1
|
Mihai RA, Canchignia Guacollantes MG, Vivanco Gonzaga RF, Cubi-Insuaste NS, Catana RD. Impact of Babaco ( Vasoncelea x pentagona (Heilborn) Mabb.) Fruit Ripening Stages on Phytochemical Composition and Biological Properties. Metabolites 2024; 14:718. [PMID: 39728502 DOI: 10.3390/metabo14120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Background: This research article delves into Babaco fruit's-an Ecuadorian product with immense nutraceutical potential phytochemical composition and biological activity-in different maturation fruit stages. Bridging the gap between food and medicine, nutraceuticals offer health benefits beyond basic nutrition. Methods: Specifically, this study investigates Babaco's antioxidant and its phenolic and flavonoid content across different ripening stages: physiological maturity, organoleptic quality immaturity, and commercial maturity. Results: This last stage of maturity exhibits the highest antioxidant activity, making it the optimal phase for marketing Babaco as a nutraceutical product. Further LC-MS analysis reveals the specific secondary metabolites responsible for this potent antioxidant capacity. Conclusions: By introducing Babaco as a nutraceutical fruit, Ecuador can showcase its unique phytochemical profile, which is rich in phenolic compounds and flavonoids. Consumers stand to gain from Babaco's antioxidant properties, supporting overall health and well-being. Recognizing Babaco's antioxidant potential aligns perfectly with Ecuador's diverse biodiversity and offers a promising avenue for health-conscious choices.
Collapse
Affiliation(s)
- Raluca A Mihai
- Army Scientific and Technological Research Center-CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas-ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador
| | - Mauricio G Canchignia Guacollantes
- Army Scientific and Technological Research Center-CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas-ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador
| | - Ramiro F Vivanco Gonzaga
- Army Scientific and Technological Research Center-CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas-ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador
| | - Nelson S Cubi-Insuaste
- Army Scientific and Technological Research Center-CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas-ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador
| | - Rodica D Catana
- Developmental Biology Department, Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
2
|
Kalogerakou T, Antoniadou M. The Role of Dietary Antioxidants, Food Supplements and Functional Foods for Energy Enhancement in Healthcare Professionals. Antioxidants (Basel) 2024; 13:1508. [PMID: 39765836 PMCID: PMC11672929 DOI: 10.3390/antiox13121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Healthcare professionals frequently experience significant work overload, which often leads to substantial physical and psychological stress. This stress is closely linked to increased oxidative stress and a corresponding decline in energy levels. This scoping review investigates the potential impact of dietary antioxidants and food supplements in conjunction with diet in controlling these negative effects. Through an analysis of the biochemical pathways involved in oxidative stress and energy metabolism, the paper emphasizes the effectiveness of targeted dietary interventions. Key dietary antioxidants, such as vitamins C and E, polyphenols, and carotenoids, are evaluated for their ability to counteract oxidative stress and enhance energy levels. Additionally, the review assesses various food supplements, including omega-3 fatty acids, coenzyme Q10, and ginseng, and their mechanisms of action in energy enhancement. Practical guidelines for incorporating energy-boost dietary strategies into the routine of healthcare professionals are provided, emphasizing the importance of dietary modifications in reducing oxidative stress and improving overall well-being and performance in high-stress healthcare environments. The review concludes by suggesting directions for future research to validate these findings and to explore new dietary interventions that may further support healthcare professionals under work overload.
Collapse
Affiliation(s)
- Theodora Kalogerakou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Executive Mastering Program in Systemic Management (CSAP), University of Piraeus, 18534 Piraeus, Greece
| |
Collapse
|
3
|
Quizhpe J, Ayuso P, Rosell MDLÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024; 13:3513. [PMID: 39517297 PMCID: PMC11544821 DOI: 10.3390/foods13213513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (J.Q.); (P.A.); (M.d.l.Á.R.); (R.P.)
