1
|
Liu Y, Jia Y, Wu Y, Zhang H, Ren F, Zhou S. Review on mechanisms of hypoglycemic effects of compounds from highland barley and potential applications. Food Funct 2024. [PMID: 39495067 DOI: 10.1039/d4fo00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rising prevalence of metabolic diseases, such as diabetes and obesity, presents a significant global health challenge. Dietary interventions, with their minimal side effects, hold great promise as effective strategies for blood sugar management. Highland barley (HB) boasts a comprehensive and unique nutritional composition, characterized by high protein, high fiber, high vitamins, low fat, low sugar, and diverse bioactive components. These attributes make it a promising candidate for alleviating high blood sugar. This review explores the mechanisms underlying the glucose-lowering properties of HB, emphasizing its nutritional profile and bioactive constituents. Additionally, it examines the impact of common HB processing techniques on its nutrient composition and highlights its applications in food products. By advancing the understanding of HB's value and mechanisms in diabetes prevention, this review aims to facilitate the development of HB-based foods suitable for diabetic patients.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Dibakoane SR, Da Silva LS, Meiring B, Anyasi TA, Mlambo V, Wokadala OC. The multifactorial phenomenon of enzymatic hydrolysis resistance in unripe banana flour and its starch: A concise review. J Food Sci 2024; 89:5185-5204. [PMID: 39150760 DOI: 10.1111/1750-3841.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Unripe banana flour starch possesses a high degree of resistance to enzymatic hydrolysis, a unique and desirable property that could be exploited in the development of functional food products to regulate blood sugar levels and promote digestive health. However, due to a multifactorial phenomenon in the banana flour matrix-from the molecular to the micro level-there is no consensus regarding the complex mechanisms behind the slow enzymatic hydrolysis of unripe banana flour starch. This work therefore explores factors that influence the enzymatic hydrolysis resistance of raw and modified banana flour and its starch including the proportion and distribution of the amorphous and crystalline phases of the starch granules; granule morphology; amylose-amylopectin ratio; as well as the presence of nonstarch components such as proteins, lipids, and phenolic compounds. Our findings revealed that the relative contributions of these factors to banana starch hydrolytic resistance are apparently dependent on the native or processed state of the starch as well as the cultivar type. The interrelatability of these factors in ensuring amylolytic resistance of unripe banana flour starch was further highlighted as another reason for the multifactorial phenomenon. Knowledge of these factors and their contributions to enzymatic hydrolysis resistance individually and interconnectedly will provide insights into enhanced ways of extraction, processing, and utilization of unripe banana flour and its starch.
Collapse
Affiliation(s)
- Siphosethu R Dibakoane
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
| | - Laura Suzanne Da Silva
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Belinda Meiring
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Tonna A Anyasi
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, UK
| | - Victor Mlambo
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
3
|
Kim KJ, Kim JY. Polyphenols in foods: a potential strategy for preventing and managing the postprandial hyperglycemic response. Food Sci Biotechnol 2024; 33:2699-2713. [PMID: 39184987 PMCID: PMC11339232 DOI: 10.1007/s10068-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant health risk worldwide, and effective management strategies are needed. Polyphenols exhibit diverse biological functions, are abundant in various plants, and influence carbohydrate digestion and absorption. This review provides a comprehensive overview of clinical evidence regarding the relationship between dietary polyphenols and the postprandial hyperglycemic response. Human intervention studies have demonstrated the benefits of polyphenol-rich foods in improving glucose and insulin metabolism, underscoring their role in preventing T2DM. These findings highlight the potential of polyphenol-rich foods for managing hyperglycemia and mitigating T2DM risk and provide insight into effective dietary strategies for glycemic control and overall health.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
4
|
Kusumawardani S, Luangsakul N. Assessment of polyphenols in purple and red rice bran: Phenolic profiles, antioxidant activities, and mechanism of inhibition against amylolytic enzymes. Curr Res Food Sci 2024; 9:100828. [PMID: 39286431 PMCID: PMC11403441 DOI: 10.1016/j.crfs.2024.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Pigmented Thai rice varieties, including purple (Riceberry) and red (Hommali), are gaining popularity due to their health benefits as a source of polyphenols that may exert a hypoglycemic effect through specific inhibition of amylolytic enzymes. This study determined the free phenolic extract from purple rice bran (PFE) to exhibit notably greater content of phytochemical compounds than did phenolic extracts from red rice bran, whether free (RFE) or bound fractions. This phytochemical content correlated with increased antioxidant activity and strong inhibition capacity against amylolytic enzymes, suppressing the conversion of carbohydrates into glucose. Several polyphenol compounds were identified in pigmented rice bran extracts, including benzoic acid, chlorogenic acid, ferulic acid, apigenin, and rutin; among these, flavonoids exhibited greater effect on inhibition capacity. Mechanistically, PFE was found to act as a competitive and uncompetitive inhibitor of α-amylase and α-glucosidase respectively, while RFE showed respective uncompetitive and competitive inhibitory modes.
