1
|
Moazzami M, Bergenkvist E, Boqvist S, Frosth S, Langsrud S, Møretrø T, Vågsholm I, Hansson I. Occurrence of Campylobacter, Listeria monocytogenes, and extended-spectrum beta-lactamase Escherichia coli in slaughterhouses before and after cleaning and disinfection. Food Microbiol 2025; 125:104639. [PMID: 39448150 DOI: 10.1016/j.fm.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
To prevent foodborne illness, adequate cleaning and disinfection (C&D) is essential to remove pathogenic bacteria from the slaughter environment. The aim of this study was to determine the presence of Campylobacter spp., Listeria monocytogenes, and extended-spectrum beta-lactamase-producing Escherichia coli (ESBL E. coli) before and after C&D in slaughterhouses. Samples from food- and non-food contact surfaces taken before and after C&D in one red meat and one poultry slaughterhouse were analyzed for the target bacteria. Whole-genome sequencing and antimicrobial susceptibility testing were performed. In total, 484 samples were analyzed. Campylobacter spp. were isolated from 13.0% to 15.5% of samples before C&D in the red meat and poultry slaughterhouse, respectively. Listeria monocytogenes was isolated before C&D in 12.5% and 5.2% of samples in the red meat and poultry slaughterhouse, respectively. It was noted that C. jejuni was detected on multiple surfaces and that L. monocytogenes showed potential persistence in one slaughterhouse. After C&D, L. monocytogenes was found in one sample. ESBL E. coli was not detected either before or after C&D. These findings show the possibility to remove pathogenic bacteria from slaughter and meat processing facilities, but also indicate that deficiencies in slaughter hygiene pose a risk of cross-contamination of meat.
Collapse
Affiliation(s)
- Madeleine Moazzami
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Emma Bergenkvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Sofia Boqvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Sara Frosth
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Solveig Langsrud
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430, Ås, Norway.
| | - Trond Møretrø
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430, Ås, Norway.
| | - Ivar Vågsholm
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Ingrid Hansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
2
|
Belina D, Gobena T, Kebede A, Chimdessa M, Mummed B, Thystrup CAN, Hald T. Occurrence and diversity of Campylobacter species in diarrheic children and their exposure environments in Ethiopia. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003885. [PMID: 39471170 PMCID: PMC11521251 DOI: 10.1371/journal.pgph.0003885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024]
Abstract
Campylobacter is a major zoonotic foodborne pathogen that poses a significant public health threat, particularly among children and immunocompromised individuals. However, data on the occurrence and sources of Campylobacter infection remain scarce in Ethiopia. This study assessed the occurrence, diversity, and relationships between Campylobacter from diarrheic children and potential exposure sources using whole-genome sequencing. Through case-based tracing, animal, food, and environmental samples were collected from Harar town and Kersa district between November 2021 and January 2023. Campylobacter was identified using selective media, and DNA was extracted and sequenced with the Illumina NextSeq 550 instrument. Sequence reads were analysed using bioinformatics tools. The overall Campylobacter prevalence in the exposure sources was 5.5%, with 6.0% in urban and 5.0% in rural settings. Campylobacter detection was 1.8 times more likely in household samples (8.7%; OR = 1.8; 95% CI: 0.7-4.5) than in samples from marketplaces. The occurrence of Campylobacter in food was 4.2%, with no significant differences across the meat, milk, and other food categories. The likelihood of Campylobacter contamination in the environment was 5.8 times higher in the presence of poultry (17.7%; OR = 5.8; CI: 1.1-30.6) compared to shoats. Sequence analysis identified a low Campylobacter spp. diversity comprising only C. jejuni and C. coli, which were characterized by 8 distinct sequence types (STs). Phylogenetically, the majority of the sequenced case isolates were clustered with isolates from either caretakers, environmental exposures, or both. In conclusion, Campylobacter was detected in various exposure sources of diarrheic children, and its occurrence did not differ significantly between Kersa and Harar or among food items. The majority of isolates shared MLST profiles and clustered together, demonstrating the involvement of multiple vectors in the transmission of the pathogen. Genome-based integrated studies supported by an attribution model are recommended to determine the relative contribution of each source.
Collapse
Affiliation(s)
- Dinaol Belina
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Gobena
- College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Ameha Kebede
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Meseret Chimdessa
- School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia
| | - Bahar Mummed
- College of Veterinary Medicine, Haramaya University, Dire Dawa, Ethiopia
| | | | - Tine Hald
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Jainonthee C, Chaisowwong W, Ngamsanga P, Meeyam T, Sampedro F, Wells SJ, Pichpol D. Exploring the influence of slaughterhouse type and slaughtering steps on Campylobacter jejuni contamination in chicken meat: A cluster analysis approach. Heliyon 2024; 10:e32345. [PMID: 38975070 PMCID: PMC11225752 DOI: 10.1016/j.heliyon.2024.e32345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Campylobacter jejuni (C. jejuni), a foodborne pathogen, poses notable hazards to human health and has significant economic implications for poultry production. This study aimed to assess C. jejuni contamination levels in chicken carcasses from both backyard and commercial slaughterhouses in Chiang Mai province, Thailand. It also sought to examine the effects of different slaughtering practices on contamination levels and to offer evidence-based recommendations for reducing C. jejuni contamination. Through the sampling of 105 chicken carcasses and subsequent enumeration of C. jejuni, the study captured the impact of various slaughtering practices. Utilizing k-modes clustering on the observational and bacterial count data, the research identified distinct patterns of contamination, revealing higher levels in backyard operations compared to commercial ones. The application of k-modes clustering highlighted the impact of critical slaughtering practices, particularly chilling, on contamination levels. Notably, samples with the lowest bacterial counts were typically from the chilling step, a practice predominantly found in commercial facilities. This observation underpins the recommendation for backyard slaughterhouses to incorporate ice in their post-evisceration soaking process. Mimicking commercial practices, this chilling method aims to inhibit C. jejuni growth by reducing carcass temperature, thereby enhancing food safety. Furthermore, the study suggests backyard operations adopt additional measures observed in commercial settings, like segregating equipment for each slaughtering step and implementing regular cleaning protocols. These strategic interventions are pivotal in reducing contamination risks, advancing microbiological safety in poultry processing, and aligning with global food safety enhancement efforts.
Collapse
Affiliation(s)
- Chalita Jainonthee
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Warangkhana Chaisowwong
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Phakamas Ngamsanga
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Tongkorn Meeyam
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott J. Wells
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Duangporn Pichpol
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| |
Collapse
|
4
|
Olson EG, Dittoe DK, Micciche AC, Stock DA, Rubinelli PM, Rothrock MJ, Ricke SC. Microbiome analyses of poultry feeds: Part II. Comparison of different poultry feeds. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:448-482. [PMID: 38840338 DOI: 10.1080/03601234.2024.2361596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Within the realm of poultry feed mill operations, the persistent concern over microbial feed quality necessitates the establishment of a robust baseline for enhancing and sustaining the standards of commercial feeds. This dual-phase investigation, comprising Parts I, was previously published, and the current study presented here as Part II aimed to illuminate this baseline using 16S rRNA gene sequencing. In Part II, nine distinct commercial poultry feeds formulated as starters, growers, starter/growers, or supplements, the selected feeds underwent genomic DNA extraction, amplification with custom dual-indexed primers, and subsequent Illumina MiSeq sequencing. Through data analysis in QIIME2-2021.4 and R Studio, the study unveils alpha (Kruskal-Wallis) and beta (ANOSIM) diversity, taxonomic differences (ANCOM), and core microbiomes (core_members), deeming main and pairwise effects statistically significant at p < 0.05 and Q < 0.05. Notably, the investigation identified 30% common core microbial members across the nine feed types, shedding light on potential foodborne poultry pathogens such as Helicobacter and Campylobacter. Probiotic-associated feeds exhibited distinct microbial communities, emphasizing the need to explore their impact on the early poultry gastrointestinal tract (GIT) further.