| |
Collapse
|
4
|
Vandorou M, Plakidis C, Tsompanidou IM, Adamantidi T, Panagopoulou EA, Tsoupras A. A Review on Apple Pomace Bioactives for Natural Functional Food and Cosmetic Products with Therapeutic Health-Promoting Properties. Int J Mol Sci 2024; 25:10856. [PMID: 39409182 PMCID: PMC11476848 DOI: 10.3390/ijms251910856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Apples are consumed lavishly worldwide, while demand is increasing for the management of the huge apple-waste amounts that lead to significant disposal costs and ecological issues. Additionally, apples represent fruits with several bioactive constituents, which are key factors in a healthy, balanced diet. In the present study, an extensive review is presented regarding the bioactive compounds of an apple processing by-product, namely apple pomace, mentioning their significance as viable ingredients/substances in foods and cosmetics aiming at chronic disease prevention and health promotion. Apple pomace contains several constituents, such as polar lipids, phenolics, vitamins and dietary fibers, with potential antioxidant, anti-inflammatory, anti-thrombotic, anti-aging and skin-protecting properties, and thus, they may contribute to minimizing the risk of various health conditions. Additionally, the mechanisms of action of such functional bioactives from apple pomace exert health benefits that will be examined, while the potential synergistic effects will also be investigated. Moreover, we will present the methods and techniques needed for the utilization of apple pomace in the appropriate form, such as powder, extracts, essential oil and so on, and their several applications in the food and cosmeceutical industry sectors, which summarize that apple pomace represents an ideal alternative to synthetic bioactive compounds.
Collapse
Affiliation(s)
- Maria Vandorou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Christos Plakidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Ilektra Maria Tsompanidou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Eirini A. Panagopoulou
- Department of Dietetics and Nutrition, Harokopio University, 70, El. Venizelou Ave., 17676 Kallithea, Greece;
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| |
Collapse
|
5
|
Zhang Y, Wu Y, Li B, Tian J. Phloretin prolongs lifespan of Caenorhabditis elegans via inhibition of NDUFS1 and NDUFS6 at mitochondrial complex Ⅰ. Free Radic Biol Med 2024; 221:283-295. [PMID: 38705496 DOI: 10.1016/j.freeradbiomed.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Phloretin has been widely perceived as an antioxidant. However, the bioavailability of phloretin in vivo is generally far too low to elicit a direct antioxidant effect by scavenging reactive oxygen species (ROS). Here we showed that administration of phloretin of apple polyphenols extended lifespan of Caenorhabditis elegans and promoted fitness. Specially phloretin enhanced the survival rates of nematodes under oxidants in an inverted U-shaped dose-response manner. The lifespan-extending effects of phloretin were mediated by ROS via mitochondrial complex I inhibition. The increase of ROS stimulated p38 MAPK/PMK-1 as well as transcription factors of NRF2/SKN-1 and FOXO/DAF-16. Consistent with the involvement of NRF2/SKN-1 and FOXO/DAF-16 in lifespan-extending effects, activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced by phloretin. The exogenous application of antioxidants butylated hydroxyanisole and N-acetylcysteine abolished the increase of ROS, the enhancement of SOD and CAT activities, and the lifespan extending effects of phloretin. Meanwhile, with the inhibition of mitochondrial complex I, ATP was instantly decreased. Both energy sensors of AMPK/AAK-2 and SIRT1/SIR-2.1 were involved in the lifespan extension by phloretin. Transcriptomic, real-time qPCR and molecular docking analyses demonstrated that the binding of phloretin at complex I located at NDUFS1/NUO-5, NDUFS2/GAS-1, and NDUFS6/NDUF-6. The molecular dynamic simulation and binding free energy calculations showed that phloretin had high binding affinities towards NDUFS1 (-7.21 kcal/mol) and NDUFS6 (-7.02 kcal/mol). Collectively, our findings suggested phloretin had effects of life expectancy enhancement and fitness promotion via redox regulations in vivo. NDUFS1/NUO-5 and NDUFS6/NDUF-6 might be new targets in the lifespan and wellness regulations.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China.