Collapse
Affiliation(s)
- Sandra Kusumawardani
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
5
|
Tanyitiku MN, Bessem P, Petcheu ICN. Gluten-Free Corn Cookies Incorporated With Stinging Nettle Leaf Flour: Effect on Physical Properties, Storage Stability, and Health Benefits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8864560. [PMID: 39135739 PMCID: PMC11319057 DOI: 10.1155/2024/8864560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
The consumption of gluten-free corn cookies is becoming very popular among nonceliac and celiac individuals. However, the absence of gluten and other nutrients in corn generally leads to cookies of lower quality in terms of nutritional value, texture, colour, and shelf life. To improve the quality characteristics of corn cookies, this study investigated the effect of incorporating an underutilised herb (Urtica dioica L. leaves) on its nutritional and physical properties. Stinging nettle leaf flour was incorporated at different levels (5%, 10%, 15%, and 20%) and compared with a control (100% corn cookies). The storage stability of the formulated corn cookies was also investigated at room and frozen (-18 ± 2°C) temperature. The incorporation of stinging nettle leaf flour increased (p < 0.05) the ash and protein content of corn cookies from 0.32% (control) to 2.56% (20% stinging nettle leaf flour incorporation) and 6.44% (control) to 21.52% (20% stinging nettle leaf flour incorporation), respectively. After in vitro starch digestion, the total phenolic content (TPC) and antioxidant activity (AA) also increased approximately 27 and seven times, respectively, and the estimated glycaemic index (GI) (eGI) decreased (p < 0.05) from 48.60% (control) to 33.18% (20% stinging nettle incorporated). Shelf life characteristics (water activity, peroxide value (PV), and microbial count) of formulated corn cookies were within acceptable limits for human consumption upon storage for 6 months. The findings indicated that stinging nettle leaves could serve as a potential food ingredient in gluten-free bakery products, particularly where low GI foods are desirable.
Collapse
Affiliation(s)
| | - Prisca Bessem
- Department of Veterinary MedicineFaculty of Agriculture and Veterinary MedicineUniversity of Buea, Buea, Cameroon
| | | |
Collapse
|
6
|
Aktaş H, Napiórkowska A, Szpicer A, Custodio-Mendoza JA, Paraskevopoulou A, Pavlidou E, Kurek MA. Microencapsulation of green tea polyphenols: Utilizing oat oil and starch-based double emulsions for improved delivery. Int J Biol Macromol 2024; 274:133295. [PMID: 38914398 DOI: 10.1016/j.ijbiomac.2024.133295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.
Collapse
Affiliation(s)
- Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Alicja Napiórkowska
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Jorge A Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pavlidou
- Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| |
Collapse
|
7
|
Zhang Z, Kumar Sharma A, Chen L, Zheng B. Enhancing optimal molecular interactions during food processing to design starch key structures for regulating quality and nutrition of starch-based foods: an overview from a synergistic regulatory perspective. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39078162 DOI: 10.1080/10408398.2024.2385028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Charting out personalized and/or optimized diets offers new opportunities in the field of food science, although with inherent challenges. Starch-based foods are a major component of daily energy intake in humans. In addition to being rich in starch, starchy foods also contain a multitude of bioactive substances (e.g., polyphenols, lipids). Food processing including storage affects the consistency and interactions between starch and other food components, which can affect the quality and nutritional characteristics of starch-based foods. This review describes the effects of interactions between starch and other components on the structural evolution of starch during food processing. We ponder upon how the evolution of starch molecular structure affects the quality and nutritional characteristics of starch-based foods vis-a-vis the structure-property relationship. Furthermore, we formulate best practices in processing starchy food to retain the quality and nutritional value by rationally designing starch structural domains. Interestingly, we found that inhibiting the formation of a crystalline structures while promoting the formation of short-range ordered structures and nano-aggregates can synchronously slow down its digestion and retrogradation properties, thus improving the quality and nutritional characteristics of starch-based food. This review provides theoretical guidelines for new researchers and food innovators of starch-based foods.