Collapse
Affiliation(s)
- E G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - D K Dittoe
- Department of Animal Science, Wyoming, University of Wyoming, Laramie, WY, USA
| | - A C Micciche
- Bio-Tech Pharmacal Inc, Fayetteville, Arkansas, USA, Fayetteville, AR, USA
| | - D A Stock
- Department of Biology, Stetson University, DeLand, FL, USA
| | - P M Rubinelli
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Michael J Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - S C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Beterams A, Püning C, Wyink B, Grosse-Kleimann J, Gölz G, Schönknecht A, Alter T, Reich F. Status quo: Levels of Campylobacter spp. and hygiene indicators in German slaughterhouses for broiler and turkey. Int J Food Microbiol 2024; 414:110610. [PMID: 38330527 DOI: 10.1016/j.ijfoodmicro.2024.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Poultry is a common reservoir for Campylobacter and a main source for human campylobacteriosis. With broiler being the predominant poultry for food production, most food safety related research is conducted for this species, for turkey, few studies are available. Although animals are typically colonized at the farm level, the slaughtering process is considered an important factor in re- and cross-contamination. We examined the development of Campylobacter, E. coli and total colony counts (TCC) after several processing steps in three broiler and one turkey slaughterhouses. Whole carcass rinsing and neck skin sampling was applied for broilers resulting in 486 samples in total, while 126 neck skin samples were collected for turkeys. A decrease in the loads of the different bacterial groups along the broiler slaughtering process was observed. Campylobacter mean counts dropped from 4.5 ± 1.7 log10 CFU/ml after killing to 1.6 ± 0.4 log10 CFU/ml after chilling. However, an increase in Campylobacter counts was evident after evisceration before the values again decreased by the final processing step. Although the Campylobacter prevalence in the turkey samples showed a similar development, the bacterial loads were much lower with 1.7 ± 0.3 log10 CFU/g after killing and 1.7 ± 0.4 log10 CFU/g after chilling compared to those of broilers. The loads of E. coli and total colony count of turkey were higher after killing, were reduced by scalding and remained stable until after chilling. This study highlights trends during the slaughtering process in reducing the levels of Campylobacter, E. coli, and total colony counts for broiler and turkey carcasses, from the initial step to after chilling. These results contribute to our understanding of microbial dynamics during meat processing.
Collapse
Affiliation(s)
- A Beterams
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, D-10589 Berlin, Germany
| | - C Püning
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - B Wyink
- Frankenförder Forschungsgesellschaft, Potsdamer Straße 18a, 14943 Luckenwalde, Germany
| | - J Grosse-Kleimann
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - G Gölz
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - A Schönknecht
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - T Alter
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - F Reich
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, D-10589 Berlin, Germany.
| |
Collapse
|
6
|
Yaseen K, Ali S, Rahman SU, Sajid MS. Comparative Molecular Virulence Typing and Antibiotic Resistance of Campylobacter Species at the Human-Animal-Environment Interface. Foodborne Pathog Dis 2024. [PMID: 38394319 DOI: 10.1089/fpd.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
This study holds significant importance due to its focus on Campylobacter, the leading bacterial cause of gastroenteritis worldwide, responsible for ∼96 million cases each year. By investigating the prevalence of both Campylobacter jejuni and Campylobacter coli in humans, animals, and the environment, this research sheds light on the broader impact of these pathogens, which can harm both human and animal populations. Traditional microbiological methods were implemented followed by optimized multiplex polymerase chain reaction targeting 16S rDNA and virulence gene markers by using specific primers. The findings revealed that a total of 219 Campylobacter isolates were recovered from 528 collected specimens from human, animal, and environmental sources. Campylobacter species showed a prevalence of 41.5%, with C. jejuni accounting for 53% and C. coli for 47%. Antimicrobial resistance rates were high, with tetracycline at 89%, ceftriaxone at 75%, cefotaxime at 70%, erythromycin at 69%, nalidixic acid at 54%, ciprofloxacin at 39%, and gentamicin at 23%. Commonly prevalent virulence-associated genes observed in the Campylobacter were cadF at 93%, flaA at 91%, cdtB at 88%, cheY at 86%, sodB at 78%, and iamA at 32%. The study confirmed multidrug-resistant Campylobacter prevalence at the human-animal-environment interface, harboring virulence-associated genes with potential harm to humans. Data analysis showed a nonsignificant (p ≥ 0.05) correlation between virulence genes and antibiotic susceptibility. To effectively manage Campylobacter infections, a multifaceted strategy incorporating preventative interventions at different levels is required. This strategy should take into account practicability, effectiveness, and sustainability while strengthening surveillance systems and addressing the economics of disease prevention.
Collapse
Affiliation(s)
- Kashaf Yaseen
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad-Ur Rahman
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
He Y, Kanrar S, Reed S, Lee J, Capobianco J. Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant Campylobacter jejuni Strains S27, S33, and S36 Newly Isolated from Chicken Meat. Microorganisms 2024; 12:159. [PMID: 38257985 PMCID: PMC10818789 DOI: 10.3390/microorganisms12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacter is a leading bacterial cause of gastrointestinal infections in humans and has imposed substantial medical and public health burdens worldwide. Among a total of 39 species in the Campylobacter genus, C. jejuni is the most important species responsible for approx. 90% of human Campylobacter illness. Most cases of the infection were acquired by ingesting undercooked poultry meat due to the high prevalence of Campylobacter in the products. Here, we reported the dataset of raw sequences, de novo assembled and annotated genomes of C. jejuni strains S27, S33, and S36 recently isolated from retail chicken by using PacBio highly accurate long-read sequencing technology combined with bioinformatics tools. Our data revealed several virulence and antibiotic resistance genes in each of the chromosomes, a type IV secretion system in the plasmid (pCjS33) of C. jejuni S33, and a type VI secretion system and a phage in the plasmid (pCjS36) of C. jejuni S36. This study not only provides new sequence data but also extends the knowledge pertaining to the genomic and functional aspects of this important foodborne pathogen, including the genetic determinants of virulence and antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Capobianco
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (Y.H.); (S.K.); (S.R.); (J.L.)
| |
Collapse
|
8
|
Lamar F, Mucache HN, Mondlane-Milisse A, Jesser KJ, Victor C, Fafetine JM, Saíde JÂO, Fèvre EM, Caruso BA, Freeman MC, Levy K. Quantifying Enteropathogen Contamination along Chicken Value Chains in Maputo, Mozambique: A Multidisciplinary and Mixed-Methods Approach to Identifying High Exposure Settings. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117007. [PMID: 37962439 PMCID: PMC10644898 DOI: 10.1289/ehp11761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Small-scale poultry production is widespread and increasing in low- and middle-income countries (LMICs). Exposure to enteropathogens in poultry feces increases the hazard of human infection and related sequela, and the burden of disease due to enteric infection in children < 5 y in particular is substantial. Yet, the containment and management of poultry-associated fecal waste in informal settings in LMICs is largely unregulated. OBJECTIVES To improve the understanding of potential exposures to enteropathogens carried by chickens, we used mixed methods to map and quantify microbial hazards along production value chains among broiler, layer, and indigenous chickens in Maputo, Mozambique. METHODS To map and describe the value chains, we conducted 77 interviews with key informants working in locations where chickens and related products are sold, raised, and butchered. To quantify microbial hazards, we collected chicken carcasses (n = 75 ) and fecal samples (n = 136 ) from chickens along the value chain and assayed them by qPCR for the chicken-associated bacterial enteropathogens C. jejuni/coli and Salmonella spp. RESULTS We identified critical hazard points along the chicken value chains and identified management and food hygiene practices that contribute to potential exposures to chicken-sourced enteropathogens. We detected C. jejuni/coli in 84 (76%) of fecal samples and 52 (84%) of carcass rinses and Salmonella spp. in 13 (11%) of fecal samples and 16 (21%) of carcass rinses. Prevalence and level of contamination increased as chickens progressed along the value chain, from no contamination of broiler chicken feces at the start of the value chain to 100% contamination of carcasses with C. jejuni/coli at informal markets. Few hazard mitigation strategies were found in the informal sector. DISCUSSION High prevalence and concentration of C. jejuni/coli and Salmonella spp. contamination along chicken value chains suggests a high potential for exposure to these enteropathogens associated with chicken production and marketing processes in the informal sector in our study setting. We identified critical control points, such as the carcass rinse step and storage of raw chicken meat, that could be intervened in to mitigate risk, but regulation and enforcement pose challenges. This mixed-methods approach can also provide a model to understand animal value chains, sanitary risks, and associated exposures in other settings. https://doi.org/10.1289/EHP11761.
