1
|
Amaral GO, do Espirito Santo G, Avanzi IR, Parisi JR, de Souza A, Garcia-Motta H, Garcia LA, Achilles R, Ribeiro DA, de Oliveira F, Rennó ACM. Injectable hydrogels for treating skin injuries in diabetic animal models: a systematic review. J Diabetes Metab Disord 2025; 24:17. [PMID: 39712339 PMCID: PMC11659534 DOI: 10.1007/s40200-024-01510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Purpose One of the main causes of chronic wounds is diabetes mellitus (DM), a metabolic disease characterized by chronic hyperglycemia. In this context, hydrogels have been used as a promising treatment for stimulating tissue ingrowth and healing in these injuries. This systematic review aimed to evaluate the findings of studies that investigated the effects of injectable hydrogels of various origins on skin wound healing using in vivo experimental models in diabetic rats. Methods This review was conducted in March 2023 using two databases, PubMed and Scopus, following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines and the SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation). The following Medical Subject Headings (MeSH) descriptors were used: "hydrogels," "injectable," "in vivo," "diabetes mellitus," and "skin wound dressing." Results After the eligibility assessment, 12 studies were selected and analyzed from an initial 95 articles identified across databases. The studies demonstrated that a variety of injectable hydrogels showed biocompatibility and bioactivity, effectively interacting with skin tissue in diabetic wound models. These hydrogels were assessed for their compositions, structural properties, and in vivo effects on wound closure, inflammation reduction, and collagen deposition. Also, immunofluorescence analyses revealed increased expression of neoangiogenesis markers and reduced inflammatory factors in treated groups, highlighting the hydrogels potential for enhancing skin healing in diabetic wounds. Conclusion Injectable hydrogels show significant potential as an effective treatment for diabetic skin wounds, though further clinical studies are needed to fully assess their biological performance.
Collapse
Affiliation(s)
- Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Júlia Risso Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glycerio Avenue, Santos, SP 11045002 Brazil
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Homero Garcia-Motta
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Livia Assis Garcia
- Scientific and Technological Institute, Brazil University, São Paulo, SP 08230-030 Brazil
| | - Rodrigo Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Lab 342, 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
2
|
Pratheesh KV, Nair RS, Purnima C, Raj R, Mony MP, Geetha CS, Sobhan PK, Ramesan RM, Nair PD, Thomas LV, Anilkumar TV. An injectable hydrogel of porcine cholecyst extracellular matrix for accelerated wound healing. J Biomed Mater Res A 2025; 113:e37795. [PMID: 39381970 DOI: 10.1002/jbm.a.37795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 10/10/2024]
Abstract
Hydrogel formulations of xenogeneic extracellular matrices have been widely used for topical wound care because of their exceptional tunability over other formulations like lyophilized sheets, powders, non-injectable gels, pastes, and ointments. This is important in the treatment of wounds with irregular shapes and depth. This study identified an injectable hydrogel formulation of porcine cholecyst extracellular matrix (60%) in medical-grade carboxymethyl cellulose (40%) as vehicle and evaluated its biomaterial properties. Further, an in-depth evaluation of in vivo wound healing efficacy was conducted in a rat full-thickness skin excision wound healing model, which revealed that the hydrogel formulation accelerated wound healing process compared to wounds treated with a commercial formulation and untreated wounds. The hydrogel appeared to have promoted a desirable pro-regenerative tissue reaction predominated by Th2 helper lymphocytes and M2 macrophages as well as an effective collagen remodeling indicative of diminished scarring. In conclusion, the porcine cholecyst extracellular matrix injectable hydrogel formulation appeared to be a promising candidate formulation as an advanced wound care biomaterial for faster healing of skin wounds with minimal scarring.
Collapse
Affiliation(s)
- Kanakarajan V Pratheesh
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Reshma S Nair
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Chandramohanan Purnima
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Reshmi Raj
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Manjula P Mony
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Chandrika S Geetha
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Lynda V Thomas
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Thapasimuthu Vijayamma Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| |
Collapse
|
3
|
Kwon M, Lee Y, Kim KS. Biomimetic gradient hydrogel with fibroblast spheroids for full-thickness skin regeneration. BIOMATERIALS ADVANCES 2024; 169:214152. [PMID: 39708659 DOI: 10.1016/j.bioadv.2024.214152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Hydrogel-based scaffolds have been widely investigated for their use in tissue engineering to accelerate tissue regeneration. However, replicating the physiological microenvironments of tissues with appropriate biological cues remains challenging. Recent advances in gradient hydrogels have transformed tissue-engineering research by providing precise structures that mimic the extracellular matrix of natural tissues. Unlike conventional homogeneously structured hydrogels, gradient hydrogels provide a better bio-mimicking microenvironment for combined cell therapies in chronic wound treatment by regulating various cell behaviors, such as proliferation, migration, and differentiation. Here, we present the integration of L929 mouse fibroblast spheroids into gradient hydrogels to mimic the dermal stiffness microenvironment and we investigated their impact on full-thickness skin regeneration. A stiffness gradient was achieved by modulating the concentration of methacrylated hyaluronic acid (HA-MA) with varying degrees of methacrylation, using a dual-syringe pump system. The encapsulation of L929 spheroids with gradient hydrogel facilitated skin cell organization in a hierarchically ordered configuration, leading to full-thickness wound healing that was 1.53 times faster than the untreated group in a rat model. This study provides a method for investigating the potential role of gradient hydrogels in various tissue engineering and regeneration applications.
Collapse
Affiliation(s)
- Mina Kwon
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yuhan Lee
- Department of Anaesthesiology, Perioperative and Pain Medicine, Center for Accelerated Medical Innovation, Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Department of Organic Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Yang Y, Liu R, Xie L, Li Y, Chen M, Zhu H, Pan Q. Double-alternating injectable multifunctional hydrogel based on chitosan for skin wound repair. Int J Biol Macromol 2024; 287:138413. [PMID: 39645136 DOI: 10.1016/j.ijbiomac.2024.138413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Injectable hydrogels can be suitable for any irregular wounds to play an important role in wound healing, which have attracted much attention from researchers. Here, a chitosan-based double alternating injectable hydrogel had been proposed, which aligned with characteristics of wound healing. First of all, carboxymethyl chitosan (CMCS) and oxidized gellant (OGG) were used to fabricate above double-alternating injectable hydrogel skeleton (COG) through Schiff base bond. Then, dipotassium glycyrrhizinate (DPG) and bioactive glass (BG) were loaded respectively into COG, forming COG2-D10 and COG2-B0.5 hydrogel. Various properties of above hydrogels such as rheological behaviors, injectable capability, cytocompatibility, antibacterial and anti-inflammatory activity were systematically investigated. The results indicated that above hydrogel not only had a stable network structure, good toughness, injectability, and excellent adhesive properties, but also exhibited efficient antibacterial, anti-inflammatory, hemostatic, and biocompatible properties. The investigation of in vivo full-thickness skin wound healing showed that compared with COG2-D10 or COG2-B0.5 hydrogel alone, the double-alternating COG2-D10/COG2-B0.5 hydrogel could better enhance the efficacy of drugs, promote cell migration and proliferation, accelerate collagen fiber deposition and neovascularization, and significantly improve wound healing (p < 0.01). Therefore, the double-alternating therapy strategy of hydrogel will provide a new approach for the clinical treatment of skin wound healing.
Collapse
Affiliation(s)
- Yongyi Yang
- Department of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan 610106, China.
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yang Li
- Anton Paar (Shanghai) Trading Co., Ltd, Engineer, 901 Fengde Yangxi Centre, No.9 Shuxi Road, Chengdu, Sichuan 610106, China
| | - Mengqi Chen
- Department of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan 610106, China
| |
Collapse
|
5
|
Pablos JL, Lozano D, Manzano M, Vallet-Regí M. Regenerative medicine: Hydrogels and mesoporous silica nanoparticles. Mater Today Bio 2024; 29:101342. [PMID: 39649249 PMCID: PMC11625165 DOI: 10.1016/j.mtbio.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024] Open
Abstract
Hydrogels, that are crosslinked polymer networks, can absorb huge quantities of water and/or biological fluids. Their physical properties, such as elasticity and soft tissue, together with their biocompatibility and biodegradability, closely resemble living tissues. The versatility of hydrogels has fuelled their application in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Their combination with nanoparticles, specifically with Mesoporous Silica Nanoparticles (MSNs), have elevated these composites to the next level, since MSNs could improve the hydrogel mechanical properties, their ability to encapsulate and controlled release great amounts of different therapeutic agents, and their responsiveness to a variety of external and internal stimuli. In this review, the main features of both MSNs and hydrogels are introduced, followed by the discussion of different hydrogels-MSNs structures and an overview of their use in different applications, such as drug delivery technologies and tissue engineering.