Collapse
Affiliation(s)
- Zengjiang Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Anand Kumar Sharma
- Institute of Food, Nutrition, and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Gao HX, Chen N, He Q, Shi B, Zeng WC. Potential of polyphenols from Ligustrum robustum (Rxob.) Blume on enhancing the quality of starchy food during frying. J Food Sci 2024; 89:3306-3317. [PMID: 38752388 DOI: 10.1111/1750-3841.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
The increasing concerns about health have led to a growing demand for high-quality fried foods. The potential uses of Ligustrum robustum (Rxob.) Blume, a traditional tea in China, as natural additives to enhance the quality of starchy food during frying was studied. Results indicated that L. robustum polyphenols extract (LREs) could improve the quality of fried starchy food, according to the tests of color, moisture content, oil content, texture property, and volatile flavor. The in vitro digestion results demonstrated that LRE reduced the final glucose content from 11.35 ± 0.17 to 10.80 ± 0.70 mmol/L and increased the phenolic content of fried starch foods from 1.23 ± 0.04 to 3.76 ± 0.14 mg/g. The appearance and polarizing microscopy results showed that LRE promoted large starch bulges on the surface of fried starchy foods. Meanwhile, X-ray diffraction results showed that LRE increased the intensity of characteristic diffraction peak of fried starch with a range of 21.8%-28%, and Fourier transform infrared results showed that LRE reduced the damage to short-range order structure of starch caused by the frying process. In addition, LRE increased the aggregation of starch granules according to the SEM observation and decreased the enthalpy of starch gelatinization based on the differential scanning calorimetry results. The present results suggest that LREs have the potential to be utilized as a natural additive for regulating the quality of fried starchy food in food industries. PRACTICAL APPLICATION: The enhancement of L. robustum polyphenols on the quality of starchy food during frying was found, and its mechanisms were also explored. This work indicated that L. robustum might be used as a novel economic natural additive for producing high-quality fried foods.
Collapse
Affiliation(s)
- Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, P. R. China
| | - Bi Shi
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, P. R. China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, P. R. China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
9
|
Cetin‐Babaoglu H, Aydın H, Kumas R, Arslan‐Tontul S. Enhancing nutritional and functional properties of rice starch by modification with Matcha extract. Food Sci Nutr 2024; 12:4284-4291. [PMID: 38873475 PMCID: PMC11167186 DOI: 10.1002/fsn3.4087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
The aim of this study is to increase the functionality of rice starch by modifying matcha tea extract and to determine the effect on some physicochemical properties and starch digestibility. According to the data analyzed, treatment with matcha extract was effective in increasing the nutritional value of native rice starch. At the highest level of extract addition, total phenolic and flavonoid content reached 129.54 mg/100 g and 40.16 mg/100 g, respectively, as no phenolic or flavonoid content was detected in control. In addition, the highest DPPH and FRAP values were determined to be 296.62 μmol TE/100 g and 814.89 mg/100 g, respectively, at the highest extract addition level. Treatment with matcha extract significantly reduced the eGI of native rice starch from to 94.61 to 64.63, while resistant starch was increased from 0.90 to 33.43%. According to the physiochemical analysis, there was a positive correlation between the extract ratio and the water-holding capacity of rice starch due to the high hydrophilic capacity of the phenolic compounds. In addition, the solubility and swelling power of starch were increased by treatment with matcha extract, but high temperatures had a negative effect on these physicochemical properties.
