1
|
Huang Y, Wang X, Lyu Y, Li Y, He R, Chen H. Metabolomics analysis reveals the non-enzymatic browning mechanism of green peppers (Piper nigrum L.) during the hot-air drying process. Food Chem 2025; 464:141654. [PMID: 39426262 DOI: 10.1016/j.foodchem.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Non-enzymatic browning (NEB) reduced the colour quality of hot-air dried peppers, but the specific mechanism remains unclear. This may be related to the degradation of chlorophyll, ascorbic acid, and polyphenols. The findings revealed that the surface of pepper gradually browned during hot-air drying, with the ΔE⁎ value and browning degree (BD) significantly increasing by 119.4 % and 62.9 %, respectively. However, the total phenol content (TPC) and ascorbic acid content decreased by 74.2 % and 84.3 %, respectively. TPC was negatively correlated with BD (R = -0.86), and its value (31.7 %) was 300 times higher than that of other colour-related components (ascorbic acid, chlorophyll). UPLC-MS/MS analysis further identified 345 polyphenols, among which 1, 3-dicaffeoylquinic acid and 5,7-dihydroxy-3', 4', 5'-trimethoxyflavone were the two key monophenols influencing NEB (R = -0.87). The results suggested that NEB pathways involve chlorophyll and ascorbic acid degradation, the Maillard reaction, and polyphenol degradation, with the latter playing a major role.
Collapse
Affiliation(s)
- Yue Huang
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China
| | - Xinyi Wang
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China
| | - Ying Lyu
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China.
| | - Yu Li
- Hainan State Farms Tropical Products Industry Group Co., Ltd, Haikou, Hainan 570226, China
| | - Rongrong He
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China
| | - Haiming Chen
- Hainan University, School of Food Science & Engineering, Haikou, Hainan 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan, 570228, China.
| |
Collapse
|
2
|
De Rubis G, Paudel KR, Kokkinis S, El-Sherkawi T, Datsyuk JK, Salunke P, Gerlach J, Dua K. Potent phytoceuticals cocktail exhibits anti-inflammatory and antioxidant activity on LPS-triggered RAW264.7 macrophages in vitro. Pathol Res Pract 2024; 266:155770. [PMID: 39673889 DOI: 10.1016/j.prp.2024.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Chronic inflammatory conditions, which include respiratory diseases and other ailments, are characterized by persistent inflammation and oxidative stress, and represent a significant health burden, often inadequately managed by current therapies which include conventional inhaled bronchodilators and oral or inhaled corticosteroids in the case of respiratory disorders. The present study explores the potential of Vedicinals®9 Advanced, a polyherbal formulation, to mitigate LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. The cells were pre-treated with Vedicinals®9 Advanced, followed by exposure to LPS to induce an inflammatory response. Key experimental outcomes were assessed, including nitric oxide (NO) and reactive oxygen species (ROS) production, as well as the expression of inflammatory and oxidative stress-related genes and proteins. Vedicinals®9 Advanced significantly reduced LPS-induced NO and ROS production, indicating strong anti-inflammatory and antioxidant properties. Additionally, the formulation downregulated the LPS-upregulated mRNA expression of pro-inflammatory cytokines, such as TNF-α and CXCL1, and oxidative stress markers, including GSTP1 and NQO1. Furthermore, Vedicinals®9 Advanced downregulated the LPS-induced protein expression of the chemokines CCL2 and CCL6, the LPS co-receptor, CD14, and the pro-inflammatory cytokines G-CSF and IL-1β. These findings highlight the potential of Vedicinals®9 Advanced as a therapeutic option for managing CRDs and other inflammatory conditions. The formulation's ability to simultaneously target inflammation and oxidative stress suggests it may offer advantages over existing treatments, with potential for broader application in inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Tammam El-Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | | | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
3
|