Collapse
Affiliation(s)
- Jesús L. Pablos
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Daniel Lozano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - Miguel Manzano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| |
Collapse
|
6
|
Sarkar Z, Singh H, Iqubal MK, Baboota S, Khan S, Parveen R, Ali J. Involvement of macromolecules in 3D printing for wound healing management: A narrative review. Int J Biol Macromol 2024; 282:136991. [PMID: 39476921 DOI: 10.1016/j.ijbiomac.2024.136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Wound healing comprises four overlapping stages involving complex biochemical and cellular processes. Any lapse in this procedure causes irregular healing, which generates clinical and financial burdens for the health system. Personalized treatment is preferred to overcome the limitations of classical as well as modern methods of wound healing. This review discusses recently developed 3D printing models for personalized treatment with varying degrees of success. It is an effective approach for treating wounds by developing custom dressings tailored to the patient's needs and reducing incidents of infections. Additionally, incorporating natural or synthetic polymers can further enhance their effectiveness. Macromolecular polymers, laminin, cellulose, collagen, gelatin, etc. that make up the bulk of 3D printable bio-inks, have been essential in diverse 3D bioprinting technologies throughout the layered 3D manufacturing processes. The polymers need to be tailored for the specific requirements of printing and effector functions in cancer treatment, dental & oral care, biosensors, and muscle repair. We have explored how 3D printing can be utilized to fasten the process of wound healing at each of the four stages. The benefits as well as the future prospects are also discussed in this article.
Collapse
Affiliation(s)
- Zinataman Sarkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Harshita Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Aldaghi N, Kamalabadi-Farahani M, Alizadeh M, Salehi M. Doxycycline-loaded carboxymethyl cellulose/sodium alginate/gelatin hydrogel: An approach for enhancing pressure ulcer healing in a rat model. J Biomed Mater Res A 2024; 112:2289-2300. [PMID: 39019482 DOI: 10.1002/jbm.a.37778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Pressure ulcers, or bedsores, are created by areas of the skin under prolonged pressure and can lead to skin and underlying tissue damage. The present study evaluated the effects of carboxymethyl cellulose/sodium alginate/gelatin (CMC/Alg/Gel) hydrogel containing doxycycline (DOX) on improving the healing process of pressure ulcers. The magnet was used to apply pressure on the dorsum skin rat to induce a pressure ulcer model. Then sterile gauze, CMC/Alg/Gel, and CMC/Alg/Gel/1% w/v DOX hydrogels were used to cover the wounds. Blood compatibility, weight loss, cytocompatibility, drug release rate, cell viability, wound closure, and re-epithelialization were evaluated in all animals on the 14th day after treatment. In vivo results and histopathological evaluation showed 56.66% wound closure and the highest re-epithelialization in the CMC/Alg/Gel/1% w/v DOX hydrogel group (14 days after treatment). Furthermore, real-time PCR results indicated that the hydrogel containing DOX significantly decreased the expression of the MMP family consisting of MMP2 and MMP9 mRNA and also increased the expression of vascular endothelial growth factor VEGF mRNA. This study suggested that the addition of DOX, an antibiotic and MMP inhibitor, to hydrogels may be effective in the healing process of pressure ulcers.
Collapse
Affiliation(s)
- Niloofar Aldaghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
8
|
Goh M, Du M, Peng WR, Saw PE, Chen Z. Advancing burn wound treatment: exploring hydrogel as a transdermal drug delivery system. Drug Deliv 2024; 31:2300945. [PMID: 38366562 PMCID: PMC10878343 DOI: 10.1080/10717544.2023.2300945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024] Open
Abstract
Burn injuries are prevalent and life-threatening forms that contribute significantly to mortality rates due to associated wound infections. The management of burn wounds presents substantial challenges. Hydrogel exhibits tremendous potential as an ideal alternative to traditional wound dressings such as gauze. This is primarily attributed to its three-dimensional (3D) crosslinked polymer network, which possesses a high water content, fostering a moist environment that supports effective burn wound healing. Additionally, hydrogel facilitates the penetration of loaded therapeutic agents throughout the wound surface, combating burn wound pathogens through the hydration effect and thereby enhancing the healing process. However, the presence of eschar formation on burn wounds obstructs the passive diffusion of therapeutics, impairing the efficacy of hydrogel as a wound dressing, particularly in cases of severe burns involving deeper tissue damage. This review focuses on exploring the potential of hydrogel as a carrier for transdermal drug delivery in burn wound treatment. Furthermore, strategies aimed at enhancing the transdermal delivery of therapeutic agents from hydrogel to optimize burn wound healing are also discussed.
Collapse
Affiliation(s)
- MeeiChyn Goh
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Wang Rui Peng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
9
|
Arbab S, Ullah H, Muhammad N, Wang W, Zhang J. Latest advance anti-inflammatory hydrogel wound dressings and traditional Lignosus rhinoceros used for wound healing agents. Front Bioeng Biotechnol 2024; 12:1488748. [PMID: 39703792 PMCID: PMC11657242 DOI: 10.3389/fbioe.2024.1488748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter, often affect millions of people globally, take months to heal or not heal non-healing chronic wounds, are typically susceptible to microbial infection, and are a major cause of morbidity. Wounds can be treated with a variety of non-surgical (topical formulations, wound dressings) and surgical (debridement, skin grafts/flaps) methods. Three-dimensional (3D)-(bio) printing and traditional wound dressings are two examples of modern experimental techniques. This review focuses on several types of anti-inflammatory wound dressings, especially focusing on hydrogels and traditional macro-fungi like L. rhinocerotis as agents that promote wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and offered innovative methods for application and preparation to aid in the healing. Additionally, we summarize the key elements required for wound healing and discuss our analysis of potential future issues. These findings suggest that L. rhinocerotis and various anti-inflammatory hydrogels can be considered as conventional and alternative macro-fungi for the treatment of non-communicable diseases. We summarized the development of functional hydrogel dressings and traditional Lignosus rhinoceros used for wound healing agents in recent years, as well as the current situation and future trends, in light of their preparation mechanisms and functional effects.
Collapse
Affiliation(s)
- Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Weiwei Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
11
|
Grivet-Brancot A, Buscemi M, Ciardelli G, Bronco S, Sartori S, Cassino C, Al Kayal T, Losi P, Soldani G, Boffito M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics 2024; 16:1438. [PMID: 39598561 PMCID: PMC11597581 DOI: 10.3390/pharmaceutics16111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic skin wounds (CSWs) are a worldwide healthcare problem with relevant impacts on both patients and healthcare systems. In this context, innovative treatments are needed to improve tissue repair and patient recovery and quality of life. Cord blood platelet lysate (CB-PL) holds great promise in CSW treatment thanks to its high growth factors and signal molecule content. In this work, thermo-sensitive hydrogels based on an amphiphilic poly(ether urethane) (PEU) were developed as CB-PL carriers for CSW treatment. METHODS A Poloxamer 407®-based PEU was solubilized in aqueous medium (10 and 15% w/v) and added with CB-PL at a final concentration of 20% v/v. Hydrogels were characterized for their gelation potential, rheological properties, and swelling/dissolution behavior in a watery environment. CB-PL release was also tested, and the bioactivity of released CB-PL was evaluated through cell viability, proliferation, and migration assays. RESULTS PEU aqueous solutions with concentrations in the range 10-15% w/v exhibited quick (within a few minutes) sol-to-gel transition at around 30-37 °C and rheological properties modulated by the PEU concentration. Moreover, CB-PL loading within the gels did not affect the overall gel properties. Stability in aqueous media was dependent on the PEU concentration, and payload release was completed between 7 and 14 days depending on the polymer content. The CB-PL-loaded hydrogels also showed biocompatibility and released CB-PL induced keratinocyte migration and proliferation, with scratch wound recovery similar to the positive control (i.e., CB-PL alone). CONCLUSIONS The developed hydrogels represent promising tools for CSW treatment, with tunable gelation properties and residence time and the ability to encapsulate and deliver active biomolecules with sustained and controlled kinetics.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Marianna Buscemi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Gianluca Ciardelli
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Simona Bronco
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Monica Boffito
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| |
Collapse
|
12
|
Kurdtabar M, Mirashrafi NS, Bagheri Marandi G, Ghobadifar V. Synthesis and characterization of self-healable supramolecular hydrogel based on carboxymethyl cellulose for biomedical applications. Int J Biol Macromol 2024; 281:136532. [PMID: 39406321 DOI: 10.1016/j.ijbiomac.2024.136532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels have been widely used in biomedical fields including tissue engineering, drug delivery and cell delivery and 3D cell delivery due to abundant water content in their hydrophilic three-dimensional networks and having soft tissue similar to the human body. In recent years, supramolecular hydrogels (SHG) formed by the inclusion complex between polyethylene glycol (PEG) and macrocycles such as cyclodextrin (CD) have attracted much interest due to their excellent biocompatibility and great potential in biomedical. In this research, a carboxymethyl cellulose (CMC)-based graft copolymer was prepared by using acrylic acid (AA) and maleic anhydride functionalized β-CD (β-CD-MA) as comonomers and ammonium persulfate (APS) as initiator. Then, a self-healable supramolecular hydrogel was synthesized by formation of a host-guest inclusion complex between CMC-g-poly (AA-co-β-CD-MA) as host molecule and cytosine- and guanine-modified PEG as guest molecules. The prepared hydrogel was characterized by Scanning Electron Microscope (SEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance spectroscopy (1H NMR). The thermal stability of hydrogel was also determined by thermal gravimetric (TGA) and differential scanning calorimetry (DSC) methods. In addition, the loading and release profiles of metformin hydrochloride (MH) drug as a model on hydrogel was investigated. The results indicated that the drug release from the hydrogel peaks around 360 min and aligns with the Ritger-Peppas model. The hydrogel's self-healing property was examined at ambient temperature and 37 °C. It showed 70 % healing in 1.5 h and completed recovery after 9 h.