Collapse
Affiliation(s)
- Frederica Lamar
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | | | | | - Kelsey J. Jesser
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| | - Courtney Victor
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - José M. Fafetine
- Veterinary Faculty, Universidade Eduardo Mondlane, Maputo, Mozambique
- Biotechnology Centre, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- International Livestock Research Institute, Nairobi, Kenya
| | - Bethany A. Caruso
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Matthew C. Freeman
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| |
Collapse
|
9
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
10
|
Martinez-Laorden A, Arraiz-Fernandez C, Gonzalez-Fandos E. Microbiological Quality and Safety of Fresh Quail Meat at the Retail Level. Microorganisms 2023; 11:2213. [PMID: 37764057 PMCID: PMC10537602 DOI: 10.3390/microorganisms11092213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to evaluate the microbiological quality and safety of 37 fresh quail meats. Mesophiles, Pseudomonas spp., Enterobacteriaceae, and staphylococci counts were 5.25 ± 1.14, 3.92 ± 1.17, 3.09 ± 1.02, and 2.80 ± 0.64 log CFU/g, respectively. Listeria monocytogenes was detected in seven samples (18.92%). Campylobacter jejuni was detected in one sample (2.70%). Clostridium perfringens was not detected in any sample. The dominant bacteria were Pseudomonas spp. (30.46%), Micrococcaceae (19.87%), lactic acid bacteria (14.57%), and Enterobacteriaceae (11.92%). Brochotrix thermosphacta and enterococci were isolated to a lesser extent, 7.28% and 1.99%, respectively. The dominant Enterobacteriaceae found were Escherichia coli (42.53%). ESBL-producing E. coli was detected in one sample (2.70%), showing resistance to 16 antibiotics. Sixteen different Staphylococcus spp. and three Mammaliicoccus spp. were identified, the most common being S. cohnii (19.86%) and M. sciuri (17.02%). S. aureus and S. epidermidis were also found in one and four samples, respectively. Methicillin-resistant M. sciuri and S. warneri were found in 13.51% and 10.81% of quail samples, respectively. These bacteria showed an average of 6.20 and 18.50 resistances per strain, respectively. The high resistance observed in ESBL-producing E. coli and methicillin-resistant S. warneri is of special concern. Measures should be adopted to reduce the contamination of quail meat.
Collapse
Affiliation(s)
| | | | - Elena Gonzalez-Fandos
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios 53, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
11
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Martínez-Laorden A, Arraiz-Fernández C, González-Fandos E. Microbiological Quality and Safety of Fresh Turkey Meat at Retail Level, Including the Presence of ESBL-Producing Enterobacteriaceae and Methicillin-Resistant S. aureus. Foods 2023; 12:1274. [PMID: 36981199 PMCID: PMC10048072 DOI: 10.3390/foods12061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this work was to study the microbiological safety and quality of marketed fresh turkey meat, with special emphasis on methicillin-resistant S. aureus, ESBL-producing E. coli, and K. pneumoniae. A total of 51 fresh turkey meat samples were collected at retail level in Spain. Mesophile, Pseudomonas spp., enterococci, Enterobacteriaceae, and staphylococci counts were 5.10 ± 1.36, 3.17 ± 0.87, 2.03 ± 0.58, 3.18 ± 1.00, and 2.52 ± 0.96 log CFU/g, respectively. Neither Campylobacter spp. nor Clostridium perfringens was detected in any sample. ESBL-producing K. pneumoniae and E. coli were detected in 22 (43.14%), and three (5.88%) samples, respectively, all of which were multi-resistant. Resistance to antimicrobials of category A (monobactams, and glycilcyclines) and category B (cephalosporins of third or fourth generation, polymixins, and quinolones), according to the European Medicine Agency classification, was found among the Enterobacteriaceae isolates. S. aureus and methicillin-resistant S. aureus were detected in nine (17.65%) and four samples (7.84%), respectively. Resistance to antimicrobials of category A (mupirocin, linezolid, rifampicin, and vancomycin) and category B (cephalosporins of third- or fourth generation) was found among S. aureus, coagulase-negative staphylococci, and M. caseolyticus isolates.
Collapse
Affiliation(s)
| | | | - Elena González-Fandos
- Department of Food Technology, CIVA Research Center, University of La Rioja, Madre de Dios, 26006 Logroño, Spain
| |
Collapse
|
13
|
Hutchison ML, Harrison D, Tchòrzewska MA, González-Bodí S, Madden RH, Corry JEL, Allen VM. Quantitative Determination of Campylobacter on Broilers along 22 United Kingdom Processing Lines To Identify Potential Process Control Points and Cross-Contamination from Colonized to Uncolonized Flocks. J Food Prot 2022; 85:1696-1707. [PMID: 36135722 DOI: 10.4315/jfp-22-204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT As part of a program to reduce numbers of the human pathogen Campylobacter on retail chickens, 22 broiler processing lines, representing more than 90% of UK production, were characterized by enumerating Campylobacter on pooled neck skins after exsanguination, scalding, defeathering, evisceration, crop removal, inside-outside washing, and air-chilling stages of processing. Sixteen of the processing lines investigated showed significant (P < 0.05) reductions in Campylobacter numbers because of carcass scalding. However, in all of these lines, the following defeathering stage caused a significant increase in Campylobacter contamination that effectively negated the reductions caused by scalding. On four processing lines, primary chilling also caused a significant reduction in numbers of Campylobacter. On three lines, there was a significant microbiological benefit from inside-outside washing. The stages where Campylobacter numbers were reduced require further investigation to determine the specific mechanisms responsible so that the observed pathogen reductions can be optimized and then more widely implemented. The transfer of up to 4 log CFU Campylobacter per g of neck skin from a colonized flock to a following uncolonized flock was observed. Cross-contamination was substantial and still detectable after 5,000 carcasses from an uncolonized flock had been processed. Numbers of Campylobacter recovered from the uncolonized flocks were highest on the first of the uncolonized birds to pass along the line, and in general, the numbers declined as more uncolonized birds were processed. Air sampling recovered low numbers at the processing stages monitored, indicating that airborne transmission was unlikely to be the primary transfer mechanism operating for cross-contamination between flocks. HIGHLIGHTS
Collapse
Affiliation(s)
- M L Hutchison
- Hutchison Scientific Ltd., Broughty Ferry, Dundee, DD5 3EZ, UK.,School of Veterinary Science, University of Bristol, Langford, BS40 5DU, UK
| | - D Harrison
- School of Veterinary Science, University of Bristol, Langford, BS40 5DU, UK
| | - M A Tchòrzewska
- School of Veterinary Science, University of Bristol, Langford, BS40 5DU, UK
| | - S González-Bodí
- School of Veterinary Science, University of Bristol, Langford, BS40 5DU, UK.,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223, Madrid, Spain
| | - R H Madden
- Agri-Food & Biosciences Institute, Newforge Lane, Belfast, BT9 5PX, UK
| | - J E L Corry
- School of Veterinary Science, University of Bristol, Langford, BS40 5DU, UK
| | - V M Allen
- School of Veterinary Science, University of Bristol, Langford, BS40 5DU, UK
| |
Collapse
|
14
|
Pokhrel D, Thames HT, Zhang L, Dinh TTN, Schilling W, White SB, Ramachandran R, Theradiyil Sukumaran A. Roles of Aerotolerance, Biofilm Formation, and Viable but Non-Culturable State in the Survival of Campylobacter jejuni in Poultry Processing Environments. Microorganisms 2022; 10:2165. [PMID: 36363757 PMCID: PMC9699079 DOI: 10.3390/microorganisms10112165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 08/11/2023] Open
Abstract
Campylobacter jejuni is one of the most common causes of foodborne human gastroenteritis in the developed world. This bacterium colonizes in the ceca of chickens, spreads throughout the poultry production chain, and contaminates poultry products. Despite numerous on farm intervention strategies and developments in post-harvest antimicrobial treatments, C. jejuni is frequently detected on broiler meat products. This indicates that C. jejuni is evolving over time to overcome the stresses/interventions that are present throughout poultry production and processing. The development of aerotolerance has been reported to be a major survival strategy used by C. jejuni in high oxygen environments. Recent studies have indicated that C. jejuni can enter a viable but non-culturable (VBNC) state or develop biofilm in response to environmental stressors such as refrigeration and freezing stress and aerobic stress. This review provides an overview of different stressors that C. jejuni are exposed to throughout the poultry production chain and the genotypic and phenotypic survival mechanisms, with special attention to aerotolerance, biofilm formation, and development of the VBNC state.