Angsusing J, Singh S, Samee W, Tadtong S, Stokes L, O’Connell M, Bielecka H, Toolmal N, Mangmool S, Chittasupho C. Anti-Inflammatory Activities of Yataprasen Thai Traditional Formulary and Its Active Compounds, Beta-Amyrin and Stigmasterol, in RAW264.7 and THP-1 Cells. Pharmaceuticals (Basel) 2024; 17:1018. [PMID: 39204123 PMCID: PMC11357128 DOI: 10.3390/ph17081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Yataprasen (YTPS) remedy formulary, a national Thai traditional medicine formulary, comprises 13 herbal plants. It has been extensively prescribed to relieve osteoarthritis and musculoskeletal pain in the Thai traditional medicine healthcare system. The aim of this study was to investigate the antioxidant and anti-inflammatory properties of the bioactive compounds (β-amyrin and stigmasterol) of YTPS remedy formulary ethanolic extract, along with its composition. The YTPS formulary extract contains 70.30 nM of β-amyrin and 605.76 nM of stigmasterol. The YTPS formulary extract exhibited ABTS and DPPH free radical scavenging activity, with IC50 values of 144.50 ± 2.82 and 31.85 ± 0.18 µg/mL, respectively. The ethanolic extract of YTPS at a concentration of 1000 µg/mL showed a significant (p < 0.01) anti-inflammatory effect, mainly by reducing IL-6 and TNF-α release in response to LPS. NO production was prominently lowered by 50% at 24.76 ± 1.48 µg/mL, 55.52 ± 24.40 µM, and more than 570 µM of YTPS formulary extract, β-amyrin, and stigmasterol, respectively. Major components of YTPS, β-amyrin, and stigmasterol exerted significant anti-inflammatory effects by inhibiting LPS-induced IL-1β, IL-6, TNF-α secretion in THP-1 cells. Our findings suggest that the ethanolic extract from YTPS holds promise as an alternative topical treatment for osteoarthritis and inflammatory disorders, potentially with fewer side effects than non-steroidal anti-inflammatory medications (NSAIDs).
Collapse
Affiliation(s)
- Jaenjira Angsusing
- Ph.D. Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, CMU Presidential Scholarship, Chiang Mai 50200, Thailand;
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Maria O’Connell
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Hanna Bielecka
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Nopparut Toolmal
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Hu B, Wang H, Liang H, Ma N, Wu D, Zhao R, Lv H, Xiao Z. Multiple effects of spicy flavors on neurological diseases through the intervention of TRPV1: a critical review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39041177 DOI: 10.1080/10408398.2024.2381689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spicy properties of foods are contributed by various spicy flavor substances (SFs) such as capsaicin, piperine, and allicin. Beyond their distinctive sensory characteristics, SFs also influence health conditions and numerous studies have associated spicy flavors with disease treatment. In this review, we enumerate different types of SFs and describe their role in food processing, with a specific emphasis on critically examining their influence on human wellness. Particularly, detailed insights into the mechanisms through which SFs enhance physiological balance and alleviate neurological diseases are provided, and a systematic analysis of the significance of transient receptor potential vanilloid type-1 (TRPV1) in regulating metabolism and nervous system homeostasis is presented. Moreover, enhancing the accessibility and utilization of SFs can potentially amplify the physiological effects. This review aims to provide compelling evidence for the integration of food flavor and human health.
Collapse
Affiliation(s)
- Boyong Hu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Ma
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Diyi Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruotong Zhao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoming Lv
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zuobing Xiao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Mangmool S, Duangrat R, Rujirayunyong T, Anantachoke N. Anti-inflammatory effects of the Thai herbal remedy Yataprasen and biflavonoids isolated from Putranjiva roxburghii in RAW264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117997. [PMID: 38442805 DOI: 10.1016/j.jep.2024.117997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yataprasen is a topical Thai herbal remedy for the treatment of musculoskeletal pain and is included in Kumpe Thart Phra Narai, the first Thai textbook of traditional medicine. The herbal preparation is made from a hydroethanolic extract of a mixture of 13 medicinal plants, of which Putranjiva roxburghii Wall. leaves are the major ingredient. AIM OF THE STUDY In this study, we investigated the underlying mechanism of action for the anti-inflammatory effects of the Yataprasen remedy, its main ingredients, and the phytochemicals isolated from P. roxburghii leaves. MATERIALS AND METHODS The anti-inflammatory effects of the Yataprasen remedy, along with its main ingredients, including the leaves of Baliospermum solanifolium (Burm.) Suresh, Melia azedarach L., P. roxburghii, Senna siamea (Lam.) Irwin & Barneby, and Tamarindus indica L. were determined by measuring prostaglandin E2 (PGE2) secretion, nitric oxide (NO) production, and the synthesis of inflammatory biomarkers in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. The active ingredients of the P. roxburghii leaves