Collapse
Affiliation(s)
| | - Hümeyra Aydın
- Food Engineering Department, Agricultural FacultySelçuk UniversityKonyaTurkey
| | - Rumeysa Kumas
- Food Engineering Department, Agricultural FacultySelçuk UniversityKonyaTurkey
| | | |
Collapse
|
10
|
Bebek Markovinović A, Bosiljkov T, Janči T, Kostić M, Dedović N, Lučić E, Bavrka K, Pavlić B, Bursać Kovačević D. Characterization of Antioxidant Bioactive Compounds and Rheological, Color and Sensory Properties in 3D-Printed Fruit Snacks. Foods 2024; 13:1623. [PMID: 38890852 PMCID: PMC11172405 DOI: 10.3390/foods13111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The influence of wheat starch (6%, 8% and 10%, w/w) and a 3D printing program (program 1 vs. program 2) on the content of bioactive compounds, antioxidant capacity, color parameters and rheological and sensory properties was investigated in 3D strawberry and strawberry tree fruit snacks. Increasing the starch content led to a decrease in the content of almost all the bioactive compounds, while it had no effect on the antioxidant capacity. The printing program had no significant effect on the bioactive compounds (except hydroxycinnamic acids), antioxidant capacity and color parameters. A higher starch content improved the strength of the sample but had no effect on the mechanical properties. Smaller particles with a higher starch content improved the stability of the sample. In contrast to the programs, varying the starch content had a significant effect on all the color parameters except the a* values. Eight different sweeteners in two different concentrations were used for the sensory evaluation of the 3D-printed snacks. The variations in sweetener content only affected the sweet and harmonious taste. In summary, this study confirms the great potential of fruit bases for the production of 3D-printed snacks with excellent biological and rheological properties, which can be a step toward personalized food with the addition of sweeteners.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tomislav Bosiljkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tibor Janči
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marko Kostić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia
| | - Nebojša Dedović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia
| | - Ela Lučić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Katarina Bavrka
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Kumar A, Singh N. Embracing nutritional, physical, pasting, textural, sensory and phenolic profile of functional muffins prepared by partial incorporation of lyophilized wheatgrass, fenugreek and basil microgreens juice powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4286-4295. [PMID: 38308402 DOI: 10.1002/jsfa.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Muffins are delightful baked food products that have earned a prominent place in the daily diet of a majority of people around the world. The incorporation of microgreens juice powder (MJP) into muffins boosts their nutritional value. The influence of the incorporation of wheatgrass, fenugreek and basil MJP at 1.5% and 3.0% levels on the nutritional composition, physical properties, pasting, sensory, textural and phenolic profile of functional muffins was evaluated. RESULTS The results indicated a significant increase in the protein content, ash content, dietary fiber and total phenolic content of MJP incorporated muffins. The incorporation of MJP to the muffins led to a gradual reduction in the L*, a* and b* values. Baking characteristic such as bake loss decreased significantly as a result of MJP incorporation. Furthermore, the incorporation of various MJPs resulted in a significant decrease in the peak viscosity of the flour-MJP blends. Regarding texture, the hardness and chewiness of the muffins increased progressively with an increase in the level of MJP incorporation. The highest hardness (10.15 N) and chewiness (24.45 mJ) were noted for 3% fenugreek MJP incorporated muffins (FK 3.0). The sensory score of MJP incorporated muffins was acceptable and satisfactory. Additionally, 3% basil MJP incorporated muffins (BL 3.0) marked the dominant presence of majority of the detected phenolic acids such as ferulic acid, sinapic acid, chlorogenic acid, caffeic acid, quercetin, cinnamic acid, isothymosin and rosamarinic acid. The highest concentration of p-coumaric acid (11.95 mg kg-1), vanillic acid (26.07 mg kg-1) and kaempferol (8.04 mg kg-1) was recorded for FK 3.0 muffin. CONCLUSION MJP incorporated muffins revealed the pool of phenolic acids and the reduced bake loss is of industrial interest. The present study concludes that wheatgrass, fenugreek and basil MJP can be incorporated by up to 3% into baked products as a source of functional ingredients for health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|
12
|
Van Ngo T, Kunyanee K, Luangsakul N. Insight into the nutritional, physicochemical, functional, antioxidative properties and in vitro gastrointestinal digestibility of selected Thai rice: Comparative and multivariate studies. Curr Res Food Sci 2024; 8:100735. [PMID: 38655190 PMCID: PMC11035083 DOI: 10.1016/j.crfs.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/27/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
Nutritional, physicochemical, functional, antioxidative and digestion properties of brown and white rice flours from four Thai rice varieties (Luangpatue, upland rice, RD43, and Hommali) were investigated and compared. Due to differences in grain color, the color parameters of flours varied significantly. Protein, fat, ash, carbohydrate, and moisture content, total dietary fiber, and calories of these rice flours were 6.94-10.21%, 1.68-3.16%. 0.554-1.442%, 71.20-79.68%, 9.79-10.53%, 1.07-3.64%, and 350.82-362.73 kcal/100g, respectively. RD43 brown rice (18.4%) and Luangpatue white rice (26.5%) respectively exhibited the lowest and highest amylose content. Luangpatue rice flours also showed higher swelling power, setback value, final viscosity, and thermal properties than other varieties. The variations in hydration properties and oil absorption index were noticeable among these rice flours. In addition, the highest level of total phenolic content and antioxidant activity led to the lowest estimated glycemic index (eGI = 62.92) found in upland brown rice. It was confirmed by the multivariate analysis results. This study reported the diverse physicochemical properties and composition-property relationships of two kinds of flours from four rice varieties collected from Thailand for the first time. It exhibited possible capabilities for the development of various rice-based products that promote health based on their characteristics on industrial scale.