| |
Collapse
|
6
|
Rosell MDLÁ, Quizhpe J, Ayuso P, Peñalver R, Nieto G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato ( Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants (Basel) 2024; 13:954. [PMID: 39199200 PMCID: PMC11351671 DOI: 10.3390/antiox13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Ipomoea batatas (L.) Lam is a dicotyledonous plant originally from tropical regions, with China and Spain acting as the main producers from outside and within the EU, respectively. The root, including only flesh, is the edible part, and the peel, leaves, stems, or shoots are considered by-products, which are generated due to being discarded in the field and during processing. Therefore, this study aimed to perform a comprehensive review of the nutritional value, phytochemical composition, and health-promoting activities of purple-fleshed sweet potato and its by-products, which lead to its potential applications in bakery products for the development of functional foods. The methodology is applied to the selected topic and is used to conduct the search, review abstracts and full texts, and discuss the results using different general databases. The studies suggested that purple-fleshed sweet potato parts are characterized by a high content of essential minerals and bioactive compounds, including anthocyanins belonging to the cyanidin or the peonidin type. The flesh and leaves are also high in phenolic compounds and carotenoids such as lutein and β-carotene. The high content of phenolic compounds and anthocyanins provides the purple-fleshed sweet potato with high antioxidant and anti-inflammatory power due to the modulation effect of the transcription factor Nrf2 and NF-kB translocation, which may lead to protection against hepatic and neurological disorders, among others. Furthermore, purple-fleshed sweet potato and its by-products can play a dual role in food applications due to its attractive color and wide range of biological activities which enhance its nutritional profile. As a result, it is essential to harness the potential of the purple-fleshed sweet potato and its by-products that are generated during its processing through an appropriate agro-industrial valorization system.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (M.d.l.Á.R.); (J.Q.); (P.A.); (R.P.)
| |
Collapse
|
7
|
Kaster JB, Cruz EPD, Silva FTD, Hackbart HCDS, Siebeneichler TJ, Camargo TM, Radünz M, Fonseca LM, Zavareze EDR. Bioactive aerogels based on native and phosphorylated potato (Solanum tuberosum L.) starches incorporated with star fruit extract (Averrhoa carambola L.). Int J Biol Macromol 2024; 272:132907. [PMID: 38862318 DOI: 10.1016/j.ijbiomac.2024.132907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
The aim of this study was to develop a star fruit extract (SFE) and incorporate it into aerogels based on native and phosphorylated potato starches. The phosphorylation of starch enhances its properties by incorporating phosphate groups that increase the spaces between starch molecules, resulting in a more resilient, intact aerogel with enhanced water absorption. The bioactive aerogels based on potato starch and 10, 15, and 20 % (w/w) of SFE were characterized by their morphological and thermogravimetric properties, infrared spectra, water absorption capacity, loading capacity, and antioxidant activity. Epicatechin was the major compound present in SFE. The thermal stability of SFE increased when incorporated into phosphorylated starch aerogels at a concentration of 20 %. The water absorption capacity was higher in phosphorylated starch aerogels (reaching 1577 %) than in their native counterparts (reaching 1100 %). Native starch aerogels with 15 and 20 % SFE exhibited higher antioxidant activity against hydroxyl free radicals compared to phosphorylated starch aerogels, achieving 79.9 % and 86.4 % inhibition for the hydroxyl and nitric oxide radicals, respectively. The ideal choice of freeze-dried aerogel depends on the desired effect, either to act as an antioxidant agent by releasing bioactive compounds from SFE or as a water-absorbent agent in food products.
Collapse
Affiliation(s)
- Jéssica Bosenbecker Kaster
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil.
| | - Francine Tavares da Silva
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Helen Cristina Dos Santos Hackbart
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Tatiane Jéssica Siebeneichler
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Taiane Mota Camargo
- Bioprocess Technology Laboratory, Technological Development Center (CDTec), Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Marjana Radünz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
8
|
Grasso S, Estévez M, Lorenzo JM, Pateiro M, Ponnampalam EN. The utilisation of agricultural by-products in processed meat products: Effects on physicochemical, nutritional and sensory quality - Invited Review. Meat Sci 2024; 211:109451. [PMID: 38350244 DOI: 10.1016/j.meatsci.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Several plant-based materials are discarded by the food industry due to oversupply, lack of transport, and inappropriate storage. These materials contain valuable essential micronutrients such as minerals, vitamins and bioactive components (e.g., polyphenol, tocopherols, ascorbic acid, carotenoids) with antioxidant, antimicrobial, and anti-inflammatory effects, among others. In the context of making our agriculture-food based economy more circular and sustainable, and to develop foods with clean labels and less E-numbers, fruits, vegetables, yams, cereal distillers, oilseeds and other plant by-products could be utilised and upcycled back into new food formulations. Meat products are a particularly suitable matrix for this purpose, due to their susceptibility to lipid and protein oxidation and microbial spoilage (which shorten their shelf life). This review brings together the latest (2020-23) reformulation efforts, preservative methods and other innovative pathways, including studies on by-products as plant-based additives and bio-actives. It will cover the use of plant-based by-products as natural additives into production of processed meat products such as burgers, fermented meats and sausages, produced from ruminant and monogastric animals (except poultry). The extraction methods, inclusion levels, processing methods used and the quality of the resulting meat products will be reported, including preservative effects (microbial growth, oxidative stability and shelf life) and effects on instrumental, nutritional and sensory quality. Furthermore, it will also critically discuss the gaps identified, recommendation of the most promising ingredients for quality enhancement, and provide directions for future research.