Collapse
Affiliation(s)
- Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Hudson T. Thames
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Thu T. N. Dinh
- Tyson Foods, 2200 W. Don Tyson Parkway, Springdale, AR 72762, USA
| | - Wes Schilling
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | - Shecoya B. White
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, Mississippi, MS 39762, USA
| | | |
Collapse
|
15
|
Rapid Oxford Nanopore Technologies MinION Sequencing Workflow for Campylobacter jejuni Identification in Broilers on Site—A Proof-of-Concept Study. Animals (Basel) 2022; 12:ani12162065. [PMID: 36009653 PMCID: PMC9405271 DOI: 10.3390/ani12162065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.
Collapse
|
16
|
Urdaneta S, Lorca-Oró C, Dolz R, López-Soria S, Cerdà-Cuéllar M. In a warm climate, ventilation, indoor temperature and outdoor relative humidity have significant effects on Campylobacter spp. colonization in chicken broiler farms which can occur in only 2 days. Food Microbiol 2022; 109:104118. [DOI: 10.1016/j.fm.2022.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
|
17
|
Cortés V, Sevilla-Navarro S, García C, Marín C, Catalá-Gregori P. Research Note: Campylobacter spp. control at field level two years after the implementation of European Regulation (EU) 2017/1495. Poult Sci 2022; 101:102089. [PMID: 36087471 PMCID: PMC9464875 DOI: 10.1016/j.psj.2022.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Campylobacteriosis was the most frequently reported foodborne infection in humans in the European Union in the last years. Campylobacter spp. in broiler flocks from Spain was monitored at farm level during 12-month period (2020–2021). Feces samples were analyzed according to ISO (International Standard Organization) 10272-2:2018. From all samples collected, 54% were Campylobacter spp. positive. Regarding the age, Campylobacter spp. was isolated in 36% of the flocks during thinning and 64% in flocks at slaughter age. In addition, Campylobacter spp. counts increased with the age of the animals. On the other hand, the presence of Campylobacter showed statistical differences between the months of the year (P-value <0.05) in flocks at thinning age that exceeded the ≥1,000 CFU/g limit. The highest rates were found from June to December coinciding with the seasons of summer and autumn. In conclusion, our study shows the situation of Campylobacter spp. in broiler flocks in Spain considering age and season effects. This way, it was found higher rates and counts in broilers close to slaughter age and peaking during the summer to autumn period.
Collapse
|
18
|
Mota-Gutierrez J, Lis L, Lasagabaster A, Nafarrate I, Ferrocino I, Cocolin L, Rantsiou K. Campylobacter spp. prevalence and mitigation strategies in the broiler production chain. Food Microbiol 2022; 104:103998. [DOI: 10.1016/j.fm.2022.103998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
|
19
|
Araújo PM, Batista E, Fernandes MH, Fernandes MJ, Gama LT, Fraqueza MJ. Assessment of biofilm formation by Campylobacter spp. isolates mimicking poultry slaughterhouse conditions. Poult Sci 2022; 101:101586. [PMID: 34896965 PMCID: PMC8664863 DOI: 10.1016/j.psj.2021.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
This research aimed to assess the biofilm formation ability of Campylobacter strains under temperature and oxygen stress conditions, similar to those found in the industrial environment, to explain the persistence of this pathogen on the poultry slaughter line. A collection of C. jejuni and C. coli isolates (n = 143) obtained from poultry samples (cecal content and neck skin), collected at slaughterhouse level, from diverse flocks, on different working days, was genotyped by flaA-restriction fragment length polymorphism (RFLP) typing method. A clustering analysis resulted in the assignment of 10 main clusters, from which 15 strains with different flaA-RFLP genotypes were selected for the assessment of biofilm formation ability and antimicrobial susceptibility. Biofilm assays, performed by crystal violet staining method, were conducted with the goal of mimicking some conditions present at the slaughterhouse environment, based on temperature, atmosphere, and contamination levels. Results indicated that many C. jejuni strains with similar flaA-RFLP profiles were present at the slaughterhouse on different processing days. All the strains tested (n = 15) were multidrug-resistant except for one. Biofilm formation ability was strain-dependent, and it appeared to have been affected by inoculum concentration, temperature, and tolerance to oxygen levels. At 10°C, adherence levels were significantly lower than at 42°C. Under microaerobic and aerobic atmospheres, at 42°C, 3 strains (C. jejuni 46E, C. jejuni 61C, and C. coli 65B) stood out, exhibiting significant levels of biofilm formation. C. jejuni strains 46E and 61C were inserted in clusters with evidence of persistence at the slaughterhouse for a long period of time. This study demonstrated that Campylobacter strains from broilers are capable of forming biofilms under conditions resembling the slaughterhouse environment. These results should be seen as a cue to improve the programs of hygiene implemented, particularly in those zones that can promote biofilm formation.
Collapse
Affiliation(s)
- P M Araújo
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - E Batista
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - M H Fernandes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - M J Fernandes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - L T Gama
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - M J Fraqueza
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal.
| |
Collapse
|
20
|
Marzlan AA, Hussin ASM, Bourke P, Chaple S, Barroug S, Muhialdin BJ. Combination of Green Extraction Techniques and Essential Oils to Develop Active Packaging for Improving the Quality and Shelf Life for Chicken Meat. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anis Asyila Marzlan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Science, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Belal J Muhialdin
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
21
|
Perdoncini G, Sierra Arguello YM, Moreira Lima L, Quedi Furian T, Apellanis Borges K, Beatriz Rodrigues L, Ruschel Dos Santos L, Borsoi A, Werlang Isolan L, Gomes MJP, Pippi Salle CT, de Souza Moraes HL, Pinheiro do Nascimento V. Detection and Quantification of Campylobacter in Poultry Slaughterhouses Using Conventional Microbiological Technique, Most Probable Number, and Real-Time PCR. Foodborne Pathog Dis 2021; 19:143-150. [PMID: 34898274 DOI: 10.1089/fpd.2021.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacteriosis is one of the most common bacteria causing human gastroenteritis. Poultry is a major reservoir of Campylobacter spp. as well as the main source of transmission. Due to the increased occurrence of campylobacteriosis, poultry slaughterhouses are under pressure to deliver carcasses with low contamination. However, a few studies have been carried out to evaluate Campylobacter contamination of broiler carcasses in Brazilian slaughter lines. Therefore, in this study, we aimed at detecting and quantifying the thermotolerant Campylobacter spp. at different stages of the poultry slaughtering process. The samples were collected from 12 points in three slaughterhouses in southern Brazil, at an interval of 12 months, and were tested for Campylobacter spp. by conventional microbiological technique, the most probable number, and real-time PCR. A total of 432 samples were analyzed. The majority of strains belonged to Campylobacter jejuni (92%), and the flock positivity among the three techniques was similar in most cases. Campylobacter was detected in all slaughtering stages. Although contamination has remained similar (p > 0.05) throughout almost all the slaughter process, evisceration seemed to be an important source of contamination. Our results reinforce the idea that the final carcass quality after the slaughtering process is directly influenced by the level of contamination of the broiler flocks on arrival at the processing plant.