Collapse
Affiliation(s)
- Tai Van Ngo
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Kannika Kunyanee
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
13
|
Bebek Markovinović A, Brdar D, Putnik P, Bosiljkov T, Durgo K, Huđek Turković A, Brčić Karačonji I, Jurica K, Pavlić B, Granato D, Bursać Kovačević D. Strawberry tree fruits (Arbutus unedo L.): Bioactive composition, cellular antioxidant activity, and 3D printing of functional foods. Food Chem 2024; 433:137287. [PMID: 37708697 DOI: 10.1016/j.foodchem.2023.137287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The aim of this study was to investigate the use of Arbutus unedo L. fruits for the production of functional foods by three-dimensional printing (3DP). First, the biological activity of the fruits was investigated in vitro, followed by 3DP with different starch types and proportions using two 3DP programs. All 3DP samples were characterized for their bioactive, antioxidant, physicochemical and rheological properties. In terms of biological activity, the recommended daily dose of polyphenols from the aqueous extract of A. unedo can protect the integrity of DNA. Moreover, it could be useful as an antimicrobial agent. All 3DP parameters significantly affected bioactive compounds and antioxidant capacity. The 3DP products were found to be a good source of polyphenols (632.60 mg/100 g), among which condensed tannins were predominant (42 %). In conclusion, the fruits of A. unedo should be considered as a sustainable resource for the production of innovative functional foods with 3DP.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Dora Brdar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia.
| | - Tomislav Bosiljkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Ksenija Durgo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Ana Huđek Turković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia.
| | - Karlo Jurica
- Special Security Operations Directorate, Ministry of the Interior, Ulica grada Vukovara 33, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
14
|
Fidriyanto R, Juanssilfero AB, Sarwono KA, Ridwan R, Nahrowi N, Jayanegara A. Enhancing physicochemical, rheological properties, and in vitro rumen fermentation of starch with Melastoma candidum D. Don fruit extract. Anim Sci J 2024; 95:e13950. [PMID: 38712489 DOI: 10.1111/asj.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).
Collapse
Affiliation(s)
- Rusli Fidriyanto
- Program Study of Nutrition and Feed Sciences, Graduate School of Institut Pertanian Bogor. Jl. Agatis, Bogor, West Java, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Ki Ageng Sarwono
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Roni Ridwan
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Nahrowi Nahrowi
- Centre for Tropical Animal Studies (CENTRAS), Institut Pertanian Bogor. Kampus IPB Baranangsiang, Bogor, West Java, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Institut Pertanian Bogor, Bogor, West Java, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Institut Pertanian Bogor, Bogor, West Java, Indonesia
| |
Collapse
|
15
|
Liu W, Xu J, Shuai X, Geng Q, Guo X, Chen J, Li T, Liu C, Dai T. The interaction and physicochemical properties of the starch-polyphenol complex: Polymeric proanthocyanidins and maize starch with different amylose/amylopectin ratios. Int J Biol Macromol 2023; 253:126617. [PMID: 37652319 DOI: 10.1016/j.ijbiomac.2023.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the impact of polymeric proanthocyanidins (PPC) on the physicochemical characteristics of maize starch with varying amylose content, and their potential interaction mechanism. PPC with a lower content (1 %) reduced the viscoelasticity of the high amylose maize starch (HAM) system, inhibited amylose rearrangement, and enhanced its fluidity. However, excessive PPC restrained the interaction between PPC and amylose. In contrast to HAM, PPC improved the gelation ability of waxy maize starch (WAM) as PPC concentration was raised. PPC suppressed the recrystallization of starch during storage, and PPC had a superior inhibition influence on the retrogradation of WAM in comparison to HAM. This indicated that amylopectin was more likely to interact with PPC than amylose. Hydrogen bonds were the main driving force between PPC and starch chains, which was clarified by Fourier transform-infrared, nuclear magnetic resonance, X-ray diffraction, iodine bonding reaction, and dynamic light scattering data. Additionally, the mechanism of interaction between PPC and the two starch components may be similar, and variance in physicochemical attributes can be primarily credited to the percentage of amylose to amylopectin in starch.