Collapse
Affiliation(s)
- Mehran Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | | | | | - Vahid Ghobadifar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
13
|
Zaccaron RP, Mendes C, da Costa C, Silveira PCL, Rezin GT. Skin metabolism in obesity: A narrative review. Wound Repair Regen 2024; 32:1022-1027. [PMID: 39318160 DOI: 10.1111/wrr.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Obesity is a complex multifactorial disease in which excess body fat triggers negative health effects. Systemically, obesity causes several changes, such as inflammation, oxidative stress, mitochondrial dysfunction and apoptosis; factors linked to the slow and incomplete epithelial regenerative process. Specifically, in the integumentary system, obesity causes an expansion of the skin's surface area and changes in collagen deposition. Molecular underpinnings of why obesity delays wound healing are still poorly understood. In addition to the primary role of dermal adipocytes in lipid storage and heat insulation, they also promote skin immunity, wound healing and hair follicle cycling. As a consequence of the cellular and dysfunctional adaptations of adipocytes, inflammatory immune alterations, alteration in the expression of proteins genes associated with the blood supply, altered collagen formation through fibroblast senescence and excessive degradation of extracellular matrix proteins are metabolic characteristics of the system in obesity that contribute to sustained inflammation and decreased mechanical resistance of the skin.
Collapse
Affiliation(s)
- Rubya Pereira Zaccaron
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Camila da Costa
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
14
|
Xie H, Qian Y, Ding J, Zhao R, Huang L, Shen J, Zhou Z. Double Enzyme Active Hydrogel Program Regulates the Microenvironment of Staphylococcus aureus-Infected Pressure Ulcers. Adv Healthc Mater 2024:e2402363. [PMID: 39390845 DOI: 10.1002/adhm.202402363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The treatment of infected pressure ulcers (IUPs) requires addressing diverse microenvironments. A pressing challenge is to effectively enhance the regenerative microenvironment at different stages of the healing process, tailoring interventions as needed. Here, a dual enzyme mimetic and bacterial responsive self-activating antimicrobial hydrogel designed to enhance IPUs healing is introduced. This hydrogel incorporates pH-responsive dual enzyme-active nanoplatforms (HNTs-Fe-Ag) encapsulated within a methacrylate-modified silk fibroin (SFMA) and dopamine methacrylamide (DMA) matrix. This composite hydrogel exhibits adaptive microenvironment regulation capabilities. Under the low pH microenvironment of bacterial infection, it has excellent antimicrobial activity by self-activating the •OH generation in conjunction with photothermal effects. Under the neutral and alkaline microenvironment of chronic inflammation, it catalyzes the decomposition of hydrogen peroxide (H2O2) to produce oxygen (O2), thereby alleviating hypoxia and scavenging reactive oxygen species (ROS), which in turn remodulates the phenotype of macrophages. The composite hydrogel demonstrates on-demand therapeutic effects in the microenvironment of infected wounds, significantly enhancing the regenerative microenvironment of IUPs by promoting wound closure, inflammation regulation, and collagen deposition through self-activated antimicrobial action during infection and adaptive hypoxia relief during recovery. This approach offers a novel strategy for developing smart wound dressings.
Collapse
Affiliation(s)
- Hailin Xie
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yuna Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Jiayi Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Rui Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Linwei Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Zhihua Zhou
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan, 411201, China
- Key Laboratory of Theoretical Organic Chemistry, Functional Molecule of the Ministry of Education, Xiangtan, 411201, China
| |
Collapse
|
15
|
Widowati W, Faried A, Gunanegara RF, Rahardja F, Zahiroh FH, Sutendi AF, Nindya FS, Azis R, Ekajaya RK. The Potential of Human Wharton's Jelly Mesenchymal Stem Cells Secretome Based Topical Gel for Therapeutic Application. Avicenna J Med Biotechnol 2024; 16:233-243. [PMID: 39606678 PMCID: PMC11589430 DOI: 10.18502/ajmb.v16i4.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 11/29/2024] Open
Abstract
Background Diabetic Foot Ulcer (DFU) might be worsened by neuropathy and vascular issues. This condition can cause 14.3% fatality, stressing the need for effective wound healing therapy. Wound healing is a complex biological process, and human Wharton's Jelly Mesenchymal Stem Cells (hWJMSCs) may help manage DFU treatment issues. This research focuses on utilizing a gel carrier to deliver bioactive substances from Wharton's Jelly Mesenchymal Stem Cells secretome (hWJ-MSCs-Sec) as a possible treatment for DFU. Methods To maintain quality, hWJMSCs-Sec is thoroughly mixed with carbomer gel and freeze-dried. ELISA test is performed to determine the characterization of the gel of hWJMSCs-Sec such as Keratinocyte Growth Factor (KGF), Platelet-Derived Growth Factor (PDGF), Hepatocyte Growth Factor (HGF), Epidermal Growth Factor (EGF), and Heparin-Binding EGF-Like Growth Factor (HB-EGF). The antioxidant activity was also measured with Hydrogen peroxide (H2O2), Nitric oxide (NO), and Ferric Reducing Antioxidant Power (FRAP) assay. Proliferation assay was utilized using WST-8 and the wound healing potential was assessed via the migration cell ability of scratched-human skin fibroblast (BJ cells). Results The freeze-dried hWJ-MSCs-Sec showed higher levels of KGF, HGF, PDGF, EGF, HB-EGF, and the antioxidant activities compared to fresh hWJ-MSCs-Sec. Additionally, the gel of freeze-dried hWJ-MSCs-Sec exhibited higher levels compared to the gel of fresh hWJMSCs-Sec. This was evidenced by faster closure of scratched wounds on BJ cells treated with hWJMSCs-Sec and freeze-dried hWJ-MSCs-Sec gel. Conclusion The freeze-dried hWJ-MSCs-Sec gel exhibits superior quality compared to the non-freeze-dried hWJ-MSCs-Sec gel. This demonstrates that the freeze-drying procedure can maintain the bioactive chemicals found in hWJMSCs-Sec, potentially enhancing the efficacy of this gel in promoting cell regeneration for wound healing.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, Indonesia
| | - Ahmad Faried
- Department of Neurosurgery, Oncology & Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
- Dr. Hasan Sadikin Hospital, Bandung 40161, Indonesia
| | | | - Fanny Rahardja
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, Indonesia
| | - Fadhilah Haifa Zahiroh
- Biomolecular and Biomedical Research Center Bandung, Aretha Medika Utama, Bandung 40164, Indonesia
| | - Annisa Firdaus Sutendi
- Biomolecular and Biomedical Research Center Bandung, Aretha Medika Utama, Bandung 40164, Indonesia
| | - Faradhina Salfa Nindya
- Biomolecular and Biomedical Research Center Bandung, Aretha Medika Utama, Bandung 40164, Indonesia
| | - Rizal Azis
- Biomedical Engineering Department of Electrical Engineering, Faculty of Engineering, University of Indonesia, Depok, Indonesia
- Department of Translational Medical Science, Division of Cancer and Stem Cell, Biodiscovery Institute 3, The University of Nottingham, University Park, United Kingdom NG72RD
| | - Renandy Kristianlie Ekajaya
- Biology Study Program, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung, 40154, Indonesia
| |
Collapse
|
16
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
17
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
18
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
19
|
Britton D, Almanzar D, Xiao Y, Shih HW, Legocki J, Rabbani P, Montclare JK. Exosome Loaded Protein Hydrogel for Enhanced Gelation Kinetics and Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:5992-6000. [PMID: 39173187 PMCID: PMC11409212 DOI: 10.1021/acsabm.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Exosomes are being increasingly explored in biomedical research for wound healing applications. Exosomes can improve blood circulation and endocrine signaling, resulting in enhanced cell regeneration. However, exosome treatments suffer from low retention and bioavailability of exosomes at the wound site. Hydrogels are a popular tool for drug delivery due to their ability to encapsulate drugs in their network and allow for targeted release. Recently, hydrogels have proven to be an effective method to provide increased rates of wound healing when combined with exosomes that can be applied noninvasively. We have designed a series of single-domain protein-based hydrogels capable of physical cross-linking and upper critical solution temperature (UCST) behavior. Hydrogel variant Q5, previously designed with improved UCST behavior and a significantly enhanced gelation rate, is selected as a candidate for encapsulation release of exosomes dubbed Q5Exo. Q5Exo exhibits low critical gelation times and significant decreases in wound healing times in a diabetic mouse wound model showing promise as an exosome-based drug delivery tool and for future hybrid, noninvasive protein-exosome design.