Collapse
Affiliation(s)
- Gustavo Perdoncini
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yuli Melisa Sierra Arguello
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Moreira Lima
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Quedi Furian
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karen Apellanis Borges
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Beatriz Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Brazil
| | | | - Anderlise Borsoi
- Faculdade de Medicina Veterinária, Universidade Tuiuti do Paraná, Curitiba, Brazil
| | - Leonardo Werlang Isolan
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Inspeção de Produtos de Origem Animal, Ministério da Agricultura, Pecuária e Abastecimento, Porto Alegre, Brazil
| | - Marcos José Pereira Gomes
- Departamento de Medicina Veterinária Preventiva, Laboratório de Bacteriologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Tadeu Pippi Salle
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hamilton Luiz de Souza Moraes
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vladimir Pinheiro do Nascimento
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Dogan OB, Aditya A, Ortuzar J, Clarke J, Wang B. A systematic review and meta-analysis of the efficacy of processing stages and interventions for controlling Campylobacter contamination during broiler chicken processing. Compr Rev Food Sci Food Saf 2021; 21:227-271. [PMID: 34730272 DOI: 10.1111/1541-4337.12860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Systematic review and meta-analysis were conducted to quantify the effects of processing stages and interventions on the prevalence and concentration of Campylobacter on broiler carcasses. To comprehensively capture relevant evidence, six databases were searched using the keywords "Campylobacter" and "broiler chicken." The literature search yielded 10,450 unique citations, and after applying predetermined inclusion and exclusion criteria, 72 and 53 relevant citations were included in meta-analyses for processing stages and interventions, respectively. As the two primary outcomes, log reduction and prevalence changes were estimated for each stage or intervention using a random-effects meta-analysis approach whenever possible. The outcome-level quality assessment was conducted following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The analysis revealed that scalding and chilling majorly reduces the prevalence and concentration of Campylobacter. Immersion chilling reduces the concentration regardless of chemical additives, but its effect on prevalence is not conclusive. The effects of carcass washing applications remain uncertain due to the inconsistency and imprecision of both outcomes. Defeathering and evisceration were identified as stages that can increase both prevalence and concentration. Both chemical and physical processing interventions provide limited efficacy in concentration and prevalence reduction. Major limitations of the review were inconsistency and imprecision at the outcome level and reporting issues and data gaps at the study level. The results are expected to inform quantitative microbial risk assessment model development and support evidence-based decision-making.
Collapse
Affiliation(s)
- Onay B Dogan
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Anand Aditya
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Juan Ortuzar
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jennifer Clarke
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bing Wang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
23
|
Isolation Rate of Campylobacter Spp. and Detection of Virulence Genes of Campylobacter jejuni Across the Broiler Chain. MACEDONIAN VETERINARY REVIEW 2021. [DOI: 10.2478/macvetrev-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The aim of the study was to identify the isolation rate of thermotolerant campylobacters in a small-scale broiler-meat production farm over a one-year period. The second deliverable of the study was to determine the potential virulence markers. The laboratory investigation was performed on 283 samples (cloacal swabs, caeca, carcass swabs) collected on three sampling points (farm, slaughter line, and cold storage). The isolates obtained with the conventional microbiological method were confirmed with multiplex PCR for identification of campylobacters. The presence of 10 virulence genes was analyzed in the C. jejuni isolates (flaA, racR, virB11, dnaJ, wlaN, cadF, ciaB, cdtA, cdtB, cdtC). Out of 283 samples, 169 (59.7%) were confirmed as Campylobacter spp., 111 (39.2%) C. jejuni, and 43 (15.2%) C. coli. C. jejuni was the most prevalent in all sampling points. Campylobacter spp. showed a characteristically seasonal prevalence with the highest isolation rate during the warmer period of the year. We detected the cadF and ciaB genes in all C. jejuni isolates. The flaA gene was present in 50% of the examined strains. The cdt genes (cdtA, cdtB, and cdtC) were confirmed in 52.8%, 52.8%, and 47.2% of the C. jejuni strains, respectively. C. jejuni showed 15 profiles of virulence patterns with four predominant profiles.
Collapse
|
24
|
Testing barrier materials in the development of a biosecurity pen to protect broilers against Campylobacter. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Tangkonda E, Kubo M, Sekiguchi S, Shinki T, Sasaki S, Yamada K, Taniguchi T, Vetchapitak T, Misawa N. Work-related increases in titer of Campylobacter jejuni antibody among workers at a chicken processing plant in Miyazaki prefecture, Japan, independent of individual ingestion of edible raw chicken meat. J Vet Med Sci 2021; 83:1306-1314. [PMID: 34219072 PMCID: PMC8437720 DOI: 10.1292/jvms.21-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Workers in poultry abattoirs may be frequently exposed to Campylobacter jejuni, which is a leading cause of bacterial food poisoning in Japan. The present study was conducted to measure the titers of IgG and IgA antibodies against C. jejuni among 104 female workers in a chicken processing plant in Miyazaki prefecture, Japan. Information regarding habitual ingestion of raw chicken meat and potential occupational risk factors was collected using a questionnaire. Acid extracts of four C. jejuni strains representing the genotypes most dominant in Miyazaki were used as antigens. The levels of both immunoglobulins measured by ELISA were not correlated with ingestion of edible raw chicken meat, the amount consumed in one sitting, or its frequency. Although age was correlated with antibody levels, the length of employment was not. Furthermore, the IgG and IgA levels in workers at the evisceration step were significantly higher than those at other locations in the plant. To identify the bacterial proteins recognized by the workers' IgG and IgA antibodies, Western blotting followed by LC/MS was conducted. Flagellin was identified as the common protein recognized in the sera of workers for whom ELISA demonstrated both the highest and lowest antibody levels. We concluded that the titers of IgG and IgA against C. jejuni in workers at the processing plant had been increased by occupational exposure to Campylobacter, regardless of raw chicken meat ingestion.