Collapse
Affiliation(s)
- Simona Grasso
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mario Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, Universidad de Extremadura, 10003 Cáceres, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Eric N Ponnampalam
- School of Agriculture, Food and Ecosystems Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Agrifeed Animal Production, 9 Poseidon Close, Mill Park, Victoria 3082, Australia
| |
Collapse
|
9
|
Klementaviciute J, Zavistanaviciute P, Klupsaite D, Rocha JM, Gruzauskas R, Viskelis P, El Aouad N, Bartkiene E. Valorization of Dairy and Fruit/Berry Industry By-Products to Sustainable Marinades for Broilers' Wooden Breast Meat Quality Improvement. Foods 2024; 13:1367. [PMID: 38731738 PMCID: PMC11083194 DOI: 10.3390/foods13091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The study aims to improve the quality of wooden breast meat (WBM) via the use of newly developed marinades based on selected strains of lactic acid bacteria (LAB) in combination with the by-products of the dairy and fruit/berry industries. Six distinct marinades were produced based on milk permeate (MP) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu) with the addition of apple (ApBp) and blackcurrant (BcBp) processing by-products. The microbiological and acidity parameters of the fermented marinades were evaluated. The effects of marinades on the microbiological, technical, and physicochemical properties of meat were assessed following 24 and 48 h of WBM treatment. It was established that LAB viable counts in marinades were higher than 7.00 log10 colony-forming units (CFU)/mL and, after 48 h of marination, enterobacteria and molds/yeasts in WBM were absent. Marinated (24 and 48 h) WBM showed lower dry-matter and protein content, as well as water holding capacity, and exhibited higher drip loss (by 8.76%) and cooking loss (by 12.3%) in comparison with controls. After WBM treatment, biogenic amines decreased; besides, the absence of spermidine and phenylethylamine was observed in meat marinated for 48 h with a marinade prepared with Lu. Overall, this study highlights the potential advantages of the developed sustainable marinades in enhancing the safety and quality attributes of WBM.
Collapse
Affiliation(s)
- Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Romas Gruzauskas
- Artificial Intelligence Centre, Kaunas University of Technology, K. Donelaicio Str. 73, LT-44249 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy, Route de rabat km 15 Gzenaya BP 365 Tanger, University Abdelmalek Essaâdi, Tetouan 92000, Morocco;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
10
|
Beltrán-Cotta LA, Passos RSFT, Costa NP, Barreto BG, Veloso AC, da Silva MCA, da Costa MP, Cavalheiro CP. Use of yellow mombin (Spondias mombin L.) in marination: Effect on quality properties of Boston butt pork during refrigerated storage. Meat Sci 2023; 204:109257. [PMID: 37354835 DOI: 10.1016/j.meatsci.2023.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
This research aimed to evaluate the effect of yellow mombin (Spondias mombin L.) juice as a marinade liquid on the quality properties of Boston butt pork during refrigerated storage. Yellow mombin juice was used as a marinade liquid at different concentrations: 0% (C0), 50% (C50), 75% (C75), and 100% (C100) in Boston butt pork samples which were analyzed for technological properties, proximate composition, and sensory characteristics on day 0 of storage. In addition, the pH, lipid oxidation, textural, and microbiological analyzes were carried out during refrigerated storage for 21 days. The results showed that the pH of the marinated samples was affected by yellow mombin juice (P < 0.05), with final values of 4.65 (C50), 4.56 (C75), and 4.39 (C100). Regarding the texture properties, C75 and C100 had the lowest values for hardness during storage. In addition, C100 had the lowest total aerobic mesophilic (5.69 log CFU g-1), total aerobic psychrophilic (7.10 log CFU g-1), and Enterobacteriaceae (5.30 log CFU g-1) counts at the end of storage. Regarding sensory properties, samples C50 and C75 were the best-rated marinated samples regarding overall acceptability and purchase intention. Therefore, the use of 75% yellow mombin juice (C75) as a marinade liquid could be a viable alternative for marinating Boston butt pork.