Collapse
Affiliation(s)
- Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dianny Almanzar
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, 10016, United States
| | - Yingxin Xiao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Hao-Wei Shih
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jakub Legocki
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Piul Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, 10016, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, United States
- Department of Chemistry, New York University, New York, New York, 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York, 10010, United States
- Department of Biomedical Engineering, New York University, New York, New York 11201, United States
| |
Collapse
|
20
|
Ribeiro ARM, Teixeira MO, Ribeiro L, Tavares TD, Miranda CS, Costa AF, Ribeiro A, Silva MM, Silva C, Felgueiras HP. Sodium alginate-based multifunctional sandwich-like system for treating wound infections. BIOMATERIALS ADVANCES 2024; 162:213931. [PMID: 38924805 DOI: 10.1016/j.bioadv.2024.213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Microbial colonization and development of infections in wounds is a sign of chronicity. The prevailing approach to manage and treat these wounds involves dressings. However, these often fail in effectively addressing infections, as they struggle to both absorb exudates and maintain optimal local moisture. The system here presented was conceptualized with a three-layer design: the outer layer made of a fibrous polycaprolactone (PCL) film, to act as a barrier for preventing microorganisms and impurities from reaching the wound; the intermediate layer formed of a sodium alginate (SA) hydrogel loaded with ampicillin (Amp) for fighting infections; and the inner layer comprised of a fibrous film of PCL and polyethylene glycol (PEG) for facilitating cell recognition and preventing wound adhesion. Thermal evaluations, degradation, wettability and release behavior testing confirmed the system resistance overtime. The sandwich demonstrated the capability for absorbing exudates (≈70 %) and exhibited a controlled release of Amp for up to 24 h. Antimicrobial testing was performed against Staphylococcus aureus and Escherichia coli, as representatives of Gram-positive and Gram-negative bacteria: >99 % elimination of bacteria. Cell cytotoxicity assessments showed high cytocompatibility levels, confirming the safety of the proposed sandwich system. Adhesion assays confirmed the system ease of detaching without mechanical effort (0.37 N). Data established the efficiency of the sandwich-like system, suggesting promising applications in infected wound care.
Collapse
Affiliation(s)
- Ana R M Ribeiro
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Marta O Teixeira
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Lara Ribeiro
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tânia D Tavares
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - André F Costa
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Manuela Silva
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
21
|
Khalid M, Jameel F, Jabri T, Jabbar A, Salim A, Khan I, Shah MR. α-Terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca starch hydrogel sheets; fabrication, characterization and evaluation of wound healing potential on a full thickness acid burn wound. RSC Adv 2024; 14:28058-28076. [PMID: 39228757 PMCID: PMC11369888 DOI: 10.1039/d4ra04572f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The multifaceted challenges in treating full-thickness acid burn wounds including impaired tissue regeneration, increased risk of infection, and the pursuit of functional and aesthetically pleasing outcomes, highlights the need for innovative therapeutic approaches for their treatment. The exceptional biochemical and mechanical properties of hydrogels, particularly their extracellular matrix-like nature and their potential to incorporate functional ingredients positions them as promising materials for wound dressings, offering a potential solution to the complexities of full-thickness burn wound management. The current study has integrated functional ingredients (starch and α-terpineol), known for their angiogenic, fibroblast-adhesive, and anti-inflammatory properties into an α-terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca pearl starch hydrogel. The hydrogel was then explored for its efficacy in treating full-thickness acid burns. The hydrogel sheets, fabricated using a 25 kGy electron beam, were characterized for structural and functional properties. Surface morphology, gel fraction, swelling ratio, moisture retention capacity and thermal stability were also evaluated. PVA/tapioca starch hydrogel demonstrated optimal macroporosity, mechanical strength, thermal stability, water retention, and moisturizing ability, making it ideal for the intended application. In vitro skin compatibility analysis of α-terpineol-loaded hydrogel confirmed its biocompatibility, demonstrating 90% fibroblast viability. In vivo sensitivity testing on normal rat skin showed no inflammatory response. Analysis of the full-thickness rat chemical burn wounds treated with the hydrogels demonstrated that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogels increased the rate of wound closure, promoted re-epithelialization, facilitated collagen deposition, stimulated angiogenesis, and promoted keratin deposition, ultimately leading to healing of both thick dermal and epidermal tissues, as well as partial restoration of skin appendages over a duration of 30 days as confirmed by the histological and immunohistochemistry staining. Collectively, this study indicates that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogel holds promise as a cost-effective and efficient wound dressing for expediting full thickness acid burn wound healing, thus expanding the practical applications of the natural polymer based sheet hydrogel dressings.
Collapse
Affiliation(s)
- Maria Khalid
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Fatima Jameel
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Tooba Jabri
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Abdul Jabbar
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Asmat Salim
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Irfan Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University Stadium Road, P. O. Box 3500 Karachi 74800 Pakistan
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
22
|
Lagoa T, Queiroga MC, Martins L. An Overview of Wound Dressing Materials. Pharmaceuticals (Basel) 2024; 17:1110. [PMID: 39338274 PMCID: PMC11434694 DOI: 10.3390/ph17091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Wounds are an increasing global concern, mainly due to a sedentary lifestyle, frequently associated with the occidental way of life. The current prevalence of obesity in Western societies, leading to an increase in type II diabetes, and an elderly population, is also a key factor associated with the problem of wound healing. Therefore, it stands essential to find wound dressing systems that allow for reestablishing the skin integrity in the shortest possible time and with the lowest cost, avoiding further damage and promoting patients' well-being. Wounds can be classified into acute or chronic, depending essentially on the duration of the healing process, which is associated withextent and depth of the wound, localization, the level of infection, and the patient's health status. For each kind of wound and respective healing stage, there is a more suitable dressing. The aim of this review was to focus on the possible wound dressing management, aiming for a more adequate healing approach for each kind of wound.
Collapse
Affiliation(s)
- Tânia Lagoa
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
- Department of Veterinary Medicine, School of Science and Technology, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| | - Luís Martins
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
- Department of Veterinary Medicine, School of Science and Technology, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| |
Collapse
|
23
|
Esmaeili J, Ghoraishizadeh S, Farzan M, Barati A, Salehi E, Ai J. Fabrication and Evaluation of a Soy Protein Isolate/Collagen/Sodium Alginate Multifunctional Bilayered Wound Dressing: Release of Cinnamaldehyde, Artemisia absinthium, and Oxygen. ACS APPLIED BIO MATERIALS 2024; 7:5470-5482. [PMID: 39041410 DOI: 10.1021/acsabm.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Chronic wounds, such as diabetic ulcers and pressure sores, pose significant challenges in modern healthcare due to their prolonged healing times and susceptibility to infections. This study aims to engineer a bilayered wound dressing (BLWD) composed of soy protein isolate/collagen with the ability to release Cinnamaldehyde, Artemisia absinthium (AA), and oxygen. Cinnamaldehyde, magnesium peroxide (MgO2), and AA extract were encapsulated. Nanoparticles were evaluated using scanning electron microscopy (SEM), dynamic light scattering, and ZETA potential tests. Swelling, degradation, water vapor penetration, tensile, MTT, SEM, oxygen release, AA extract release, and antibacterial properties were performed. An in vivo study was carried out to assess the final wound dressing under Hematoxiline&Eosin and Masson trichrome staining analysis and compared to a commercial product. According to the results, the synthesized nanoparticles had an average diameter of about 20 nm with a zeta potential in the range of -20 to -30 mV. The layers had uniform and dense surfaces. The maximum swelling and degradation of the dressing was about 130 and 13% respectively. Generally, better mechanical properties were observed in BLWD than in the single-layer case. More than 90% biocompatibility for the wound dressing was reported. The BLWD could inhibit the growth of Gram-positive and Gram-negative microorganisms. Histopathological analysis showed an acceptable wound-healing property. To sum up, the engineered wound dressing can be a good candidate for more clinical trials.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 6761985851, Iran
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1343864331, Iran
| | | | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813733395, Iran
| | - Aboulfazl Barati
- Center for Materials and Manufacturing Sciences, Departments of Chemistry and Physics, Troy University, Troy 36082, Alabama, United States
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 6761985851, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1343864331, Iran
| |
Collapse
|
24
|
Oliveira RN, Meleiro LADC, Quilty B, McGuinness GB. Release of natural extracts from PVA and PVA-CMC hydrogel wound dressings: a power law swelling/delivery. Front Bioeng Biotechnol 2024; 12:1406336. [PMID: 39165402 PMCID: PMC11333833 DOI: 10.3389/fbioe.2024.1406336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction PVA hydrogels present many characteristics of the ideal dressing, although without antimicrobial properties. The present work aims to study the physical, mechanical and release characteristics of hydrogel wound dressings loaded with either of two natural herbal products, sage extract and dragon's blood. Methods Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and tensile mechanical testing were used to investigate the structure and properties of the gels. Swelling and degradation tests were conducted according to ISO 10993-9. Release characteristics were studied using UV Spectrophotometry. Results PVA matrices incorporating sage extract or dragon's blood (DB) present hydrogen bonding between these components. PVA-CMC hydrogels containing sage present similar spectra to PVA-CMC alone, probably indicating low miscibility or interaction between the matrix and sage. The opposite is found for DB, which exhibits more pronounced interference with crystallinity than sage. DB and NaCMC negatively affect Young's modulus and failure strength. All samples appear to reach equilibrium swelling degree (ESD) in 24 h. The addition of DB and sage to PVA increases the gels' swelling capacity, indicating that the substances likely separate PVA chains. The inclusion of CMC contributes to high media uptake. The kinetics profile of media uptake for 4 days is described by a power-law model, which is correlated to the drug delivery mechanism. Discussion A PVA-CMC gel incorporating 15% DB, the highest amount tested, shows the most favorable characteristics for flavonoid delivery, as well as flexibility and swelling capacity.