Collapse
Affiliation(s)
- Wuzhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaojuan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
16
|
Carpentieri S, Orkusz A, Ferrari G, Harasym J. Effect of replacing durum wheat semolina with Tenebrio molitor larvae powder on the techno-functional properties of the binary blends. Curr Res Food Sci 2023; 8:100672. [PMID: 38261860 PMCID: PMC10797142 DOI: 10.1016/j.crfs.2023.100672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Tenebrio molitor (TM) larvae, due to their high nutritional value, are gaining growing attention in food and feed sectors. Although few studies dealt with wheat-based products functionalized with TM larvae powder, there is a lack of comprehensive characterization of the raw materials to optimize the formulations for end-product recommendation. This study aimed at investigating the effects of partial replacement of durum wheat semolina with increasing amounts of TM larvae powder (5-30%) on the techno-functional properties of the binary blends. Color, granulometry, hydration properties, pasting characteristics, spectral characteristics (FTIR), reducing sugar content, and bioactivity in terms of total phenolic content (TPC) and antioxidant activity (FRAP, DPPH, ABTS) were assessed in the resulting blends. The increasing insect powder decreased the lightness (L*) and yellowness (b*) but increased the redness (a*) of the samples. In turn, the addition of insect powder did not negatively alter the hydration properties, which were comparable to those detected for semolina. Higher amounts of insect powder led to increased protein and lipid contents, as corroborated by the FTIR spectra, and decreased pasting parameters, with stronger starch granule stability detected when 20% and 30% of insect powder were added to the formulation. Significant increases in TPC and antioxidant activity were observed with increasing amount of insect powder (up to 87%, 78%, 2-fold, 67%, for TPC, FRAP, DPPH, and ABTS, respectively, compared to semolina). Therefore, these promising results have highlighted the possibility of using TM larvae powder as an unconventional ingredient for wheat-based products, by enhancing the nutritional and health-promoting values.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Agnieszka Orkusz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Wroclaw, Poland
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
- ProdAl Scarl C/o University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Wroclaw, Poland
- Adaptive Food Systems Accelerator – Research Centre, Wroclaw University of Economics and Business, Wroclaw, Poland
| |
Collapse
|
17
|
Loan LTK, Thuy NM, Van Tai N. Ultrasound-Assisted Extraction of Antioxidant Compounds from "Cẩm" Purple Rice Bran for Modulation of Starch Digestion. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:1086185. [PMID: 38025393 PMCID: PMC10667058 DOI: 10.1155/2023/1086185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Purple rice, locally known as "Cẩm" rice, is cultivated in the southern region of Vietnam. The bran of "Cẩm" rice is often disregarded and underutilized; nevertheless, it harbours substantial nutritive value, particularly in terms of antioxidant compounds. Additionally, sonication, an emerging and "green" technological approach, has been employed to augment the extraction efficiency of these antioxidants. This research is aimed at optimizing and maximizing the antioxidant recovery capacity including phenolic and total flavonoid compounds, along with their antioxidant activities, through the assistance of ultrasound waves. The effect of the extract on the starch digestion process was also investigated. The study employed the Box-Behnken experimental design, encompassing three variables: extraction time (20-40 minutes), temperature (60-80°C), and solvent-to-material ratio (8 : 1 to 12 : 1). Analysis was conducted on total phenolic compounds, total flavonoid content, and antioxidant activities. Results demonstrated that the peak yield of antioxidant compounds and their corresponding activities were attained at an extraction duration of 29.38 minutes, a temperature of 69°C, and a solvent-to-material ratio of 9.92. Under these optimal conditions, the yields were as follows: total phenolic compounds at 60.821 mg GAE/g, total flavonoid compounds at 3.2696 mg QE/g, percentage inhibition of DPPH at 74.778%, and FRAP value at 54.112 μmol Fe (II)/g. The established models were validated and exhibited a strong alignment between predicted and actual values, with disparities of less than 3% under optimal conditions. Furthermore, the extract was codigested with cooked corn starch, revealing a dose-dependent effect on starch digestibility. The sluggishness of digestion rate was observed when 20 mg of the extract was supplemented to 200 mg of cooked corn starch. This suggests that rice bran extract holds promise as an effective ingredient for mitigating starch digestion, particularly beneficial for individuals dealing with diabetes.