Collapse
Affiliation(s)
- Luis Alfonso Beltrán-Cotta
- Programa de Pós-Graduação em Ciência de Alimentos (PGAli), Faculdade de Farmácia, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ), UFBA, Salvador 40170-115, Brazil
| | - Rafael Sepúlveda Fonsêca Trevisan Passos
- Programa de Pós-Graduação em Ciência de Alimentos (PGAli), Faculdade de Farmácia, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ), UFBA, Salvador 40170-115, Brazil
| | - Nilma Pereira Costa
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ), UFBA, Salvador 40170-115, Brazil
| | - Brenno Guimarães Barreto
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ), UFBA, Salvador 40170-115, Brazil
| | - Amanda Curvelo Veloso
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ), UFBA, Salvador 40170-115, Brazil
| | - Maurício Costa Alves da Silva
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ), UFBA, Salvador 40170-115, Brazil
| | - Marion Pereira da Costa
- Programa de Pós-Graduação em Ciência de Alimentos (PGAli), Faculdade de Farmácia, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Leites e Derivados Lácteos (LaITLácteos), EMEVZ, UFBA, Salvador 40170-115, Brazil
| | - Carlos Pasqualin Cavalheiro
- Programa de Pós-Graduação em Ciência de Alimentos (PGAli), Faculdade de Farmácia, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LabCarne), Escola de Medicina Veterinária e Zootecnia (EMEVZ), UFBA, Salvador 40170-115, Brazil.
| |
Collapse
|
11
|
Latoch A, Czarniecka-Skubina E, Moczkowska-Wyrwisz M. Marinades Based on Natural Ingredients as a Way to Improve the Quality and Shelf Life of Meat: A Review. Foods 2023; 12:3638. [PMID: 37835291 PMCID: PMC10572579 DOI: 10.3390/foods12193638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Marinating is a traditional method of improving the quality of meat, but it has been modified in response to consumer demand for "clean label" products. The aim of this review is to present scientific literature on the natural ingredients contained in marinades, the parameters of the marinating process, and certain mechanisms that bring about changes in meat. A review was carried out of publications from 2000 to 2023 available in Web of Science on the natural ingredients of meat marinades: fruit and vegetables, seasonings, fermented dairy products, wine, and beer. The review showed that natural marinades improve the sensory quality of meat and its culinary properties; they also extend its shelf life. They affect the safety of meat products by limiting the oxidation of fats and proteins. They also reduce biogenic amines and the formation of heterocyclic aromatic amines (HAAs) and polycyclic aromatic hydrocarbons (PAHs). This is possible due to the presence of biologically active substances and competitive microflora from dairy products. However, some marinades, especially those that are acidic, cause a slightly acidic flavour and an unfavourable colour change. Natural compounds in the ingredients of marinades are accepted by consumers. There are no results in the literature on the impact of natural marinades on the nutritional value and health-promoting potential of meat products, so it can be assumed that this is a future direction for scientific research.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| |
Collapse
|
12
|
Trindade AR, Paiva P, Lacerda V, Marques N, Neto L, Duarte A. Pitaya as a New Alternative Crop for Iberian Peninsula: Biology and Edaphoclimatic Requirements. PLANTS (BASEL, SWITZERLAND) 2023; 12:3212. [PMID: 37765376 PMCID: PMC10537634 DOI: 10.3390/plants12183212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Pitaya is one of the fruit species whose demand has increased in recent years due to the numerous health benefits and lucrative price of the fruit and its by-products. In Europe, the Iberian Peninsula and other Mediterranean countries are the ones with favorable climatic conditions for its cultivation. This document describes much of the history of pitaya in the Iberian Peninsula and the difficulties related to its cultivation. A bibliographical survey was carried out on the culture of pitaya in the world, focusing on the edaphoclimatic requirements, and on the possibility of this becoming a consolidated crop in the Iberian Peninsula. The relatively low water requirement of pitaya makes this crop sustainable among crops that require irrigation. In addition, we provide a perspective for use and research of this emerging crop. There has been an exponential growth of scientific publications on pitaya in the last decade; however, much more needs to be researched to know how to increase productivity as well as the sensory quality of fruits in different regions. This sustainable crop is a good option to diversify fruit production in the Iberian Peninsula.