Collapse
Affiliation(s)
- Elisabet Tangkonda
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-Kiyotake-cho, Miyazaki 889-1692, Japan.,Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Meiko Kubo
- Miyakonojo Meat Inspection Center, 38-1 Hirae-cho, Miyakonojo-shi, Miyazaki 885-0021, Japan
| | - Satoshi Sekiguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Taisuke Shinki
- Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Satomi Sasaki
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takako Taniguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Torrung Vetchapitak
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Naoaki Misawa
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-Kiyotake-cho, Miyazaki 889-1692, Japan.,Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
26
|
Barroug S, Chaple S, Bourke P. Combination of Natural Compounds With Novel Non-thermal Technologies for Poultry Products: A Review. Front Nutr 2021; 8:628723. [PMID: 34169086 PMCID: PMC8217606 DOI: 10.3389/fnut.2021.628723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ensuring safe, fresh, and healthy food across the shelf life of a commodity is an ongoing challenge, with the driver to minimize chemical additives and their residues in the food processing chain. High-value fresh protein products such as poultry meat are very susceptible to spoilage due to oxidation and bacterial contamination. The combination of non-thermal processing interventions with nature-based alternatives is emerging as a useful tool for potential adoption for safe poultry meat products. Natural compounds are produced by living organisms that are extracted from nature and can be used as antioxidant, antimicrobial, and bioactive agents and are often employed for other existing purposes in food systems. Non-thermal technology interventions such as high-pressure processing, pulsed electric field, ultrasound, irradiation, and cold plasma technology are gaining increasing importance due to the advantages of retaining low temperatures, nutrition profiles, and short treatment times. The non-thermal unit process can act as an initial obstacle promoting the reduction of microflora, while natural compounds can provide an active obstacle either in addition to processing or during storage time to maintain quality and inhibit and control growth of residual contaminants. This review presents the application of natural compounds along with emerging non-thermal technologies to address risks in fresh poultry meat.
Collapse
Affiliation(s)
- Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Sciences, Institute Global Food Security, The Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
27
|
Śmiałek M, Kowalczyk J, Koncicki A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals (Basel) 2021; 11:1355. [PMID: 34068764 PMCID: PMC8150830 DOI: 10.3390/ani11051355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter spp. are widely distributed microorganisms, many of which are commensals of gastrointestinal tract in multiple animal species, including poultry. Most commonly detected are C. jejuni and C. coli. Although infections are usually asymptomatic in poultry, poultry meat and products represent main sources of infection with these bacteria to humans. According to recent EFSA report, campylobacteriosis is the most commonly reported zoonotic disease. In 2018, EFSA Panel on Biological Hazards indicated that use of feed and water additives is the second most likely strategy that can be successful in minimizing Campylobacter spp. colonization rate in broiler chickens. One of those feed and water additives are probiotics. From numerous research papers it can be concluded that probiotics exhibit plenty of mechanisms of anti-Campylobacter activity, which were evaluated under in vitro conditions. These results, to some extent, can explain the efficacy of probiotics in in vivo studies, although different outcome can be observed under these two laboratory conditions. Probiotics are capable of reducing Campylobacter spp. population count in poultry gastrointestinal tract and they can reduce carcass contamination. Potential modes of anti-Campylobacter activity of probiotics, results of in vivo studies and studies performed at a farm level are widely discussed in the paper.
Collapse
Affiliation(s)
- Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland; (J.K.); (A.K.)
| | | | | |
Collapse
|
28
|
A One Health Perspective on a Multi-hurdle Approach to Combat Campylobacter spp. in Broiler Meat. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00167-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Rajagopal R, Barnes CA, David JM, Goseland J, Goseland J. Evaluation of a commercial loop-mediated isothermal amplification assay, 3M TM Molecular Detection Assay 2 - Campylobacter, for the detection of Campylobacter from poultry matrices. Br Poult Sci 2021; 62:404-413. [PMID: 33517711 DOI: 10.1080/00071668.2021.1879992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. The objective of this study was to evaluate performance of a commercial loop-mediated isothermal amplification (LAMP) method as an alternative method for the detection of Campylobacter spp. in primary production samples, poultry rinses and raw poultry products, as compared to the US Department of Agriculture Food Inspection Service Microbiology Laboratory Guide Book PCR reference method, MLG 41A.2. The Campylobacter spp. LAMP was used in conjunction with a ready-to-use enrichment broth that does not require microaerophilic incubation. After enrichment, boot swabs from poultry farms, carcase rinses and raw poultry products were tested by the LAMP method and the MLG 41A PCR method.3. The ready-to-use enrichment broth enabled the growth of Campylobacter spp. within 22 to 28 hours under aerobic incubation conditions. The LAMP method enabled Campylobacter detection in the enriched samples of various poultry matrices and had equivalent sensitivity and specificity to the MLG 41A PCR method.4. No significant difference (95% confidence interval) was found between the alternative and the MLG 41A PCR method, as determined by probability of detection analysis, except for neutralising buffered peptone water post-chill rinsates. For the post-chill neutralising buffered peptone water rinsates, the LAMP method had significantly higher confirmed portions.
Collapse
Affiliation(s)
| | | | | | - J Goseland
- WBA Analytical Laboratories, Inc., Springdale, AR, USA
| | - J Goseland
- WBA Analytical Laboratories, Inc., Springdale, AR, USA
| |
Collapse
|
30
|
Thakali A, MacRae JD. A review of chemical and microbial contamination in food: What are the threats to a circular food system? ENVIRONMENTAL RESEARCH 2021; 194:110635. [PMID: 33347866 DOI: 10.1016/j.envres.2020.110635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
A circular food system is one in which food waste is processed to recover plant nutrients and returned to the soil to enable the production of more food, rather than being diverted to landfill or incineration. The approach may be used to reduce energy and water use in food production and contribute to the sustainability of the system. Anaerobic digestion and composting are common food waste treatment technologies used to stabilize waste and produce residual materials that can replenish the soil, thus contributing to a circular food system. This approach can only be deemed safe and feasible, however, if food waste is uncontaminated or any contaminants are destroyed during treatment. This review brings together information on several contaminant classes at different stages of the food supply chain, their possible sources, and their fates during composting and digestion. The main aim is to identify factors that could impede the transition towards a safe, reliable and efficient circular food system. We investigated heavy metals, halogenated organic compounds, foodborne pathogens and antibiotic resistance genes (ARGs) in the food system and their fates during digestion and composting. Production and processing stages were identified as major entry points for these classes of contaminants. Heavy metals and foodborne pathogens pose less risk in a circular system than halogenated organics or antibiotic resistance. Given the diversity of properties among halogenated organic compounds, there is conflicting evidence about their fate during treatment. There are relatively few studies on the fate of ARGs during treatment, and these have produced variable results, indicating a need for more research to clarify their fate in the final products. Repeated land application of contaminated food waste residuals can increase the risk of accumulation and jeopardize the safety of a circular food system. Thus, careful management of the system and research into the fate of the contaminants during treatment is needed.
Collapse
Affiliation(s)
- Astha Thakali
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| |
Collapse
|
31
|
Kwon BR, Wei B, Cha SY, Shang K, Zhang JF, Kang M, Jang HK. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals (Basel) 2021; 11:246. [PMID: 33498355 PMCID: PMC7909429 DOI: 10.3390/ani11020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the prevalence, antimicrobial resistance, and genetic diversity of Campylobacter isolates that were obtained from whole chicken production stages in Korea. A total of 1348 samples were collected from 10 production lines. The prevalence of Campylobacter in breeder farm, broiler farm, slaughterhouse, and retail meat products was 50.0%, 3.3%, 13.4%, and 68.4%, respectively, and Campylobacter was not detected at the hatchery stage. Resistance to quinolones/fluoroquinolones was the most prevalent at all stages. Among the multidrug-resistant isolates, 16 isolates (19.8%) from breeder farm were resistant to both azithromycin and ciprofloxacin. A total of 182 isolates were subdivided into 82 pulsed-field gel electrophoresis (PFGE) genotypes with 100% similarity. Diverse genotypes were presented with discontinuous patterns along the whole production chain. Thirty percent of Campylobacter-free flocks became positive after slaughtering. An identical genotype was simultaneously detected from both breeder farm and retail meat, even from different production lines. This study reveals that antimicrobial-resistant Campylobacter contamination can occur at all stages of the chicken supply chain. In particular, the breeder farm and slaughterhouse should be the main control points, as they are the potential stages at which antimicrobial-resistant Campylobacter could spread to retail meat products by horizontal transmission.
