactone, vitexin and coumaric acid, respectively, in the presence of a kosmotrope. The optimized conditions of extraction in the presence of chaotrope were an ethanol percentage of 66% and a centrifugation time of 10 min with concentrations of 6727, 20,833 and 8618 mg kg-1 for enterolactone, vitexin and coumaric acid, respectively. The ATPE method involving Na2CO3 was a better extractant of all the compounds studied relative to that of NaCl. The superior extraction capability of Na2CO3 in ATPE could serve as a prototype for the development of efficient extraction methods to meet the high demand for medicinal compounds derived from natural products.
Collapse
Affiliation(s)
- Rangani Tracy Lukheli
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Nikita Tawanda Tavengwa
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Tebogo Mphatlalala Mokgehle
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| |
Collapse
|
6
|
Ma X, Huang C, Zheng C, Wang W, Ying H, Liu C. Effect of oil extraction methods on walnut oil quality characteristics and the functional properties of walnut protein isolate. Food Chem 2024; 438:138052. [PMID: 38006698 DOI: 10.1016/j.foodchem.2023.138052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Walnut oils were obtained by supercritical carbon dioxide extraction (SCB), cold-pressing (CP), hexane extraction (HE), and subcritical butane extraction (SBE), and walnut protein isolates (WPI) from the walnut cakes were performed. The results indicate that SCB has the highest oil yield for walnut oil, which was 62.72%, and the total content of trace nutrients (total tocopherols, total phytosterols, and total phenolic compounds) in SCB-walnut oil was also the highest at 2186.75 mg/kg, approximately 1.05 times higher than CP-walnut oil and 1.21 times higher than SBE-walnut oil. Meanwhile, the treatment of WPI with SCB results in a decrease in β-Sheet and α-Helix structures and an increase in β-Turn and Random coil structures. Thereby increasing its oil-holding capacity (OHC) and solubility by approximately 1.16 times and 1.27 times compared to CP, respectively. Interestingly, SCB as a green oil production technology, also has good prospects for retaining WPI functionality characteristics.
Collapse
Affiliation(s)
- Xuan Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chongbo Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Weijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Huang Ying
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Changsheng Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
7
|
Samei M, Dowlatkhahi N, Boozari M, Hosseinzadeh H. Can daily consumption of enriched fatty acids diet be effective in improving metabolic syndrome? An attractive paradox for walnut kernel. Food Sci Nutr 2024; 12:2311-2333. [PMID: 38628188 PMCID: PMC11016402 DOI: 10.1002/fsn3.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 04/19/2024] Open
Abstract
Imagine consuming a daily diet rich in fatty acids to help treat diseases such as hypertension and obesity. This concept presents an attractive paradox. In particular, consuming walnut kernels is beneficial for treating diseases associated with metabolic syndrome (MetS), including type 2 diabetes, cardiovascular disease, dyslipidemia, and obesity. Different parts of the Juglans regia tree (family Juglandaceae), including its leaves, green husks, bark, and septum, have shown promising effects on pathological conditions related to MetS. The therapeutic advantages of consuming walnut kernels for MetS can be attributed to the presence of polyunsaturated fatty acids and polyphenolic compounds such as juglone and ellagic acid. Diets enriched with walnut kernel have a positive impact on MetS complications by reducing diastolic blood pressure, improving blood lipid profiles, lowering fasting blood sugar levels, and increasing insulin sensitivity. The potential cellular mechanisms responsible for these benefits involve activating the cholesterol hemostasis pathway by inhibiting sterol regulatory element-binding proteins (SREBPs), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cholesteryl ester transfer protein (CETP). Furthermore, other by-products of walnuts, such as leaves and green husks, have also demonstrated effectiveness in managing MetS. These findings highlight the potential of incorporating walnut-based products into our diets as a natural approach to combating MetS and its complications.