Collapse
Affiliation(s)
- Ana Rita Trindade
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paulo Paiva
- Instituto Federal de Educação, Ciência e Tecnologia do Triangulo Mineiro (IFTM), Uberaba 38064-790, Brazil
| | - Vander Lacerda
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
- Departamento de Produção Vegetal (Horticultura), Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Botucatu 18610-034, Brazil
| | - Natália Marques
- CEOT-Centro de Eletrónica, Optoeletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Edif. 8, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Luís Neto
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Amílcar Duarte
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
13
|
Latoch A, Moczkowska-Wyrwisz M, Sałek P, Czarniecka-Skubina E. Effect of Marinating in Dairy-Fermented Products and Sous-Vide Cooking on the Protein Profile and Sensory Quality of Pork Longissimus Muscle. Foods 2023; 12:3257. [PMID: 37685190 PMCID: PMC10486606 DOI: 10.3390/foods12173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the study was to evaluate the effect of marinating (3 or 6 days) in kefir (KE), yogurt (YO) and buttermilk (BM) and sous-vide cooking (SV) at 60 or 80 °C on changes in the protein profile of pork in relation to its sensory quality. In the marinated raw meat, an increased share of some fractions of myofibrillar and cytoskeletal proteins and calpains were found. The greatest degradation of proteins, regardless of time, was caused by marinating in YO and KE and cooking SV at 80 °C. The lowest processing losses were in samples marinated in KE and YO and cooked SV at 60 °C, with marinating time having no significant effect. The odor, flavor, tenderness and juiciness of meat marinated in BM was better than in KE and YO. Meat marinated and cooked SV at 60 °C was rated better by the panelists. Changes in proteins significantly affect the formation of meat texture, tenderness and juiciness, which confirms the correlations. This is also reflected in the sensory evaluation. During the process of marinating and cooking meat, protein degradation should be taken into account, which can be a good tool for shaping the sensory quality of cooked pork.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| |
Collapse
|
14
|
Menezes B, Caleja C, Calhelha RC, Pinela J, Dias MI, Stojković D, Soković M, Gonçalves OH, Leimann FV, Pereira E, Barros L. Use of Bio-Waste of Ilex paraguariensis A. St. Hil. (Yerba mate) to Obtain an Extract Rich in Phenolic Compounds with Preservative Potential. Foods 2023; 12:3241. [PMID: 37685174 PMCID: PMC10486667 DOI: 10.3390/foods12173241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, a comparison between the extracts of dehydrated yerba mate (Ilex paraguariensis) and bio-waste of yerba mate leaves from the Brazilian industry was made. The incorporation of the functional extract as a preservative/functional ingredient in a pastry product (pancakes) was tested. The individual profile of phenolic compounds was determined by HPLC-DAD-ESI/MS, and the bioactive potential was assessed using in vitro assays for antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. The yerba mate extracts revealed a high antimicrobial potential against the tested strains and a very promising antioxidant and anti-inflammatory action. Additionally, revealed a cytotoxic capacity for MCF-7, CaCo and AGS tumor cell-lines. In the three types of pancakes, after 3 days of storage, the chemical and nutritional characteristics remain unchanged, proving the preservative efficiency of the extract. This study showed the benefits of the use bio-waste from agro-industrial sector, focusing on sustainable production and the development of circular economy.
