1
|
Rzhanova LA, Alpeeva EV, Aleksandrova MA. Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells 2024; 13:1931. [PMID: 39682681 DOI: 10.3390/cells13231931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The main purpose of regenerative medicine for degenerative eye diseases is to create cells to replace lost or damaged ones. Due to their anatomical, genetic, and epigenetic features, characteristics of origin, evolutionary inheritance, capacity for dedifferentiation, proliferation, and plasticity, mammalian and human RPE cells are of great interest as endogenous sources of new photoreceptors and other neurons for the degrading retina. Promising methods for the reprogramming of RPE cells into retinal cells include genetic methods and chemical methods under the influence of certain low-molecular-weight compounds, so-called small molecules. Depending on the goal, which can be the preservation or the replacement of lost RPE cells and cellular structures, various small molecules are used to influence certain biological processes at different levels of cellular regulation. This review discusses the potential of the chemical reprogramming of RPE cells in comparison with other somatic cells and induced pluripotent stem cells (iPSCs) into neural cells of the brain and retina. Possible mechanisms of the chemically induced reprogramming of somatic cells under the influence of small molecules are explored and compared. This review also considers other possibilities in using them in the treatment of retinal degenerative diseases based on the protection, preservation, and support of survived RPE and retinal cells.
Collapse
Affiliation(s)
- Lyubov A Rzhanova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Elena V Alpeeva
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Maria A Aleksandrova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
2
|
Kamde SP, Anjankar A. Retinitis Pigmentosa: Pathogenesis, Diagnostic Findings, and Treatment. Cureus 2023; 15:e48006. [PMID: 38034182 PMCID: PMC10686897 DOI: 10.7759/cureus.48006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Retinitis Pigmentosa (RP) is an inherited retinal dystrophy (IRD) that causes progressive visual loss. Patients suffering from RP have a substantial influence on their everyday activities, social contacts, and jobs, lowering their quality of life. Frequent referral delays, as well as the lack of a standard therapy for the majority of patients, contribute to the significant unmet demand for RP. Any retinal injury has the potential to result in total blindness and visual impairment. Despite the fact that there is no cure for RP, people can manage it using rehabilitation programs and low-vision gadgets. The purpose of this research is to characterize the expanding treatment landscape for RP, as well as the justification for advanced therapy medicinal products (ATMPs). Vitamin A supplements can help prevent the sluggish visual loss caused by a prevalent kind of RP. The presence of visual purple in the rods and the underlying vascular choroid causes the retina to look purplish red. The major portion of the retina damaged is the rod photoreceptor electric cell; the development of diverse diseases is progressive. Because of the retina's accessibility, immunological privilege, and compartmentalization, hereditary retinal diseases are amenable to cell and gene therapy. Therapeutic techniques that attempt to rescue photoreceptors (gene therapies) require the existence of non-functional target cells, but other therapies (cell therapies) do not require the presence of live photoreceptors. To provide successful therapy choices for RP patients at all disease phases, the development pipeline must be continually diversified and advanced, as well as ongoing efforts to encourage early patient identification and quick diagnosis. Future research will focus on avoiding vision loss in genetic eye illnesses and assisting patients in regaining their eyesight. Retinal implants, cell therapies, supplementary medications, and gene therapies may become common treatments for reducing vision loss in the future.
Collapse
Affiliation(s)
- Saakshi P Kamde
- Forensic Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Anjankar
- Forensic Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
4
|
Perdigão PRL, Ollington B, Sai H, Leung A, Sacristan-Reviriego A, van der Spuy J. Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Int J Mol Sci 2023; 24:ijms24065912. [PMID: 36982987 PMCID: PMC10057647 DOI: 10.3390/ijms24065912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is expressed in photoreceptors where it facilitates the assembly of phosphodiesterase 6 (PDE6) which hydrolyses cGMP within the phototransduction cascade. Genetic variations in AIPL1 cause type 4 Leber congenital amaurosis (LCA4), which presents as rapid loss of vision in early childhood. Limited in vitro LCA4 models are available, and these rely on patient-derived cells harbouring patient-specific AIPL1 mutations. While valuable, the use and scalability of individual patient-derived LCA4 models may be limited by ethical considerations, access to patient samples and prohibitive costs. To model the functional consequences of patient-independent AIPL1 mutations, CRISPR/Cas9 was implemented to produce an isogenic induced pluripotent stem cell line harbouring a frameshift mutation in the first exon of AIPL1. Retinal organoids were generated using these cells, which retained AIPL1 gene transcription, but AIPL1 protein was undetectable. AIPL1 knockout resulted in a decrease in rod photoreceptor-specific PDE6α and β, and increased cGMP levels, suggesting downstream dysregulation of the phototransduction cascade. The retinal model described here provides a novel platform to assess functional consequences of AIPL1 silencing and measure the rescue of molecular features by potential therapeutic approaches targeting mutation-independent pathogenesis.