Collapse
Affiliation(s)
- Renata Nunes Oliveira
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Augusto da Cruz Meleiro
- Chemical Engineering Department, Institute of Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brid Quilty
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
25
|
Chen J, Luo Y. Disodium Cromoglycate Templates Anisotropic Short-Chain PEG Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33223-33234. [PMID: 38885610 DOI: 10.1021/acsami.4c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Anisotropic hydrogels have found widespread applications in biomedical engineering, particularly as scaffolds for tissue engineering. However, it remains a challenge to produce them using conventional fabrication methods, without specialized synthesis or equipment, such as 3D printing and unidirectional stretching. In this study, we explore the self-assembly behaviors of polyethylene glycol diacrylate (PEGDA), using disodium cromoglycate (DSCG), a lyotropic chromonic liquid crystal, as a removable template. The affinity between short-chain PEGDA (Mn = 250) and DSCG allows polymerization to take place at the DSCG surface, thereby forming anisotropic hydrogel networks with fibrin-like morphologies. This process requires considerable finesse as the phase behaviors of DSCG depend on a multitude of factors, including the weight percentage of PEGDA and DSCG, the chain length of PEGDA, and the concentration of ionic species. The key to modulating the microstructures of the all-PEG hydrogel networks is through precise control of the DSCG concentration, resulting in anisotropic mechanical properties. Using these anisotropic hydrogel networks, we demonstrate that human dermal fibroblasts are particularly sensitive to the alignment order. We find that cells exhibit a density-dependent activation pattern of a Yes-associated protein, a mechanotransducer, corroborating its role in enabling cells to translate external mechanical and morphological patterns to specific behaviors. The flexibility of modulating microstructure, along with PEG hydrogels' biocompatibility and biodegradability, underscores their potential use for tissue engineering to create functional structures with physiological morphologies.
Collapse
Affiliation(s)
- Juan Chen
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Yimin Luo
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
26
|
Nguyen DV, Yuan Y, Kukumberg M, Wang L, Lim SH, Hassanbhai AM, Chong M, Kofidis T, Tan ECK, Seliktar D, Kang L, Rufaihah AJ. Controlled release of vancomycin from PEGylated fibrinogen polyethylene glycol diacrylate hydrogel. BIOMATERIALS ADVANCES 2024; 161:213896. [PMID: 38795473 DOI: 10.1016/j.bioadv.2024.213896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Surgical site infection (SSI) is a common issue post-surgery which often prolongs hospitalization and can lead to serious complications such as sternal wound infection following cardiac surgery via median sternotomy. Controlled release of suitable antibiotics could allow maximizing drug efficacy and safety, and therefore achieving a desired therapeutic response. In this study, we have developed a vancomycin laden PEGylated fibrinogen-polyethylene glycol diacrylate (PF-PEGDA) hydrogel system that can release vancomycin at a controlled and predictable rate to be applied in SSI prevention. Two configurations were developed to study effect of the hydrogel on drug release, namely, vancomycin laden hydrogel and vancomycin solution on top of blank hydrogel. The relationship between the rigidity of the hydrogel and drug diffusion was found to comply with a universal power law, i.e., softer hydrogels result in a greater diffusion coefficient hence faster release rate. Besides, vancomycin laden hydrogels exhibited burst release, whereas the vancomycin solution on top of blank hydrogels exhibited lag release. A mathematical model was developed to simulate vancomycin permeation through the hydrogels. The permeation of vancomycin can be predicted accurately by using the mathematical model, which provided a useful tool to customize drug loading, hydrogel thickness and stiffness for personalized medication to manage SSI. To evaluate the potential of hydrogels for bone healing applications in cardiovascular medicine, we performed a proof-of-concept median sternotomy in rabbits and applied the hydrogels. The hydrogel formulations accelerated the onset of osteo-genetic processes in rabbits, demonstrating its potential to be used in human.
Collapse
Affiliation(s)
- Duc-Viet Nguyen
- Nusmetics Pte Ltd., 3791 Jalan Bukit Merah, E-Centre@Redhill, Singapore 159471, Singapore
| | - Yunong Yuan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, NSW 2006, Australia
| | - Marek Kukumberg
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lingxin Wang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, NSW 2006, Australia
| | - Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, Singapore 117543, Singapore
| | - Ammar Mansoor Hassanbhai
- Osteopore International Pte Ltd, 2 Tukang Innovation Grove #09-06, MedTech Hub, Singapore 618305, Singapore
| | - Mark Chong
- College of Design and Engineering, National University of Singapore, 5 Engineering Drive 2, Block E2A, #04-05, Singapore 117579, Singapore
| | - Theodoros Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore
| | - Edwin C K Tan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, NSW 2006, Australia
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, NSW 2006, Australia.
| | - Abdul Jalil Rufaihah
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; School of Applied Science, Temasek Polytechnic, 21 Tampines Avenue 1, Block 8, Level 3, Singapore 529757, Singapore.
| |
Collapse
|
27
|
Aizaz A, Nawaz MH, Ismat MS, Zahid L, Zahid S, Ahmed S, Abbas M, Vayalpurayil T, Rehman MAU. Development and characterization of polyethylene oxide and guar gum-based hydrogel; a detailed in-vitro analysis of degradation and drug release kinetics. Int J Biol Macromol 2024; 273:132824. [PMID: 38857736 DOI: 10.1016/j.ijbiomac.2024.132824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Herein, we synthesized hydrogel films from crosslinked polyethylene oxide (PEO) and guar gum (GG) which can offer hydrophilicity, antibacterial efficacy, and neovascularization. This study focuses on synthesis and material/biological characterization of rosemary (RM) and citric acid (CA) loaded PEO/GG hydrogel films. Scanning Electron Microscopy images confirmed the porous structure of the developed hydrogel film matrix (PEO/GG) and the dispersion of RM and CA within it. This porous structure promotes moisture adsorption, cell attachment, proliferation, and tissue layer formation. Fourier Transform Infrared Spectroscopy (FTIR) further validated the crosslinking of the PEO/GG matrix, as confirmed by the appearance of C-O-C linkage in the FTIR spectrum. PEO/GG and PEO/GG/RM/CA revealed similar degradation and release kinetics in Dulbecco's Modified Eagle Medium, Simulated Body Fluid, and Phosphate Buffer Saline (degradation of ∼55 % and release of ∼60 % RM in 168 h.). The developed hydrogel film exhibited a zone of inhibition against Escherichia. coli (2 mm) and Staphylococcus. aureus (9 mm), which can be attributed to the presence of RM in the hydrogel film. Furthermore, incorporating CA in the hydrogel film promoted neovascularization, as confirmed by the Chorioallantoic Membrane Assay. The developed RM and CA-loaded PEO/GG-based hydrogel films offered suitable in-vitro properties that may aid in potential wound healing applications.
Collapse
Affiliation(s)
- Aqsa Aizaz
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Muhammad Sameet Ismat
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Laiba Zahid
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Sidra Zahid
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan.
| |
Collapse
|
28
|
Aldaghi N, kamalabadi-Farahani M, Alizadeh M, Alizadeh A, Salehi M. Enhancing pressure ulcer healing and tissue regeneration by using N-acetyl-cysteine loaded carboxymethyl cellulose/gelatin/sodium alginate hydrogel. Biomed Eng Lett 2024; 14:833-845. [PMID: 38946815 PMCID: PMC11208367 DOI: 10.1007/s13534-024-00378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 07/02/2024] Open
Abstract
Prolonged pressure on the skin can result in pressure ulcers, which may lead to serious complications, such as infection and tissue damage. In this study, we evaluated the effect of a carboxymethyl cellulose/gelatin/sodium alginate (CMC/Gel/Alg) hydrogel containing N-acetyl-cysteine (NAC) on the healing of pressure ulcers. Pressure ulcers were induced by applying a magnet to the dorsum of rat skin. The wounds were then treated with sterile gauze, ChitoHeal Gel®, and CMC/Gel/Alg hydrogel dressings with or without NAC for the other groups. We evaluated the morphology, weight loss, swelling, rheology, blood compatibility, cytocompatibility, antioxidant capacity, and wound scratch of the prepared hydrogel. MTT assay revealed that the optimum concentration of NAC was 5 mg/ml, which induced higher cell proliferation and viability. Results of the histopathological evaluation showed increased wound closure, and complete re-epithelialization in the hydrogel-containing NAC group compared to the other groups. The CMC/Gel/Alg/5 mg/ml NAC hydrogel dressing showed 84% wound closure at 14 days after treatment. Immunohistochemical results showed a decrease in the level of TNF-α on day 14 compared day 7. Results of the qPCR assay revealed that NAC hydrogel increased the expression of Collagen type I and TGF-β1 and decreased MMP2 and MMP9 mRNA on the 14th day. The results suggest that the CMC/Gel/Alg/5 mg/ml NAC hydrogel with antioxidant properties is an appropriate dressing for wound healing.