Collapse
Affiliation(s)
- Bárbara Menezes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.); (C.C.); (R.C.C.); (J.P.); (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.); (C.C.); (R.C.C.); (J.P.); (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.); (C.C.); (R.C.C.); (J.P.); (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.); (C.C.); (R.C.C.); (J.P.); (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.); (C.C.); (R.C.C.); (J.P.); (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.S.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.S.); (M.S.)
| | - Odinei Hess Gonçalves
- Department of Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology—Paraná—UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão CEP 87301-899, PR, Brazil; (O.H.G.); (F.V.L.)
| | - Fernanda Vitória Leimann
- Department of Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology—Paraná—UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão CEP 87301-899, PR, Brazil; (O.H.G.); (F.V.L.)
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.); (C.C.); (R.C.C.); (J.P.); (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.M.); (C.C.); (R.C.C.); (J.P.); (M.I.D.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
15
|
Kraouia M, Nartea A, Maoloni A, Osimani A, Garofalo C, Fanesi B, Ismaiel L, Aquilanti L, Pacetti D. Sea Fennel ( Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules 2023; 28:4741. [PMID: 37375298 PMCID: PMC10303230 DOI: 10.3390/molecules28124741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Sea fennel (Crithmum maritimum L.) is a perennial, strongly aromatic herb that has been used since ancient times in cuisine and folk medicine due to its renowned properties. Recently described as a "cash" crop, sea fennel is an ideal candidate for the promotion of halophyte agriculture in the Mediterranean basin due to its acknowledged adaptation to the Mediterranean climate, its resilience to risks/shocks related to climate changes, and its exploitability in food and non-food applications, which generates an alternative source of employment in rural areas. The present review provides insight into the nutritional and functional traits of this new crop as well as its exploitation in innovative food and nutraceutical applications. Various previous studies have fully demonstrated the high biological and nutritional potential of sea fennel, highlighting its high content of bioactive compounds, including polyphenols, carotenoids, ω-3 and ω-6 essential fatty acids, minerals, vitamins, and essential oils. Moreover, in previous studies, this aromatic halophyte showed good potential for application in the manufacturing of high-value foods, including both fermented and unfermented preserves, sauces, powders, and spices, herbal infusions and decoctions, and even edible films, as well as nutraceuticals. Further research efforts are needed to fully disclose the potential of this halophyte in view of its full exploitation by the food and nutraceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucia Aquilanti
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche (UNIVPM), 60131 Ancona, Italy; (M.K.); (A.N.); (A.M.); (A.O.); (C.G.); (B.F.); (L.I.); (D.P.)
| | | |
Collapse
|
16
|
Vieira MR, Simões S, Carrera-Sánchez C, Raymundo A. Development of a Clean Label Mayonnaise Using Fruit Flour. Foods 2023; 12:foods12112111. [PMID: 37297356 DOI: 10.3390/foods12112111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past few years, clean label food has been growing, meaning that consumers are searching for shorter and simpler ingredient lists composed of familiar and natural ingredients. The objective of the present work was to develop a vegan clean label mayonnaise, replacing the additives with fruit flour obtained from fruit reduced commercial value. The mayonnaises were prepared by replacing the egg yolk with 1.5% (w/w) lupin and faba proteins, while fruit flour (apple, nectarine, pear, and peach flour) was incorporated to substitute sugar, preservatives, and colorants. Texture profile analysis and rheology-small amplitude oscillatory measurements were performed to evaluate the impact of the fruit flour on mechanical properties. The mayonnaise antioxidant activity was also analyzed in terms of color, pH, microbiology, and stability measurements. The results showed that mayonnaises produced with fruit flour had better structure parameters in terms of viscosity, and texture, but also improved pH and antioxidant activity (p < 0.05) compared to the standard mayonnaise (mayonnaise without fruit flour). The incorporation of this ingredient into mayonnaise increases the antioxidant potential, though it is in lower concentrations compared to the fruit flours that compose them. Nectarine mayonnaise showed the most promising results in terms of texture and antioxidant capacity (11.30 mg equivalent of gallic acid/100 g).