Collapse
Affiliation(s)
- Melika Samei
- School of PharmacyMashhad University of Medical SciencesMashhadIran
| | | | - Motahareh Boozari
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Zhang F, Wang XD, Li K, Yin WT, Liu HM, Zhu XL, Hu P. Characterisation of flavourous sesame oil obtained from microwaved sesame seed by subcritical propane extraction. Food Chem X 2024; 21:101087. [PMID: 38268846 PMCID: PMC10805642 DOI: 10.1016/j.fochx.2023.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024] Open
Abstract
This study developed a novel and green method to produce fragrant sesame oil using microwaves and subcritical extraction (SBE). Sesame seeds were microwaved at 540 W for 0-9 min before subcritical propane extraction at 40 °C and 0.5 MPa. SBE caused less deformation to the cellular microstructure of sesame cotyledons while dramatically improving oil yield (96.7-97.1 %) compared to screw processing (SP) (53.1-58.6 %). SBE improved extraction rates for γ-tocopherol (381.1-454.9 μg/g) and sesame lignans (917.9-970.4 mg/100 g) in sesame oil compared to SP (360.1-443.8 μg/g and 872.8-916.8 mg/100 g, respectively). Microwaves generated aroma-active heterocyclics and phenolics faster than hot-air roasting in sesame oil with a better sensory profile. SBE had a higher extraction rate for aroma-active terpenes, alcohols, and esters while reducing the concentrations of carcinogenic PAHs and HCAs in sesame oil. The novel combination process of microwaves and subcritical extraction is promising in producing fragrant sesame oil with superior qualities.
Collapse
Affiliation(s)
- Fan Zhang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Xue-de Wang
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Ke Li
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Wen-ting Yin
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Hua-min Liu
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Xin-liang Zhu
- Henan Subcritical Extraction Technology Research Institute Co., Ltd, Anyang 455000, China
| | - Peng Hu
- Henan Subcritical Extraction Technology Research Institute Co., Ltd, Anyang 455000, China
| |
Collapse
|
9
|
Suri S, Khan SS, Naeem S, Majeed S, Sultana N, Khadim S, Khan RA. A two-generational reproductive study to assess the effects of Juglans regia on reproductive developments in the male and female rats. BRAZ J BIOL 2023; 83:e275534. [PMID: 38055579 DOI: 10.1590/1519-6984.275534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 12/08/2023] Open
Abstract
Environmental pollutants and lifestyle severely threaten human and animal health, leading to disturbances of various functions, including infertility. So, exploring a safe treatment that could effectively reverse infertility remains a challenge. The current study was intended to explore the fertility-enhancing effect of Juglans Regia oil in two successive generations of rats; F0 and F1. J. Regia oil was initially tested for in vitro antioxidant assay via ROS and DPPH, followed by in vivo toxicity testing. In the fertility assessment, eighteen pairs of male and female rats (n=36, 1:1, F0 generation) were divided into three groups and dosed with 1 mL/kg and 2 mL/kg daily of J. Regia oil and saline, respectively, up to pre-cohabitation, cohabitation, gestation and lactation periods. The reproductive performance, including body weight, live birth index, fertility index, and litter size, was assessed. Hormonal and antioxidant markers of F1 generations were assessed with the histopathological evaluation of male and female organs. The oil of J. Regia showed great antioxidant potential (P < 0.05) in DPPH (1,1-diphenyl-2-picrylhydrazyl) and ROS (Reactive Oxygen Species) methods (P<0.05). The continued exposure of the F0 and F1 generations to J. Regia oil did not affect body weight, fertility index, litter size, and survival index. We have found pronounced fertility outcomes in both genders of F0 and F1 generations with J. Regia 2 mL/kg/day in comparison to the control. Results showed that J. Regia significantly increased (P < 0.05) luteinizing hormone (LH), plasma testosterone, follicular stimulating hormone (FSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities in both generations. Histology of both generations reveals improved spermatogenesis and folliculogenesis with enhanced architecture. Altogether, the present results suggest that J. Regia improved fertility in both male and female rats by improving hormonal activities and oxidative stress.