Collapse
Affiliation(s)
- Le Thi Kim Loan
- Faculty of Agriculture and Food Technology, Tien Giang University, Tien Giang Province, Vietnam
| | - Nguyen Minh Thuy
- Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Ngo Van Tai
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
18
|
Ngo TV, Kunyanee K, Luangsakul N. Insights into Recent Updates on Factors and Technologies That Modulate the Glycemic Index of Rice and Its Products. Foods 2023; 12:3659. [PMID: 37835312 PMCID: PMC10572933 DOI: 10.3390/foods12193659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Rice is a staple food and energy source for half the world's population. Due to its quick digestion and absorption in the gastrointestinal tract, rice is typically regarded as having a high or medium-high glycemic index (GI); however, this can vary depending on the variety, nutrient compositions, processing, and accompanying factors. This report included a table of the glycemic index for rice and rice products in different countries, which could give an overview and fundamental information on the recent GI of different rice varieties. In addition, latest updates about the mechanism effects of rice nutritional profiles and processing techniques on GI were also provided and discussed. The influence of state-of-the-art GI regulation methods was also evaluated. Furthermore, the effectiveness and efficiency of applied technologies were also given. Furthermore, this review offered some aspects about the potential nutraceutical application of rice that food scientists, producers, or consumers might consider. Diverse types of rice are grown under various conditions that could affect the GI of the product. The instinct nutrients in rice could show different effects on the digestion rate of its product. It also revealed that the rice product's digestibility is process-dependent. The postprandial glucose response of the rice products could be changed by modifying processing techniques, which might produce the new less-digestive compound or the inhibition factor in the starch hydrolysis process. Because of the significant importance of rice, this paper also concluded the challenges, as well as some important aspects for future research.
Collapse
Affiliation(s)
| | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.V.N.)
| |
Collapse
|
19
|
Raza H, Xu H, Zhou Q, He J, Zhu B, Li S, Wang M. A review of green methods used in starch-polyphenol interactions: physicochemical and digestion aspects. Food Funct 2023; 14:8071-8100. [PMID: 37647014 DOI: 10.1039/d3fo01729j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The interactions of starch with lipids, proteins, and other major food components during food processing are inevitable. These interactions could result in the formation of V-type or non-V-type complexes of starch. The starch-lipid complexes have been intensively studied for over five decades, however, the complexes of starch and polyphenols are relatively less studied and are the subject of recent interest. The interactions of starch with polyphenols can affect the physicochemical properties and its digestibility. The literature has highlighted several green methods such as ultrasound, microwave, high pressure, extrusion, ball-milling, cold plasma etc., to assist interactions of starch with polyphenols. However, comprehensive information on green methods to induce starch-polyphenol interactions is still scarce. Therefore, in light of the importance and potential of starch-polyphenol complexes in developing functional foods with low digestion, this review has summarized the novel green methods employed in interactions of starch with flavonoids, phenolic acids and tannins. It has been speculated that flavonoids, phenolic acids, and tannins, among other types of polyphenols, may have anti-digestive activities and are also revealed for their interaction with starch to form either an inclusion or non-inclusion complex. Further information on the effects of these interactions on physicochemical parameters to understand the chemistry and structure of the complexes is also provided.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK, 1958, Denmark
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
20
|
Wang M, Mao H, Ke Z, Huang R, Chen J, Qi L, Wang J. Effect of proanthocyanidins from different sources on the digestibility, physicochemical properties and structure of gelatinized maize starch. Int J Biol Macromol 2023; 248:125935. [PMID: 37482168 DOI: 10.1016/j.ijbiomac.2023.125935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The effect of proanthocyanidins (PAs) from Chinese bayberry leaves (BLPs), grape seeds (GSPs), peanut skins (PSPs) and pine barks (PBPs) on physicochemical properties, structure and in-vitro digestibility of gelatinized maize starch was investigated. The results showed that all PAs remarkably retarded starch digestibility, meanwhile, BLPs highlighted superiority in increasing resistant starch content from 31.29 ± 1.12 % to 68.61 ± 1.15 %. The iodine-binding affinity analysis confirmed the interaction between PAs and starch, especially the stronger binding of BLPs to amylose, which was driven by non-covalent bonds supported by XRD and FT-IR analysis. Further, we found that PAs altered the rheological properties, thermal properties and morphology structure of starch. In brief, PAs induced larger consistency, poorer flow ability, lower gelatinization temperatures and melting enthalpy change (ΔH) of starch paste. SEM and CLSM observation demonstrated that PAs facilitated starch aggregation. Our results indicated that PAs especially BLPs could be considered as potential additives to modify starch in food industry.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Rui Huang