Collapse
Affiliation(s)
- Maria Rocha Vieira
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Sara Simões
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Cecilio Carrera-Sánchez
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
17
|
Myszka K, Tomaś N, Juzwa W, Wolko Ł. Chlorogenic Acid Inhibits Rahnella aquatilis KM25 Growth and Proteolytic Activity in Fish-Based Products. Microorganisms 2023; 11:1367. [PMID: 37374869 DOI: 10.3390/microorganisms11061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
This work verified the antiproliferative and antiproteolytic activities of chlorogenic acid against Rahnella aquatilis KM25, a spoilage organism of raw salmon stored at 4 °C. Chlorogenic acid limited the growth of R. aqatilis KM25 in vitro at a concentration of 2.0 mg/mL. The dead (46%), viable (25%), and injured (20%) cell subpopulations were identified by flow cytometry following treatment of R. aquatilis KM25 with the examined agent. The exposure of R. aquatilis KM25 to chlorogenic acid altered its morphology. Changes in cell dimensions, mostly in length parameters from 0.778 µm to 1.09 µm, were found. The length of untreated cells ranged from 0.958 µm to 1.53 µm. The RT-qPCR experiments revealed changes in the expression of genes responsible for the proliferation and proteolytic activity of cells. Chlorogenic acid caused a significant reduction in the mRNA levels of the ftsZ, ftsA, ftsN, tolB, and M4 genes (-2.5, -1.5, -2.0, -1.5, and -1.5, respectively). In situ experiments confirmed the potential of chlorogenic acid to limit bacterial growth. A similar effect was noted in samples treated with benzoic acid, where the growth inhibition of R. aquatilis KM25 was 85-95%. Reduction of microbial R. aquatilis KM25 proliferation significantly limited total volatile base nitrogen (TVB-N) and trimethylamine (TMA-N) formation during storage, extending the shelf life of model products. The TVB-N and TMA-N parameters did not exceed the upper levels of the maximum permissible limit of acceptability. In this work, the TVB-N and TMA-N parameters were 10-25 mg/100 g and 2.5-20.5 mg/100 g, respectively; for samples with benzoic acid-supplemented marinades, the parameters TVB-N and TMA-N were 7.5-25.0 mg/100 g and 2.0-20.0 mg/100 g, respectively. Based on the results of this work, it can be concluded that chlorogenic acid can increase the safety, shelf life, and quality of fishery products.
Collapse
Affiliation(s)
- Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Natalia Tomaś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| |
Collapse
|
18
|
Leichtweis MG, Molina AK, Petropoulos SA, Carocho M, Pires TCSP, Dias MI, Calhelha R, Oliveira MBPP, Pereira C, Barros L. Valorization of Pumpkin Peel as a Source of Bioactive Compounds: Optimization of Heat- and Ultrasound-Assisted Extraction. Molecules 2023; 28:molecules28073168. [PMID: 37049931 PMCID: PMC10096157 DOI: 10.3390/molecules28073168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The peels from three pumpkin genotypes cultivated in Greece were assessed for their phenolic content and bioactive properties to obtain extracts with a high preservative capacity. The optimization of the extraction was performed through response surface methodology (RSM) based on a Box–Behnken experimental design after applying two extraction techniques: heat-assisted (HAE) and ultrasound-assisted (UAE) extraction. The implemented independent variables were time, solvent concentration, and temperature/power (for HAE/UAE), while as dependent variables the dry residue (DR), reducing power (RP), and total phenolic content (TP) were considered. In general, HAE was the most effective technique for ‘TL’ (75 min; 30 °C; 24% ethanol) and ‘Voutirato’ (15 min; 30 °C; 10% ethanol), while UAE was more effective for ‘Leuka Melitis’ (5 min; 400 W; 0% ethanol). The extracts obtained in the global optimum conditions for each genotype peel were then assessed for their phenolic profile, by HPLC-DAD-ESI/MS, and bioactive potential. Seven phenolic compounds were detected, including four flavonoids, two phenolic acids, and one flavan-3-ol. The extracts presented high antioxidant, antibacterial, and antifungal potential, with no cytotoxicity for non-tumor cells. The optimized conditions for the extraction of preservative compounds from bioresidues were defined, allowing the acquisition of antioxidant and antimicrobial extracts and proving their potential for food application.
Collapse
Affiliation(s)
- Maria G. Leichtweis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tânia C. S. P. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Beatriz P. P. Oliveira
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|