Collapse
Affiliation(s)
- Niloofar Aldaghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
29
|
Johnson M, Song R, Li Y, Milne C, Lyu J, Lara-Sáez I, A S, Wang W. Hyaluronic Acid/Chondroitin Sulfate-Based Dynamic Thiol-Aldehyde Addition Hydrogel: An Injectable, Self-Healing, On-Demand Dissolution Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3003. [PMID: 38930372 PMCID: PMC11205580 DOI: 10.3390/ma17123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Frequent removal and reapplication of wound dressings can cause mechanical disruption to the healing process and significant physical discomfort for patients. In response to this challenge, a dynamic covalent hydrogel has been developed to advance wound care strategies. This system comprises aldehyde functionalized chondroitin sulfate (CS-CHO) and thiolated hyaluronic acid (HA-SH), with the distinct ability to form in situ via thiol-aldehyde addition and dissolve on-demand via the thiol-hemithioacetal exchange reaction. Although rarely reported, the dynamic covalent reaction of thiol-aldehyde addition holds great promise for the preparation of dynamic hydrogels due to its rapid reaction kinetics and easy reversible dissociation. The thiol-aldehyde addition chemistry provides the hydrogel system with highly desirable characteristics of rapid gelation (within seconds), self-healing, and on-demand dissolution (within 30 min). The mechanical and dissolution properties of the hydrogel can be easily tuned by utilizing CS-CHO materials of different aldehyde functional group contents. The chemical structure, rheology, self-healing, swelling profile, degradation rate, and cell biocompatibility of the hydrogels are characterized. The hydrogel possesses excellent biocompatibility and proves to be significant in promoting cell proliferation in vitro when compared to a commercial hydrogel (HyStem® Cell Culture Scaffold Kit). This study introduces the simple fabrication of a new dynamic hydrogel system that can serve as an ideal platform for biomedical applications, particularly in wound care treatments as an on-demand dissolvable wound dressing.
Collapse
Affiliation(s)
- Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Cameron Milne
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland (J.L.); (I.L.-S.)
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
30
|
Gholamali I, Jo SH, Han W, Lim J, Rizwan A, Park SH, Lim KT. The Diels-Alder Cross-Linked Gelatin/Dextran Nanocomposite Hydrogels with Silver Nanoparticles for Wound Healing Applications: Synthesis, Characterization, and In Vitro Evaluation. Gels 2024; 10:408. [PMID: 38920954 PMCID: PMC11202739 DOI: 10.3390/gels10060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Wound healing involves a sophisticated biological process that relies on ideal conditions to advance through various stages of repair. Modern wound dressings are designed to imitate the natural surroundings around cells and offer properties such as moisture regulation, strength, and antimicrobial defense to boost healing. A recent research project unveiled a new type of gelatin (Gel)/dextran (Dex) hydrogels, linked through Diels-Alder (D-A) reactions, loaded with silver nanoparticles (Ag-NPs) for cutting-edge wound treatment. Gel and Dex were chemically modified to form the hydrogels via the D-A reaction. The hydrogels were enriched with Ag-NPs at varying levels. Thorough analyses of the hydrogels using methods like NMR, FT-IR, and SEM were carried out to assess their structure and nanoparticle integration. Rheological tests displayed that the hydrogels had favorable mechanical attributes, particularly when Ag-NPs were included. The hydrogels demonstrated controlled swelling, responsiveness to pH changes, and were non-toxic. Testing against E. coli showcased the strong antibacterial activity of the nanocomposite hydrogels in a concentration-dependent manner. This investigation showcased the promise of these bioactive nanocomposite hydrogels in promoting speedy wound healing by maintaining a moist environment, offering an antimicrobial shield, and ensuring mechanical support at the wound site.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.); (W.H.); (J.L.)
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.); (W.H.); (J.L.)
| | - Won Han
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.); (W.H.); (J.L.)
| | - Juhee Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.); (W.H.); (J.L.)
| | - Ali Rizwan
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.); (W.H.); (J.L.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
31
|
Huët MAL, Phul IC, Goonoo N, Li Z, Li X, Bhaw-Luximon A. Lignin-cellulose complexes derived from agricultural wastes for combined antibacterial and tissue engineering scaffolds for cutaneous leishmaniasis wounds. J Mater Chem B 2024; 12:5496-5512. [PMID: 38742807 DOI: 10.1039/d4tb00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bacterial infections in wounds significantly impair the healing process. The use of natural antibacterial products over synthetic antibiotics has emerged as a new trend to address antimicrobial resistance. An ideal tissue engineering scaffold to treat infected wounds should possess antibacterial properties, while simultaneously promoting tissue regrowth. Synthesis of hydrogel scaffolds with antibacterial properties using hemp shive (HT1/HT2) lignin, sugarcane bagasse (SCB) lignin and cellulose was carried out. All lignin samples had low molecular weights and were constituted of G-type β-5 dimers, linked by β-O-4 bonds, as determined by MALDI-TOF-MS. Hemp lignin was more cytotoxic to mouse fibroblasts (L929) compared to SCB lignin. All lignin samples demonstrated antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis, with greater efficiency against Gram-negative strains. 3D hydrogels were engineered by crosslinking SCB lignin with SCB cellulose in varying weight ratios in the presence of epichlorohydrin. The stiffness of the hydrogels could be tailored by varying the lignin concentration. All hydrogels were biocompatible; however, better fibroblast adhesion was observed on the blended hydrogels compared to the 100% cellulose hydrogel, with the cellulose : lignin 70 : 30 hydrogel showing the highest L929 proliferation and best antibacterial properties with a 24-hour bacterial growth reduction ranging from 30.8 to 57.3%.
Collapse
Affiliation(s)
- Marie Andrea Laetitia Huët
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| | - Itisha Chummun Phul
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| | - Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| |
Collapse
|
32
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
33
|
Khosravi Z, Kharaziha M, Goli R, Karimzadeh F. Antibacterial adhesive based on oxidized tannic acid-chitosan for rapid hemostasis. Carbohydr Polym 2024; 333:121973. [PMID: 38494226 DOI: 10.1016/j.carbpol.2024.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
Currently, bacterial infections and bleeding interfere with wound healing, and multifunctional hydrogels with appropriate blood homeostasis, skin adhesion, and antibacterial activity are desirable. In this study, chitosan-based hydrogels were synthesized using oxidized tannic acid (OTA) and Fe3+ as cross-linkers (CS-OTA-Fe) by forming covalent, non-covalent, and metal coordination bonds between Fe3+ and OTA. Our results demonstrated that CS-OTA-Fe hydrogels showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus)and Gram-negative bacteria (Escherichia coli), low hemolysis rate (< 2 %), rapid blood clotting ability, in vitro (< 2 min), and in vivo (90 s) in mouse liver bleeding. Additionally, increasing the chitosan concentration from 3 wt% to 4.5 wt% enhanced cross-linking in the network, leading to a significant improvement in the strength (from 106 ± 8 kPa to 168 ± 12 kPa) and compressive modulus (from 50 ± 9 kPa to 102 ± 14 kPa) of hydrogels. Moreover, CS-OTA-Fe hydrogels revealed significant adhesive strength (87 ± 8 kPa) to the cow's skin tissue and cytocompatibility against L929 fibroblasts. Overall, multifunctional CS-OTA-Fe hydrogels with tunable mechanical properties, excellent tissue adhesive, self-healing ability, good cytocompatibility, and fast hemostasis and antibacterial properties could be promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Z Khosravi
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - R Goli
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - F Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| |
Collapse
|
34
|
Mishra A, Kushare A, Gupta MN, Ambre P. Advanced Dressings for Chronic Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:2660-2676. [PMID: 38723276 DOI: 10.1021/acsabm.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Wound healing, particularly for chronic wounds, presents a considerable difficulty due to differences in biochemical and cellular processes that occur in different types of wounds. Recent technological breakthroughs have notably advanced the understanding of diagnostic and therapeutic approaches to wound healing. The evolution in wound care has seen a transition from traditional textile dressings to a variety of advanced alternatives, including self-healing hydrogels, hydrofibers, foams, hydrocolloids, environment responsive dressings, growth factor-based therapy, bioengineered skin substitutes, and stem cell and gene therapy. Technological advancements, such as 3D printing and electronic skin (e-skin) therapy, contribute to the customization of wound healing. Despite these advancements, effectively managing chronic wounds remains challenging. This necessitates the development of treatments that consider performance, risk-benefit balance, and cost-effectiveness. This review discusses innovative strategies for the healing of chronic wounds. Incorporating biomarkers into advanced dressings, coupled with corresponding biosensors and drug delivery formulations, enables the theranostic approach to the treatment of chronic wounds. Furthermore, integrating advanced dressings with power sources and user interfaces like near-field communication, radio frequency identification, and Bluetooth enhances real-time monitoring and on-demand drug delivery. It also provides a thorough evaluation of the advantages, patient compliance, costs, and durability of advanced dressings, emphasizing smart formulations and their preparation methods.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Aniket Kushare
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Premlata Ambre
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
35
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
36
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J Funct Biomater 2024; 15:93. [PMID: 38667550 PMCID: PMC11051498 DOI: 10.3390/jfb15040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains. It further illuminates the integration of nanomaterials and advanced synthesis techniques that have significantly improved the mechanical, chemical, and biological properties of hybrid cellulose-based materials.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
37
|
Jangra N, Kawatra A, Datten B, Gupta S, Gulati P. Recent trends in targeted delivery of smart nanocarrier-based microbial enzymes for therapeutic applications. Drug Discov Today 2024; 29:103915. [PMID: 38340953 DOI: 10.1016/j.drudis.2024.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Smart carrier-based immobilization has widened the use of enzymes for the treatment of several disorders. Large surface areas, tunable morphology, and surface modification ability aid the targeted and controlled release of therapeutic enzymes from such formulations. Smart nanocarriers, such as polymeric carriers, liposomes, and silica have also increased the stability, half-life, and permeability of these enzymes. In this review, summarize recent advances in the smart immobilization of microbial enzymes and their development as precision nanomedicine for the treatment of cancer, thrombosis, phenylketonuria (PKU), and wound healing. We also discuss the challenges and measures to be adopted for the successful clinical translation of these formulations.