were separated by chromatography and spectroscopic measurements were used to identify their chemical structures. RESULTS Ethanol extracts of the Yataprasen remedy and some of its ingredients significantly suppressed LPS-induced PGE2 secretion and NO production in a dose-dependent manner. Treatment of RAW264.7 cells with ethanolic extracts of the Yataprasen remedy (50 μg/mL) significantly inhibited LPS-induced mRNA expression of TNF-α, COX-2, iNOS, and NF-κB. Among the plant ingredient extracts, P. roxburghii leaf extract exhibited the highest inhibitory effects on LPS-induced TNF-α and iNOS expression. Moreover, T. indica leaf extract showed the highest activity on the inhibition of LPS-induced COX-2 and NF-κB expression. Putraflavone, podocarpusflavone A, and amentoflavone were isolated biflavonoids from P. roxburghii leaf extract and showed the inhibitory effects on LPS-induced PGE2 secretion and NO synthesis in RAW264.7 cells. Of the isolated biflavonoids, amentoflavone exhibited the strongest anti-inflammatory activity by inhibiting the expression of TNF-α, COX-2, and iNOS. CONCLUSION The results support reported the anti-inflammatory effects of the Yataprasen remedy, which are associated with the downregulation of proinflammatory mediators. P. roxburghii, along with its biflavonoids, are the impact components that contribute to the anti-inflammatory effects of the herbal remedy.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | - Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Kumar D, Rahman Sarkar A, Iqbal Andrabi N, Assim Haq S, Ahmed M, Kumar Shukla S, Ahmed Z, Rai R. Synthesis, characterization, and anti-inflammatory activity of tetrahydropiperine, piperic acid, and tetrahydropiperic acid via down regulation of NF-κB pathway. Cytokine 2024; 178:156578. [PMID: 38484621 DOI: 10.1016/j.cyto.2024.156578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The present study describes the synthesis, characterization, and evaluation of tetrahydropiperine (THP), piperic acid (PA), and tetrahydropiperic acid (THPA) as anti-inflammatory agents. THPA demonstrated potent anti-inflammatory activity among all the compounds. The anti-inflammatory potential was investigated in both in-vitro and in-vivo experimental models. Our findings demonstrated that THPA effectively suppressed the production of pro-inflammatory mediators, including nitric oxide and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in both in vitro and in vivo. Additionally, THPA attenuated the expression of i-NOS and COX-2 in RAW 264.7 macrophages. The oral administration of THPA significantly reduced carrageenan induced paw edema thickness and alleviated liver, lung, and kidney injury induced by LPS. THPA also reduced the infiltration of inflammatory cells, prevented the occurrence of significant lesions, and mitigated tissue damage. Moreover, THPA significantly improved the survival rate of mice challenged with LPS. Our western blot studies also found that LPS induced NF-κB activation was downregulated by treatment with THPA in an in vivo system. These results collectively illustrated the potential of THPA as a therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Diljeet Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aminur Rahman Sarkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Nusrit Iqbal Andrabi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manzoor Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket Kumar Shukla
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Zabeer Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajkishor Rai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India.
| |
Collapse
|
7
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
8
|
Du NN, Xu ZY, Lin B, Bai M, Huang XX, Song SJ. Expanded Application of Piper nigrum: Guided Isolation of Alkaloids with Inhibitory Activities of AChE/BuChE and Aβ Aggregation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1607-1617. [PMID: 38190504 DOI: 10.1021/acs.jafc.3c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Piper nigrum is a popular crop that can be used as seasoning or as an additive but its active ingredients also have an effect on the nervous system. Nineteen new amide alkaloids (1a/1b, 2-5, 6a/6b, 7, 8a/8b, 9, 10a/10b, 11a-11b, 12-14) were isolated from P. nigrum, guided by inhibitory activity of AChE and LC-MS/MS based on GNPS. The configurations were determined by extensive spectral analysis, Bulkiness rule, and NMR calculations. The inhibitory activities of AChE/BuChE and Aβ aggregation were tested, and the results showed compounds 2, 7, and 12 had significant inhibitory activities. These components were identified in the crude fraction and their relative quantities were tested, which suggested that compound 2 was the index component in the active site from P. nigrum.