Collapse
Affiliation(s)
- S Suri
- University of Karachi, Faculty of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Karachi, Pakistan
- Ziauddin University, Faculty of Pharmacy, Karachi, Pakistan
| | - S S Khan
- University of Karachi, Faculty of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Karachi, Pakistan
| | - S Naeem
- Jinnah Sindh Medical University, Institute of Pharmaceutical Sciences, Karachi, Pakistan
| | - S Majeed
- Ziauddin University, Faculty of Pharmacy, Karachi, Pakistan
| | - N Sultana
- University of Karachi, Faculty of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Karachi, Pakistan
| | - S Khadim
- University of Karachi, Faculty of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, Karachi, Pakistan
| | - R A Khan
- University of Karachi, Faculty of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Karachi, Pakistan
| |
Collapse
|
10
|
Lucas-Gonzalez R, Sayas-Barberá E, Lorenzo JM, Pérez-Álvarez JÁ, Fernández-López J, Viuda-Martos M. Changes in bioactive compounds present in beef burgers formulated with walnut oil gelled emulsion as a fat substitute during in vitro gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6473-6482. [PMID: 37219392 DOI: 10.1002/jsfa.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/29/2023] [Accepted: 05/23/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The partial or total substitution of animal fat by a gelled emulsion elaborated with cocoa bean shell and walnut oil in beef burgers was assessed in terms of the stability of the bioactive compounds (polyphenolic and methylxanthines compounds, and fatty acid profile), bioaccessibility, colon-available indices (CAIs), and lipid oxidation after in vitro gastrointestinal digestion (GID). RESULTS No free polyphenolic compounds were detected in the soluble fraction after the GID of reformulated beef burgers. Reductions were obtained in the bound fraction with respect to the undigested sample from 47.57 to 53.12% for protocatechuic acid, from 60.26 to 78.01% for catechin, and from 38.37 to 60.95% for epicatechin. The methylxanthine content decreased significantly after GID. The theobromine content fell by between 48.41 and 68.61% and the caffeine content was reduced by between 96.47 and 97.95%. The fatty acid profile of undigested samples was very similar to that of digested samples. In the control burger the predominant fatty acids were oleic acid (453.27 mg g-1 ) and palmitic acid (242.20 mg g-1 ), whereas in reformulated burgers a high content of linoleic acid (304.58 and 413.35 mg g-1 ) and α-linolenic acid (52.44 and 82.35 mg g-1 ) was found. As expected, both undigested and digested reformulated samples presented a higher degree of oxidation than the control sample. CONCLUSIONS The reformulated beef burgers with cocoa bean shells flour and walnut oil were a good source of bioactive compounds, which were stable after in vitro gastrointestinal digestion. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Raquel Lucas-Gonzalez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, Alicante, Spain
| |
Collapse
|
11
|
Li T, Yang C, Liu K, Zhu T, Duan X, Xu Y. Demulsification of Emulsion Using Heptanoic Acid during Aqueous Enzymatic Extraction and the Characterization of Peanut Oil and Proteins Extracted. Foods 2023; 12:3523. [PMID: 37835176 PMCID: PMC10572140 DOI: 10.3390/foods12193523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Peanut oil body emulsion occurs during the process of aqueous enzymatic extraction (AEE). The free oil is difficult to release and extract because its structure is stable and not easily destroyed. Demulsification can release free oil in an oil body emulsion, so various fatty acids were selected for the demulsification. Changes in the amount of heptanoic acid added, solid-liquid ratio, reaction temperature, and reaction time were adopted to investigate demulsification, and the technological conditions of demulsification were optimized. While the optimal conditions were the addition of 1.26% of heptanoic acid, solid-liquid ratio of 1:3.25, reaction temperature of 72.7 °C, and reaction time of 55 min, the maximum free oil yield was (95.84 ± 0.19)%. The analysis of the fatty acid composition and physicochemical characterization of peanut oils extracted using four methods were studied during the AEE process. Compared with the amount of oil extracted via other methods, the unsaturated fatty acids of oils extracted from demulsification with heptanoic acid contained 78.81%, which was significantly higher than the other three methods. The results of physicochemical characterization indicated that the oil obtained by demulsification with heptanoic acid had a higher quality. According to the analysis of the amino acid composition, the protein obtained using AEE was similar to that of commercial peanut protein powder (CPPP). However, the essential amino acid content of proteins extracted via AEE was significantly higher than that of CPPP. The capacity of water (oil) holding, emulsifying activity, and foaming properties of protein obtained via AEE were better than those for CPPP. Overall, heptanoic acid demulsification is a potential demulsification method, thus, this work provides a new idea for the industrial application of simultaneous separation of oil and proteins via AEE.
Collapse
Affiliation(s)
| | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (T.L.); (K.L.); (T.Z.); (X.D.); (Y.X.)