Collapse
Affiliation(s)
- Nikita Jangra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Bharti Datten
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shefali Gupta
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
38
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
39
|
Akhtar M, Nazneen A, Awais M, Hussain R, Khan A, Irfan M, Avcu E, Ur Rehman MA, Boccaccini AR. Oxidized alginate-gelatin (ADA-GEL)/silk fibroin/Cu-Ag doped mesoporous bioactive glass nanoparticle-based hydrogels for potential wound care treatments. Biomed Mater 2024; 19:035016. [PMID: 38417147 DOI: 10.1088/1748-605x/ad2e0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
The present work focuses on developing 5% w/v oxidized alginate (alginate di aldehyde, ADA)-7.5% w/v gelatin (GEL) hydrogels incorporating 0.25% w/v silk fibroin (SF) and loaded with 0.3% w/v Cu-Ag doped mesoporous bioactive glass nanoparticles (Cu-Ag MBGNs). The microstructural, mechanical, and biological properties of the composite hydrogels were characterized in detail. The porous microstructure of the developed ADA-GEL based hydrogels was confirmed by scanning electron microscopy, while the presence of Cu-Ag MBGNs in the synthesized hydrogels was determined using energy dispersive x-ray spectroscopy. The incorporation of 0.3% w/v Cu-Ag MBGNs reduced the mechanical properties of the synthesized hydrogels, as investigated using micro-tensile testing. The synthesized ADA-GEL loaded with 0.25% w/v SF and 0.3% w/v Cu-Ag MBGNs showed a potent antibacterial effect againstEscherichia coliandStaphylococcus aureus. Cellular studies using the NIH3T3-E1 fibroblast cell line confirmed that ADA-GEL films incorporated with 0.3% w/v Cu-Ag MBGNs exhibited promising cellular viability as compared to pure ADA-GEL (determined by WST-8 assay). The addition of SF improved the biocompatibility, degradation rate, moisturizing effects, and stretchability of the developed hydrogels, as determinedin vitro. Such multimaterial hydrogels can stimulate angiogenesis and exhibit desirable antibacterial properties. Therefore further (in vivo) tests are justified to assess the hydrogels' potential for wound dressing and skin tissue healing applications.
Collapse
Affiliation(s)
- Memoona Akhtar
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Arooba Nazneen
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Muhammad Awais
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Ahmad Khan
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Muhammad Irfan
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan
| | - Egemen Avcu
- Department of Mechanical Engineering, Kocaeli University, Kocaeli 41001, Turkey
- Ford Otosan Ihsaniye Automotive Vocational School, Kocaeli University, Kocaeli 41650, Turkey
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, Erlangen 91058, Germany
| |
Collapse
|
40
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
41
|
Altunbek M, Gezek M, Gouveia MET, Camci-Unal G. Development of a Sprayable Hydrogel-Based Wound Dressing: An In Vitro Model. Gels 2024; 10:176. [PMID: 38534594 DOI: 10.3390/gels10030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogel-based dressings can effectively heal wounds by providing multiple functions, such as antibacterial, anti-inflammatory, and preangiogenic bioactivities. The ability to spray the dressing is important for the rapid and effective coverage of the wound surface. In this study, we developed a sprayable hydrogel-based wound dressing using naturally derived materials: hyaluronic acid and gelatin. We introduced methacrylate groups (HAMA and GelMA) to these materials to enable controllable photocrosslinking and form a stable hydrogel on the wound surface. To achieve sprayability, we evaluated the concentration of GelMA within a range of 5-15% (w/v) and then incorporated 1% (w/v) HAMA. Additionally, we incorporated calcium peroxide into the hydrogel at concentrations ranging from 0 to 12 mg/mL to provide self-oxygenation and antibacterial properties. The results showed that the composite hydrogels were sprayable and could provide oxygen for up to two weeks. The released oxygen relieved metabolic stress in fibroblasts and reduced cell death under hypoxia in in vitro culture. Furthermore, calcium peroxide added antibacterial properties to the wound dressing. In conclusion, the developed sprayable hydrogel dressing has the potential to be advantageous for wound healing due to its practical and conformable application, as well as its self-oxygenating and antibacterial functions.
Collapse
Affiliation(s)
- Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Maria Eduarda Torres Gouveia
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
42
|
Wang X, Zhang Y, Song A, Wang H, Wu Y, Chang W, Tian B, Xu J, Dai H, Ma Q, Wang C, Zhou X. A Printable Hydrogel Loaded with Medicinal Plant Extract for Promoting Wound Healing. Adv Healthc Mater 2024; 13:e2303017. [PMID: 38273733 DOI: 10.1002/adhm.202303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/16/2024] [Indexed: 01/27/2024]
Abstract
How to promote wound healing is still a major challenge in the healthcare while macrophages are a critical component of the healing process. Compared to various bioactive drugs, many plants have been reported to facilitate the wound healing process by regulating the immune response of wounds. In this work, a Three-dimensional (3D) printed hydrogel scaffold loaded with natural Centella asiatica extract (CA extract) is developed for wound healing. This CA@3D scaffold uses gelatin (Gel) and sodium alginate (SA) with CA extract as bio-ink for 3D printing. The CA extract contains a variety of bioactive compounds that make the various active ingredients in Centella asiatica work in concert. The printed CA@3D scaffold can fit the shape of wound, orchestrate the macrophages and immune responses within the wound, and promote wound healing compared to commercial wound dressings. The underlying mechanism of promoting wound healing is also illuminated by applying multi-omic analyses. Moreover, the CA extract loaded 3D scaffold also showed great ability to promote wound healing in diabetic chronic wounds. Due to its ease of preparation, low-cost, biosafety, and therapeutic outcomes, this work proposes an effective strategy for promoting chronic wound healing.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Anning Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenju Chang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
43
|
Raj V, Raorane CJ, Shastri D, Kim SC, Lee S. Engineering a self-healing grafted chitosan-sodium alginate based hydrogel with potential keratinocyte cell migration property and inhibitory effect against fluconazole resistance Candida albicans biofilm. Int J Biol Macromol 2024; 261:129774. [PMID: 38286383 DOI: 10.1016/j.ijbiomac.2024.129774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Biofilms developed by microorganisms cause an extremely severe clinical problem that leads to drug failure. Bioactive polymeric hydrogels display potential for controlling the formation of microorganism-based biofilms, but their rapid biodegradability in these biofilm sites is still a major challenge. To overcome this, chitosan (CS), a natural functional biomaterial, has been used because of its effective penetrability in the cell wall of microorganisms; however, its fast biodegradability has restricted its further use. Hence, in this study, to improve the stability of CS and increase its penetration retention inside a biofilm, grafted CS was prepared and then crosslinked with sodium alginate (SA) to synthesize CS-poly(MA-co-AA)SA hydrogel via a free radical grafting method, therefore enhancing its antibiofilm efficiency against biofilms. The prepared hydrogel demonstrated excellent effectiveness against (≥90 % inhibition) biofilms of Candida albicans. Additionally, in vitro and in vivo safety assays established that the prepared hydrogel can be used in a biofilm microenvironment and might reduce drug resistance burden owing to its long-term antibiofilm effect and improved CS stability at the biofilm site. Furthermore, in vitro wound healing outcomes of hydrogel indicated its potential application for chronic wound treatment. This research opens a new advanced strategy for biofilm-associated infection treatment, including wound treatment.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | | | - Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Khunmanee S, Choi A, Ahn IY, Kim WJ, Bae TH, Kang SH, Park H. Effective wound healing on diabetic mice by adhesive antibacterial GNPs-lysine composited hydrogel. iScience 2024; 27:108860. [PMID: 38318359 PMCID: PMC10838728 DOI: 10.1016/j.isci.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Current trends in wound care research focus on creating dressings for diverse wound types, aiming to effectively control the wound healing process. We proposed a wound dressing composed of oxidized hyaluronic acid and amine gelatin with embedded lysine-modified gelatin nanoparticles (HGel-GNPs-lysine). This dressing improves mechanical properties and reduces degradation rates. The storage modulus for HGel-GNPs-lysine was 3,800 Pa, exceeding that of HGel (1,750 Pa). The positively charged surface of GNPs-lysine effectively eliminated Escherichia coli and Staphylococcus aureus. In a diabetic mice model (C57BL/6), HGel-GNPs-lysine immobilized with basic-fibroblast growth factor promoted granulation tissue thickness and collagen density. Gene expression analysis indicated that HGel-GNPs-lysine reduced inflammation and enhanced angiogenesis. This study highlights that HGel-GNPs-lysine could offer alternative treatment strategies for regulating the inflammatory response at the injury site in wound dressing applications.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Anseo Choi