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
21
|
Rostamabadi H, Bajer D, Demirkesen I, Kumar Y, Su C, Wang Y, Nowacka M, Singha P, Falsafi SR. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr Polym 2023; 314:120905. [PMID: 37173042 DOI: 10.1016/j.carbpol.2023.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Chunyan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Nikolaou EN, Karvela ED, Papadopoulou A, Karathanos VT. The Effect of Enrichment with Sour-Cherry Extracts on Gluten-Free Snacks Developed by Novel 3D Technologies. Antioxidants (Basel) 2023; 12:1583. [PMID: 37627578 PMCID: PMC10451638 DOI: 10.3390/antiox12081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Gluten-free formulations (GF) were utilized as food inks enriched with sour-cherry powder (SCP) and lyophilized extract (SCLE), and their physicochemical, rheological, and thermomechanical properties were evaluated with respect to different leavening conditions. Post-printing drying was also assessed in terms of texture, color, and phenolic substances. SCP and SCLE enrichment decreased lightness by 15% and increased red hue by almost 30%, mainly in yeast formulations. SC addition reduced pH by more than 12% for SCP in both leavening conditions and at 10% to 12% for SCLE, depending on leavening agents. The SCLE addition doubled dynamic moduli and complex viscosity magnitudes and increased hardness at 75.7% compared to the control for baking-powder formulations. SC enrichment, compared to the control, increased the phenolic sum to more than 90% (87% SCLE, 96% SCP) in yeast formulations, presenting lower values (almost 70%) for baking powder. Antioxidant activity in 3D-printed snacks was positively influenced by SC incorporation, depending on the drying and leavening treatment. Phenolic content, in terms of total phenolic sum, origin, and composition, possibly impacts the product's antioxidant activity by depicting antagonistic or synergistic phenomena. Ultimately, 3D printing is feasible for producing functional GF snacks enriched with sour-cherry extracts.
Collapse
Affiliation(s)
- Evgenia N. Nikolaou
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece; (E.N.N.); (E.D.K.)
| | - Evangelia D. Karvela
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece; (E.N.N.); (E.D.K.)
| | - Argyri Papadopoulou
- Department of Food Science and Technology, University of West Attika, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece;
| | - Vaios T. Karathanos
- Department of Nutrition and Dietetics, Harokopion University of Athens, 70, El. Venizelou Ave., 17671 Athens, Greece; (E.N.N.); (E.D.K.)
| |
Collapse
|
23
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
24
|
Raza H, Ameer K, Ren X, Liu Y, Kang L, Liang Q, Guo T, Ma H, Wang M. Synergistic impact of heat-ultrasound treatment on the properties and digestibility of Sagittaria sagittifolia L. starch-phenolic acid complexes. Int J Biol Macromol 2023:125457. [PMID: 37331532 DOI: 10.1016/j.ijbiomac.2023.125457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The current research investigated the multi-scale structural interactions between arrowhead starch (AS) and phenolic acids, such as ferulic acid (FA) and gallic acid (GA) to identify the mechanism of anti-digestion effects of starch. AS suspensions containing 10 % (w/w) GA or FA were subjected to physical mixing (PM) followed by heat treatment at 70 °C for 20 min (HT) and a synergistic heat-ultrasound treatment (HUT) for 20 min using a dual-frequency 20/40 KHz system. The synergistic HUT significantly (p < 0.05) increased the dispersion of phenolic acids in the amylose cavity, with GA showing a higher complexation index than FA. XRD analysis showed a typical V-type pattern for GA, indicating the formation of an inclusion complex, while peak intensities decreased for FA following HT and HUT. FTIR revealed sharper peaks possibly of amide bands in the ASGA-HUT sample compared to that of ASFA-HUT. Additionally, the emergence of cracks, fissures, and ruptures was more pronounced in the HUT-treated GA and FA complexes. Raman spectroscopy provided further insight into the structural attributes and compositional changes within the sample matrix. The synergistic application of HUT led to increased particle size in the form of complex aggregates, ultimately improving the digestion resistance of the starch-phenolic acid complexes.
Collapse
Affiliation(s)
- Husnain Raza
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Xiaofeng Ren
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Yuxuan Liu
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Lixin Kang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Tao Guo
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Haile Ma
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|