Collapse
Affiliation(s)
- Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhi-Yong Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- Shenyang Pharmaceutical University Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
9
|
Han J, Zhang S, He J, Li T. Piperine: Chemistry and Biology. Toxins (Basel) 2023; 15:696. [PMID: 38133200 PMCID: PMC10747706 DOI: 10.3390/toxins15120696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Piperine is a plant-derived promising piperamide candidate isolated from the black pepper (Piper nigrum L.). In the last few years, this natural botanical product and its derivatives have aroused much attention for their comprehensive biological activities, including not only medical but also agricultural bioactivities. In order to achieve sustainable development and improve survival conditions, looking for environmentally friendly pesticides with low toxicity and residue is an extremely urgent challenge. Fortunately, plant-derived pesticides are rising like a shining star, guiding us in the direction of development in pesticidal research. In the present review, the recent progress in the biological activities, mechanisms of action, and structural modifications of piperine and its derivatives from 2020 to 2023 are summarized. The structure-activity relationships were analyzed in order to pave the way for future development and utilization of piperine and its derivatives as potent drugs and pesticides for improving the local economic development.
Collapse
Affiliation(s)
- Jin Han
- School of Public Administration, Xi’an University of Finance and Economics, Xi’an 710061, China;
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China;
| | - Jun He
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
10
|
Elangovan P, Ramasamy G, Sundaram M, Ramasamy M. Efficacy of Siddha Therapeutics on Mantha Sanni (Autism Spectrum Disorder) Among Pediatric Patients: An Interventional Non-randomized Open-Label Clinical Trial. Cureus 2023; 15:e47128. [PMID: 38021630 PMCID: PMC10649252 DOI: 10.7759/cureus.47128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) refers to a collection of neurodevelopmental disorders that affect brain development and can lead to various psychological imbalances in caregivers of affected children. Siddha formulations have been shown to have a role beyond the physical body and play a significant role in managing Mantha sannior ASD. The objective of this study was to examine the impacts of Amukkara chooranam and Yegamooli thylam in the pediatric population diagnosed with ASD. METHODS This was a prospective, interventional, non-randomized, open clinical trial involving 30 patients who met the inclusion and exclusion criteria. Patients received Amukkara chooranam at a dose of 300 mg for ages 3-4 years, 500 mg for ages 5-7 years, and 1 gm for ages 8-12 years, twice a day with honey for 90 days, and Yegamooli thylam was administered using the Thuvalai external manipulation technique once a day for 90 days. Scoring by the Indian Scale for Assessment of Autism (ISAA) was documented at the end of the 0th day, 45th day, and 90th day. RESULTS The scores were compared at each follow-up, and a statistically significant difference was found at the end of the 90th day of treatment with Amukkara chooranam and Yegamooli thylam (P < 0.05). The statistical analysis included calculating the mean and standard deviation of the clinical assessment, parameters both before and after the treatment were 37.66667 ±13.82485. CONCLUSION The treatment with Amukkara chooranam and Yegamooli thylam resulted in a clinically significant improvement in clinical assessment parameters in children with ASD.
Collapse
Affiliation(s)
| | - Gomathi Ramasamy
- Department of General Medicine, National Institute of Siddha, Chennai, IND
| | | | | |
Collapse
|
11
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
12
|
Xie L, Liu G, Huang Z, Zhu Z, Yang K, Liang Y, Xu Y, Zhang L, Du Z. Tremella fuciformis Polysaccharide Induces Apoptosis of B16 Melanoma Cells via Promoting the M1 Polarization of Macrophages. Molecules 2023; 28:molecules28104018. [PMID: 37241759 DOI: 10.3390/molecules28104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-tumor activity of Tremella fuciformis polysaccharides (TFPS) has been widely reported, but its mechanism remains poorly understood. In this study, we established an in vitro co-culture system (B16 melanoma cells and RAW 264.7 macrophage-like cells) to explore the potential anti-tumor mechanism of TFPS. Based on our results, TFPS exhibited no inhibition on the cell viability of B16 cells. However, significant apoptosis was observed when B16 cells were co-cultured with TFPS-treated RAW 264.7 cells. We further found that mRNA levels of M1 macrophage markers including iNOS and CD80 were significantly upregulated in TFPS-treated RAW 264.7 cells, while M2 macrophage markers such as Arg-1 and CD 206 remained unchanged. Besides, the migration, phagocytosis, production of inflammatory mediators (NO, IL-6 and TNF-α), and protein expression of iNOS and COX-2 were markedly enhanced in TFPS-treated RAW 264.7 cells. Network pharmacology analysis indicated that MAPK and NF-κB signaling pathways may be involved in M1 polarization of macrophages, and this hypothesis was verified by Western blot. In conclusion, our research demonstrated that TFPS induced apoptosis of melanoma cells by promoting M1 polarization of macrophages, and suggested TFPS may be applied as an immunomodulatory for cancer therapy.