Collapse
Affiliation(s)
- Bo-Ram Kwon
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| |
Collapse
|
32
|
Isolation, host specificity and genetic characterization of Campylobacter specific bacteriophages from poultry and swine sources. Food Microbiol 2021; 97:103742. [PMID: 33653521 DOI: 10.1016/j.fm.2021.103742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
The isolation and characterization of 304 Campylobacter specific bacteriophage isolates from broiler and swine sources is reported in this study. Genome size characterization determined by PFGE classified these isolates,called CAM1-CAM304, within the campylophages group II (n = 18) and group III (n = 286). Host range analyses showed a high host specificity and similar lytic spectrum among isolates of the same group. Campylophages of group II infected C. jejuni, C. coli and even a C. fetus strain whereas those of group III only infected C. jejuni strains. The most promising 59 campylophage candidates were selected according to their lytic activity and their genetic diversity was analyzed by RFLP using SmiI and HhaI endonucleases for group II and III campylophages, respectively. Moreover, RAPD-PCR technique was for the first time assessed in the genetic characterization of campylophages and it was shown to be effective only for those of group II. Bacteriophage isolates grouped in a same genotype displayed different host ranges, therefore, 13 campylophages of group II and eight of group III were differentiated considering all the approaches assayed. An in-depth analysis of these bacteriophages will be performed to confirm their promising potential for the biocontrol of Campylobacter within the farm to fork process.
Collapse
|
33
|
Gonzalez-Fandos E, Martinez-Laorden A, Perez-Arnedo I. Effect of Decontamination Treatments on Campylobacter jejuni in Chicken. Foods 2020; 9:E1453. [PMID: 33066105 PMCID: PMC7601449 DOI: 10.3390/foods9101453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023] Open
Abstract
The ability of different decontaminating treatments (acetic, citric and fumaric acids, and potassium sorbate) to decrease Campylobacter jejuni on chicken legs was evaluated. Fresh chicken legs were inoculated with C. jejuni and washed with either acetic, citric, or fumaric acid (1% and 2%), or potassium sorbate (1%, 2%, and 5%) solutions or distilled water. Evolution of C. jejuni, Pseudomonas, and Enterobacterales counts, and sensorial acceptability were evaluated after treatment (day 1) and on days 2, 4, 7, and 9 of storage at 4 °C. The lowest Pseudomonas counts were found in those legs dipped in 2% fumaric acid, while the lowest Enterobacterales populations were found in those legs dipped in 2% fumaric or 2% acetic acid. The shelf life of the legs treated was widened by at least 2 days over the control legs. The highest C. jejuni reductions after treatment were obtained in samples dipped in 2% citric acid, which were approximately 2.66 log units lower than in non-treated legs. However, the efficacy of citric acid decreased during storage. After day 2 of storage, the highest reductions of C. jejuni were found in those legs dipped in 2% acetic acid.
Collapse
Affiliation(s)
- Elena Gonzalez-Fandos
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios Avenue 53, 26006 Logrono, La Rioja, Spain; (A.M.-L.); (I.P.-A.)
| | | | | |
Collapse
|
34
|
Yushina Y, Bataeva D, Makhova A, Zayko E. Prevalence of Campylobacter spp. in a poultry and pork processing plants. POTRAVINARSTVO 2020. [DOI: 10.5219/1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The study aimed to investigate the prevalence of Campylobacter spp. in different stages of poultry and pork processing in the Central region of Russia. A total of 47 Campylobacter isolates were obtained from 107 samples from poultry processing plants (40.2%): 87.2% were identified as Campylobacter jejuni, whereas 12.8% were identified as Campylobacter coli. The prevalence of Campylobacter was significantly (p <0.05) higher after evisceration in the poultry processing plant. Campylobacter spp.was detected in 62.7% of the equipment and environmental samples. From positive samples of Campylobacter spp., 84.3% of Campylobacter jejuni and 15.7% Campylobacter coli were observed. A total of nine Campylobacter isolates were obtained from 116 samples from pork processing plants (7.8%): 33.3% of them were identified as Campylobacter jejuni whereas 66.7% were identified as Campylobacter coli. Splitting and evisceration were also critical in Campylobacter contamination. Almost all pork carcasses were Campylobacter positive, and all of them were identified as Campylobacter coli. The prevalence of positive Campylobacter samples in poultry processing plants was significantly (p < 0.05) higher than in pork processing plants.
Collapse
|
35
|
Obe T, Nannapaneni R, Schilling W, Zhang L, McDaniel C, Kiess A. Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitization procedures. Poult Sci 2020; 99:4539-4548. [PMID: 32867998 PMCID: PMC7598133 DOI: 10.1016/j.psj.2020.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Salmonella is a poultry-borne pathogen that causes illness throughout the world. Consequently, it is critical to control Salmonella during the process of converting broilers to poultry meat. Sanitization of a poultry processing facility, including processing equipment, is a crucial control measure that is utilized by poultry integrators. However, prevalence of Salmonella on equipment after sanitization and its potential risk to food safety has not been evaluated thoroughly. Therefore, the objective of this study was to evaluate the persistence of Salmonella on poultry processing equipment before and following cleaning and sanitization procedure. A total of 15 locations within 6 commercial processing plants were sampled at 3 time points: (A) after processing; (B) after cleaning; and (C) after sanitization, on 3 separate visits for a total of 135 samples per plant. Salmonella-positive isolates were recovered from samples using the United States Department of Agriculture MLG 4.09 conventional method. Presumptive Salmonella colonies were subjected to biochemical tests for confirmation. Salmonella isolates recovered after sanitization were serotyped and tested for the presence of specific virulence genes. A completely randomized design with a 6 × 3 × 15 factorial arrangement was utilized to analyze the results for Salmonella prevalence between processing plants. Means were separated using Fishers protected least significant difference when P ≤ 0.05. For Salmonella prevalence between processing plants, differences (P < 0.0001) were observed in the 6 plants tested where the maximum and minimum prevalence was 29.6 and 7.4%, respectively. As expected, there was a difference (P < 0.0001) in the recovery of Salmonella because of sampling time. Salmonella prevalence at time A (36%) was significantly higher, whereas there was no difference between time B (12%) and C (9%). There was a location effect (P < 0.0001) for the prevalence of Salmonella with the head puller, picker, cropper, and scalder having a significantly higher prevalence when compared with several other locations. At sampling time C, a trend toward a difference (P = 0.0899) was observed for Salmonella prevalence between the 6 plants, whereas significant differences were observed because of location (P = 0.0031). Five prominent Salmonella enterica serovars were identified, including Kentucky, Schwarzengrund, Enteritidis, Liverpool, and Typhimurium with S. Kentucky being the most prevalent. PCR analysis of 8 Salmonella virulence genes showed that the invA, sipB, spiA, sseC, and fimA were detected in all isolates, whereas genes carried on plasmids and/or fimbriae varied remarkably among all isolates. This study established Salmonella prevalence and persistence in poultry processing facilities after antimicrobial application through sanitization procedures which could result in contamination of poultry carcasses and food safety risks because of poultry meat.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Rama Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wes Schilling
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Chris McDaniel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron Kiess
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
36
|
Wysok B, Wojtacka J, Kivistö R. Pathogenicity of Campylobacter strains of poultry and human origin from Poland. Int J Food Microbiol 2020; 334:108830. [PMID: 32841810 DOI: 10.1016/j.ijfoodmicro.2020.108830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine the pathogenic markers associated with Campylobacter infection in humans. A total of 104 Campylobacter isolates obtained from poultry and humans were examined for the presence of nine virulence genes and their ability to adhere to, invade and produce cytotoxin were defined using HeLa cells. The diversity of the Campylobacter spp. isolates was studied based on sequencing of the SVR-region of flaA gene. Altogether 45 flaA-SVR alleles were identified among 104 Campylobacter isolates of poultry and human origin. All Campylobacter isolates possessed flaA, cadF and racR genes involved in adherence. Accordingly, all poultry and human isolates exhibited adherence towards HeLa cells at mean levels of 0.95% and 0.82% of starting viable inoculum, respectively. The genes involved in invasion (iam and pldA) and cytotoxin production (cdtA, cdtB and cdtC) were also widely distributed among the human and poultry Campylobacter isolates. Significantly higher invasiveness was observed for poultry isolates (mean level of 0.002% of starting bacterial inoculum) compared to human isolates (0.0005%). Interestingly the iam gene, associated with invasion, was more common in human (100%) than poultry (84%) isolates, and the poultry isolates lacking the iam gene showed a marked reduction in their ability to invade HeLa cells. Moreover, virB11 was present in 22% of the poultry and 70.4% of the human isolates. Strains lacking virB11 showed a slight reduction in invasion, however in the absence of iam even the poultry isolates containing virB11 were unable to invade HeLa cells. The mean cytotoxicity of Campylobacter isolates from poultry and human was 26.7% and 38.7%, respectively. Strains missing both the cdtB and cdtC genes were non-cytotoxic compared to strains containing all three cdtABC genes, which were the most cytotoxic among the C. jejuni and C. coli isolates from both sources. No cytotoxic effect was observed in only 4% of poultry and 5.6% of human isolates.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-917 Olsztyn, Poland
| | - Joanna Wojtacka
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-917 Olsztyn, Poland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland.