| | | | | | | | | |
Collapse
|
12
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Muntean C, Codină GG. Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan. Foods 2023; 12:3455. [PMID: 37761164 PMCID: PMC10529321 DOI: 10.3390/foods12183455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bologna sausage, also called "la grassa", is a very popular meat product despite its high fat content and lipidic profile raising serious negative health concerns. An emulsion gel containing olive, walnut, and chia oils, stabilized with soy protein isolate, transglutaminase, and chitosan, was used as total pork backfat replacer in Bologna sausage. The nutritional, textural, and technological properties were assessed and sensory analyses were conducted. Color, pH, and lipid oxidation were monitored during 18 days of cold storage (4 °C). A normal fat Bologna sausage was used as a control reference. A decrease in the n-6/n-3 ratio from 16.85 to 1.86 (by 9 times) was achieved in the reformulated product as compared with the control, while the PUFA/SFA ratio increased from 0.57 to 1.61. Color measurements indicated that the lightness and yellowness increased while redness slightly decreased in the reformulated product. The total substitution of pork backfat in Bologna sausage by the emulsion gel developed in the present study was realized without significantly affecting the technological properties, the oxidative stability and the overall acceptance by the consumers.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Violeta Nour
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Alexandru Radu Corbu
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Camelia Muntean
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | | |
Collapse
|
13
|
Analysis of Chemical Composition and Antioxidant Activity of Idesia polycarpa Pulp Oil from Five Regions in China. Foods 2023; 12:foods12061251. [PMID: 36981177 PMCID: PMC10048772 DOI: 10.3390/foods12061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Idesia polycarpa pulp oil (IPPO) has the potential to become the new high-quality vegetable oil. The chemical parameters, fatty acid composition, bioactive ingredients, and antioxidant capacity of five Chinese regions of IPPO were studied comparatively, with significant differences among the regions. The oils were all abundant in unsaturated fatty acids, including linoleic acid (63.07 ± 0.03%–70.69 ± 0.02%), oleic acid (5.20 ± 0.01%–7.49 ± 0.03%), palmitoleic acid (4.31 ± 0.01%–8.19 ± 0.01%) and linolenic acid (0.84 ± 0.03%–1.34 ± 0.01%). IPPO is also rich in active substances such as tocopherols (595.05 ± 11.81–1490.20 ± 20.84 mg/kg), which are made up of α, β, γ and δ isomers, β-sitosterol (1539.83 ± 52.41–2498.17 ± 26.05 mg/kg) and polyphenols (106.77 ± 0.86–266.50 ± 2.04 mg GAE/kg oil). The free radical scavenging capacity of IPPO varies significantly depending on the region. This study may provide important guidance for the selection of Idesia polycarpa and offer insights into the industrial application of IPPO in China.
Collapse
|
14
|
Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, AL Awadh AA, Goh KW, Ming LC, Bouyahya A, Tabyaoui M. Variations in Antioxidant Capacity, Oxidative Stability, and Physicochemical Quality Parameters of Walnut ( Juglans regia) Oil with Roasting and Accelerated Storage Conditions. Molecules 2022; 27:molecules27227693. [PMID: 36431794 PMCID: PMC9696496 DOI: 10.3390/molecules27227693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
Collapse
Affiliation(s)
- Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Zineb Lakhlifi El Idrissi
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah AL Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (K.W.G.); (A.B.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
- Correspondence: (K.W.G.); (A.B.)
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| |
Collapse
|
15
|
Zhou X, Peng X, Pei H, Chen Y, Meng H, Yuan J, Xing H, Wu Y. An overview of walnuts application as a plant-based. Front Endocrinol (Lausanne) 2022; 13:1083707. [PMID: 36589804 PMCID: PMC9797595 DOI: 10.3389/fendo.2022.1083707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
The plant-based refers to plant-based raw materials or products that are available as the source of protein and fat. Utilization and development of walnuts as a plant-based, resulting in a high-quality protein-rich walnut plant-based product: walnut protein powder and walnut peptides. Progress in research on the application of walnuts as a plant-based has been advanced, solving the problem of wasted resources and environmental pollution caused by the fact that walnut residue, a product of walnuts after oil extraction, is often thrown away as waste, or becomes animal feed or compost. This paper reviews and summarizes the research and reports on walnut plant-based at home and abroad, focusing on the application of walnut plant-based in the preparation process (enzymatic and fermentation methods) and the biological activity of the walnut protein and walnut peptide, to provide a theoretical basis for the further processing of walnuts as a walnut plant-based. It can make full use of walnut resources and play its nutritional and health care value, develop and build a series of walnut plant-based products, improve the competitiveness of walnut peptide products, turn them into treasure, and provide more powerful guidance for the development of food and medicine health industry in Yunnan.
Collapse
Affiliation(s)
- Xingjian Zhou
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xingyu Peng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Huan Pei
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhan Chen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hui Meng
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haijing Xing
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Haijing Xing, ; Yueying Wu,
| | - Yueying Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Haijing Xing, ; Yueying Wu,
| |
Collapse
|