- Department of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Il Young Ahn
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu 06973, South Korea
| | - Woo Ju Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Gwangmyeong Hospital, Deokan-ro, Gwangmyeong-si, Gyeonggi-do 14353, South Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Gwangmyeong Hospital, Deokan-ro, Gwangmyeong-si, Gyeonggi-do 14353, South Korea
| | - Shin Hyuk Kang
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu 06973, South Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| |
Collapse
|
45
|
Apostolidou CP, Kokotidou C, Platania V, Nikolaou V, Landrou G, Nikoloudakis E, Charalambidis G, Chatzinikolaidou M, Coutsolelos AG, Mitraki A. Antimicrobial Potency of Fmoc-Phe-Phe Dipeptide Hydrogels with Encapsulated Porphyrin Chromophores Is a Promising Alternative in Antimicrobial Resistance. Biomolecules 2024; 14:226. [PMID: 38397463 PMCID: PMC10887087 DOI: 10.3390/biom14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health risk as a consequence of misuse of antibiotics. Owing to the increasing antimicrobial resistance, it became imperative to develop novel molecules and materials with antimicrobial properties. Porphyrins and metalloporphyrins are compounds which present antimicrobial properties especially after irradiation. As a consequence, porphyrinoids have recently been utilized as antimicrobial agents in antimicrobial photodynamic inactivation in bacteria and other microorganisms. Herein, we report the encapsulation of porphyrins into peptide hydrogels which serve as delivery vehicles. We selected the self-assembling Fmoc-Phe-Phe dipeptide, a potent gelator, as a scaffold due to its previously reported biocompatibility and three different water-soluble porphyrins as photosensitizers. We evaluated the structural, mechanical and in vitro degradation properties of these hydrogels, their interaction with NIH3T3 mouse skin fibroblasts, and we assessed their antimicrobial efficacy against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria. We found out that the hydrogels are cytocompatible and display antimicrobial efficiency against both strains with the zinc porphyrins being more efficient. Therefore, these hydrogels present a promising alternative for combating bacterial infections in the face of growing AMR concerns.
Collapse
Affiliation(s)
- Chrysanthi Pinelopi Apostolidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Varvara Platania
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Emmanouil Nikoloudakis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Athanassios G. Coutsolelos
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| |
Collapse
|
46
|
Bhar B, Ranta P, Samudrala PK, Mandal BB. Omentum Extracellular Matrix-Silk Fibroin Hydroscaffold Promotes Wound Healing through Vascularization and Tissue Remodeling in the Diabetic Rat Model. ACS Biomater Sci Eng 2024; 10:1090-1105. [PMID: 38275123 DOI: 10.1021/acsbiomaterials.3c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nonhealing diabetic wounds are often associated with significant mortality and cause economic and clinical burdens to the healthcare system. Herein, a biomimetic hydroscaffold is developed using omentum tissue-derived decellularized-extracellular matrix (dECM) and silk fibroin (SF) proteins that associate the behavior of a collagenous fibrous scaffold and a hydrogel to reproduce all aspects of the provisional skin tissue matrix. The chemical cross-linker-free in situ gelation property of the two types of SF proteins from Bombyx mori and Antheraea assamensis ensures the adherence of dECM with surrounding tissue on the wound bed, circumventing further suturing. The physicochemical and mechanical properties of the composite hydroscaffold (SF-dECM) were thoroughly evaluated. The hydroscaffolds were found to support the growth and proliferation of human dermal fibroblasts and influence the angiogenic potential of endothelial cells under in vitro conditions. Furthermore, the healing efficacy of the composites was evaluated by generating full-thickness wounds on a streptozotocin-induced diabetic rat model. The presence of dECM components in the composite facilitated the rate of wound closure, granulation tissue formation, and re-epithelialization by providing intrinsic cues to advance the inflammatory stage and stimulating angiogenesis. Collectively, as an off-the-shelf wound dressing requiring only a single topical administration, the SF-dECM hydroscaffold is a promising, cost-effective dressing for the management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyanka Ranta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical and Educational Research Guwahati, Guwahati, Assam 781101, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
47
|
Kohoolat G, Alizadeh P, Motesadi Zarandi F, Rezaeipour Y. A ternary composite hydrogel based on sodium alginate, carboxymethyl cellulose and copper-doped 58S bioactive glass promotes cutaneous wound healing in vitro and in vivo. Int J Biol Macromol 2024; 259:129260. [PMID: 38199544 DOI: 10.1016/j.ijbiomac.2024.129260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hydrogels offer a novel approach to wound repair. In this study, we synthesized a ternary composite using sodium alginate (SA), carboxymethyl cellulose (CMC) and copper-doped 58S bioactive glass (BG). According to our mechanical testing results, the composite made of 7 wt% CMC and 7 wt% BG (SA-7CMC-7BG) showed optimal properties. In addition, our in vitro studies revealed the biocompatibility and bioactivity of SA-7CMC-7BG, with a negative zeta potential of -31.7 mV. Scanning electron microscope (SEM) images showed 273-μm-diameter pores, cell adhesion, and anchoring. The SA-7CMC-7BG closed 90.4 % of the mechanical scratch after 2 days. An in vivo wound model using Wistar rats showed that SA-7CMC-7BG promoted wound healing, with 85.57 % of the wounds healed after 14 days. Treatment with the SA-7CMC-7BG hydrogel caused a 1.6-, 65-, and 1.87-fold increase in transforming growth factor beta (TGF-β), Col I, and vascular endothelial growth factor (VEGF) expression, respectively that prevents fibrosis and promotes angiogenesis. Furthermore, interleukin 1β (IL-1β) expression was downregulated by 1.61-fold, indicating an anti-inflammatory effect of SA-7CMC-7BG. We also observed an increase in epidermal thickness, the number of fibroblast cells, and collagen deposition, which represent complementary pathology results confirming the effectiveness of the SA-7CMC-7BG hydrogel in cutaneous wound healing.
Collapse
Affiliation(s)
- Ghazaleh Kohoolat
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Parvin Alizadeh
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran.
| | - Fatemeh Motesadi Zarandi
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Yashar Rezaeipour
- Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| |
Collapse
|
48
|
Gounden V, Singh M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024; 10:43. [PMID: 38247766 PMCID: PMC10815795 DOI: 10.3390/gels10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
The care and rehabilitation of acute and chronic wounds have a significant social and economic impact on patients and global health. This burden is primarily due to the adverse effects of infections, prolonged recovery, and the associated treatment costs. Chronic wounds can be treated with a variety of approaches, which include surgery, negative pressure wound therapy, wound dressings, and hyperbaric oxygen therapy. However, each of these strategies has an array of limitations. The existing dry wound dressings lack functionality in promoting wound healing and exacerbating pain by adhering to the wound. Hydrogels, which are commonly polymer-based and swell in water, have been proposed as potential remedies due to their ability to provide a moist environment that facilitates wound healing. Their unique composition enables them to absorb wound exudates, exhibit shape adaptability, and be modified to incorporate active compounds such as growth factors and antibacterial compounds. This review provides an updated discussion of the leading natural and synthetic hydrogels utilized in wound healing, details the latest advancements in hydrogel technology, and explores alternate approaches in this field. Search engines Scopus, PubMed, Science Direct, and Web of Science were utilized to review the advances in hydrogel applications over the last fifteen years.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
49
|
Sarkar S, Kumar R, Matson JB. Hydrogels for Gasotransmitter Delivery: Nitric Oxide, Carbon Monoxide, and Hydrogen Sulfide. Macromol Biosci 2024; 24:e2300138. [PMID: 37326828 PMCID: PMC11180494 DOI: 10.1002/mabi.202300138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2 S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half-life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel-based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2 S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter-releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.
Collapse
Affiliation(s)
| | | | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
50
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|