| |
Collapse
|
37
|
Hasan MM, Talukder S, Mandal AK, Tasmim ST, Parvin MS, Ali MY, Sikder MH, Islam MT. Prevalence and risk factors of Campylobacter infection in broiler and cockerel flocks in Mymensingh and Gazipur districts of Bangladesh. Prev Vet Med 2020; 180:105034. [PMID: 32460154 DOI: 10.1016/j.prevetmed.2020.105034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Campylobacter spp. is one of the most frequent causes of foodborne gastroenteritis. This study aimed to estimate the prevalence and to identify the risk factors of farm-level Campylobacter infection in meat-type chicken flocks. A cross-sectional study was conducted in two selected districts of Bangladesh over the period of January to July 2019. A total of 84 pooled cloacal swab samples were collected from 84 broiler and cockerel farms. Data on farm management, biosecurity, and hygiene practices were collected using a structured questionnaire through a face-to-face interview during sampling. Thereafter, Campylobacter spp. were isolated through bacteriological culture and identified by Gram staining and biochemical tests. Furthermore, the isolates were confirmed using the polymerase chain reaction by targeting the 16S rRNA gene. The risk factors were analyzed at the farm level using multivariable logistic regression with the significant levels of P-value ≤ 0.05. Among the 84 farms, 34 were positive to Campylobacter spp.; thus, the prevalence was estimated to be 40.5% (95% CI: 30.1%-51.8%). In risk factor analysis, the following factors were found to be significantly associated with Campylobacter infection: shed older than five years, birds older than 30 days, flock size with more than 1500 birds, downtime less than seven days, no disinfection of shed surroundings during rearing, rice husk as litter materials, and less than 10 years of farming experience. The study identified the factors that could lead to the setting of effective interventions in controlling Campylobacter infection in chickens to reduce campylobacteriosis in humans through meat consumption.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sudipta Talukder
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Amit Kumar Mandal
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Syeda Tanjina Tasmim
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mst Sonia Parvin
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Md Yamin Ali
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Livestock Services, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Md Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
38
|
Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int J Food Microbiol 2020; 326:108641. [PMID: 32371295 DOI: 10.1016/j.ijfoodmicro.2020.108641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Thermotolerant Campylobacter is the leading bacterial cause of foodborne illness in humans worldwide. The objectives of this study were to estimate prevalence and to identify and characterize potential sources of thermotolerant Campylobacter contamination in broilers on farms and at the slaughterhouse; to evaluate the clonal relationship among thermotolerant Campylobacter isolates from different stages of the broiler meat supply chain, and to analyze the presence of virulence genes in different sources of thermotolerant Campylobacter. A total of 1210 samples were collected from three broiler meat supply chains in Santa Fe, Argentina. At the farms, the sampling collection included broilers one week prior to slaughter, wild-living birds, domestic dogs, wild rodents, farm workers' boots, litter, feed, drinking water, flies, and darkling beetles (Alphitobius diaperinus). At the slaughtering line, the samples taken were from the evisceration zone (broiler cecum, working surfaces, evisceration knives and workers' hands), from the chiller zone (surfaces and direct supply water) and from the packing zone (work surfaces, workers' hands and broiler carcasses). The samples taken along each supply chain were in the same batch. The isolates obtained were identified to the species level (C. jejuni and C. coli) by multiplex PCR and were analyzed using pulsed-field gel electrophoresis to compare different profiles according to the source. Finally, the presence of 11 virulence genes was examined (cadF, cdtA, cdtB, cdtC, ciaB, flaA, flhA, iam, wlaN, virB11, racR). From 254 isolates, 128 (50.4%) were Campylobacter jejuni and 126 (49.6%) Campylobacter coli. C. jejuni was the species most prevalent in farm and C. coli the species most prevalent at the slaughterhouse. We detected thermotolerant Campylobacter in samples of wild birds, darkling beetles, farm workers' boots, flies and litter. At the slaughterhouse, the prevalence varied along the process line. By analyzing PFGE results, C. jejuni showed 21 profiles with three predominant genotypes, while C. coli showed 14 profiles with four predominant genotypes. A high genotype diversity was found; however, relationships between isolates from different stages of the broiler meat chain, between broiler and potential sources of thermotolerant Campylobacter contamination and between strains in the farm and in the slaughterhouse were detected. Furthermore, there was evidence of cross-contamination at the slaughterhouse. FlaA, flhA genes were detected in all strains, and the third most prevalent virulence gene was cadF. Only those strains obtained from flies, wild-living birds and broiler carcass samples harbored 10 of 11 pathogenic genes. The prevalence of some pathogenic genes between C. jejuni and C. coli was different. This evidence should contribute the scientific basis to implement risk management measures in public health.
Collapse
|
39
|
Gonzalez-Fandos E, Maya N, Martínez-Laorden A, Perez-Arnedo I. Efficacy of Lactic Acid and Modified Atmosphere Packaging against Campylobacter jejuni on Chicken during Refrigerated Storage. Foods 2020; 9:E109. [PMID: 31968597 PMCID: PMC7022977 DOI: 10.3390/foods9010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 01/19/2023] Open
Abstract
The present study was conducted to evaluate the combined effect of lactic acid washing and modified atmospheres packaging on the counts of Campylobacter jejuni on chicken legs stored at 4 °C. In experiment 1, inoculated chicken legs were washed with either 1% or 2% lactic acid solution for 5 min or distilled water (control). The treatment with 2% lactic acid reduced C. jejuni counts 1.42 log units after treatment (day 0). In experiment 2, inoculated samples were packaged under different conditions: air, 100%N2, vacuum, 20%CO2/80%N2, or 40%CO2/60%N2. C. jejuni counts were higher in samples packaged under vacuum or atmospheres containing CO2 than in air. In experiment 3, inoculated chicken legs were washed with a 2% lactic acid solution for 5 min or distilled water (control). Samples were packaged under different conditions: air, vacuum, 20%CO2/80%N2, or 40%CO2/60%N2. C. jejuni counts were lower in samples treated with lactic acid than in samples non-treated. However, C. jejuni counts were higher in chicken legs treated with lactic acid and packaged in modified atmospheres than in those treated and packaged in air. Immersion of chicken legs in a solution containing 2% lactic acid can reduce C. jejuni counts on fresh chicken packaged in modified atmosphere.
Collapse
Affiliation(s)
- Elena Gonzalez-Fandos
- Food Technology Department, CIVA Research Center, University of La Rioja, 26006 La Rioja, Spain; (N.M.); (A.M.-L.); (I.P.-A.)
| | | | | | | |
Collapse
|