Collapse
Affiliation(s)
- Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangrong Liu
- Infinitus Company Ltd., 11 Sicheng Road, Tianhe District, Guangzhou 510000, China
| | - Zebin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaiye Yang
- Infinitus Company Ltd., 11 Sicheng Road, Tianhe District, Guangzhou 510000, China
| | - Yiheng Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yani Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Li Y, Deng W, Wu L, Chen S, Zheng Z, Song H. Anti-Inflammatory Effects of Polyphenols from Plum ( Prunus salicina Lindl) on RAW264.7 Macrophages Induced by Monosodium Urate and Potential Mechanisms. Foods 2023; 12:254. [PMID: 36673346 PMCID: PMC9858531 DOI: 10.3390/foods12020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Acute gouty arthritis is an acute inflammatory reaction caused by the deposition of monosodium urate (MSU) crystals in joints and surrounding soft tissues. Controlling inflammation is the key to preventing acute gouty arthritis. Anti-inflammatory activities and the possible molecular mechanisms of plum (Prunus salicina Lindl cv. "furong") polyphenols (PSLP) on RAW264.7 macrophage cells induced by monosodium urate were investigated. PPSF significantly inhibited the activity of inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18). In addition, PPSF exhibited excellent activation of superoxide dismutase (SOD) activity and reduction of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels in RAW264.7 macrophages. The results of global screening of all transcripts by RNA-seq revealed 8585 differentially expressed genes between the PSLP-treated group and the MUS group. From GO analysis, PSLP could affect the occurrence and development of RAW264.7 macrophage inflammation through biological processes, such as organic substance metabolism, intracellular organelles, and binding function. The regulation mechanism of PSLP on MSU-induced RAW264.7 macrophage inflammation may be achieved through the HIF-1 signaling pathway, renal cell carcinoma, the ErbB signaling pathway, and the FoxO signaling pathway. Therefore, PSLP has great prospects in the prevention of gout and similar inflammatory diseases.
Collapse
Affiliation(s)
- Yibin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Research Institute of Agri-Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing, Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Wei Deng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Wu
- Research Institute of Agri-Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing, Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
| | - Shouhui Chen
- Research Institute of Agri-Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Zhipeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Protective Effects of Piperine on Ethanol-Induced Gastric Mucosa Injury by Oxidative Stress Inhibition. Nutrients 2022; 14:nu14224744. [PMID: 36432431 PMCID: PMC9695505 DOI: 10.3390/nu14224744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Piper nigrum Linnaeus is often used as a treatment for chills, stomach diseases, and other ailments. Piperine has many biological functions; however, its mechanism for preventing gastric mucosal damage is still unclear. The objective of this study was to investigate the preventive effects of piperine on ethanol-induced gastric mucosal injury by using GES-1 cells and rats. SOD, CAT, GSH-Px and MDA were effectively regulated in GES-1 cells pre-treated with piperine. Piperine significantly increased SOD, CAT and GSH-Px activities, but decreased the ulcer area, MDA, ROS and MPO levels in the gastric tissues of rats. RT-PCR analysis showed that piperine downregulated the mRNA expression levels of keap1, JNK, ERK and p38, and upregulated the mRNA transcription levels of Nrf2 and HO-1. Western blotting results indicated that piperine could activate the protein expression levels of Nrf2 and HO-1 and inhibit the protein expression levels of keap1, p-JNK, p-ERK and p-p38. In conclusion, piperine suppressed ethanol-induced gastric ulcers in vitro and in vivo via oxidation inhibition and improving gastric-protecting activity by regulating the Nrf2/HO-1 and MAPK signalling pathways.
Collapse
|