Collapse
Affiliation(s)
- Pedro R L Perdigão
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bethany Ollington
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Hali Sai
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Amy Leung
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | |
Collapse
|
5
|
Naggert ASEN, Collin GB, Wang J, Krebs MP, Chang B. A mouse model of cone photoreceptor function loss (cpfl9) with degeneration due to a mutation in Gucy2e. Front Mol Neurosci 2023; 15:1080136. [PMID: 36698779 PMCID: PMC9868315 DOI: 10.3389/fnmol.2022.1080136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
During routine screening of mouse strains and stocks by the Eye Mutant Resource at The Jackson Laboratory for genetic mouse models of human ocular disorders, we identified cpfl9, a mouse model with cone photoreceptor function loss. The mice exhibited an early-onset phenotype that was easily recognized by the absence of a cone-mediated b-wave electroretinography response and by a reduction in rod-mediated photoresponses at four weeks of age. By genetic mapping and high-throughput sequencing of a whole exome capture library of cpfl9, a homozygous 25 bp deletion within exon 11 of the Gucy2e gene was identified, which is predicted to result in a frame shift leading to premature termination. The corresponding protein in human, retinal guanylate cyclase 1 (GUCY2D), plays an important role in rod and cone photoreceptor cell function. Loss-of-function mutations in human GUCY2D cause LCA1, one of the most common forms of Leber congenital amaurosis, which results in blindness at birth or in early childhood. The early loss of cone and reduced rod photoreceptor cell function in the cpfl9 mutant is accompanied by a later, progressive loss of cone and rod photoreceptor cells, which may be relevant to understanding disease pathology in a subset of LCA1 patients and in individuals with cone-rod dystrophy caused by recessive GUCY2D variants. cpfl9 mice will be useful for studying the role of Gucy2e in the retina.
Collapse
|
6
|
Occelli LM, Sun K, Winkler PA, Morgan BJ, Petersen-Jones SM. Elevated retinal cGMP is not associated with elevated circulating cGMP levels in a canine model of retinitis pigmentosa. PLoS One 2022; 17:e0279437. [PMID: 36584140 PMCID: PMC9803105 DOI: 10.1371/journal.pone.0279437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To investigate whether raised levels of retinal cyclic guanosine monophosphate (cGMP) was reflected in plasma levels in PDE6A-/- dogs. MATERIALS AND METHODS Retina was collected from 2-month-old wildtype dogs (PDE6A+/+, N = 6), heterozygous dogs (PDE6A+/-, N = 4) and affected dogs (PDE6A-/-, N = 3) and plasma was collected from 2-month-old wildtype dogs (PDE6A+/+, N = 5), heterozygous dogs (PDE6A+/-, N = 5) and affected dogs (PDE6A-/-, N = 5). Retina and plasma samples were measured by ELISA. RESULTS cGMP levels in retinal samples of PDE6A-/- dogs at 2 months of age were significantly elevated. There was no significant difference in plasma cGMP levels between wildtype and PDE6A-/- or PDE6A+/- puppies. However, the plasma cGMP levels of the PDE6A-/- puppies were significantly lower than that of PDE6A+/- puppies. CONCLUSION cGMP levels in the plasma from PDE6A-/- was not elevated when compared to control dogs. At the 2-month timepoint, cGMP plasma levels would not be a useful biomarker for disease.
Collapse
Affiliation(s)
- Laurence M. Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Kelian Sun
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Paige A. Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Brandy J. Morgan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Inhibition of the MAPK/c-Jun-EGR1 Pathway Decreases Photoreceptor Cell Death in the rd1 Mouse Model for Inherited Retinal Degeneration. Int J Mol Sci 2022; 23:ijms232314600. [PMID: 36498926 PMCID: PMC9740268 DOI: 10.3390/ijms232314600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies that typically results in photoreceptor cell death and vision loss. Here, we explored the effect of early growth response-1 (EGR1) expression on photoreceptor cell death in Pde6brd1 (rd1) mice and its mechanism of action. To this end, single-cell RNA-seq (scRNA-seq) was used to identify differentially expressed genes in rd1 and congenic wild-type (WT) mice. Chromatin immunoprecipitation (ChIP), the dual-luciferase reporter gene assay, and western blotting were used to verify the relationship between EGR1 and poly (ADP-ribose) polymerase-1 (PARP1). Immunofluorescence staining was used to assess PARP1 expression after silencing or overexpression of EGR1. Photoreceptor cell death was assessed using the TUNEL assay following silencing/overexpression of EGR1 or administration of MAPK/c-Jun pathway inhibitors tanzisertib and PD98059. Our results showed differential expression of ERG1 in rd1 and WT mice via scRNA-seq analysis. The ChIP assay demonstrated EGR1 binding to the PARP1 promoter region. The dual-luciferase reporter gene assay and western blotting results revealed that EGR1 upregulated PARP1 expression. Additionally, the TUNEL assay showed that silencing EGR1 effectively reduced photoreceptor cell death. Similarly, the addition of tanzisertib and PD98059 reduced the expression of c-Jun and EGR1 and decreased photoreceptor cell death. Our study revealed that inhibition of the MAPK/c-Jun pathway reduced the expression of EGR1 and PARP1 and prevented photoreceptor cell death. These results highlight the importance of EGR1 for photoreceptor cell death and identify a new avenue for therapeutic interventions in RP.
Collapse
|
8
|
Flieger J, Śniegocki T, Dolar-Szczasny J, Załuska W, Rejdak R. The First Evidence on the Occurrence of Bisphenol Analogues in the Aqueous Humor of Patients Undergoing Cataract Surgery. J Clin Med 2022; 11:6402. [PMID: 36362630 PMCID: PMC9655480 DOI: 10.3390/jcm11216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Human exposure to BPs is inevitable mostly due to contaminated food. In this preliminary study, for the first time, the presence of bisphenols (BPs) in aqueous humor (AH) collected from 44 patients undergoing cataract surgery was investigated. The measurements were performed using a sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC−MS/MS). Chromatographic separation was achieved using a reverse-phase column and a gradient elution mode. Multiple reaction monitoring (MRM) was used. The method was validated for bisphenol A (BPA) and bisphenol F (BPF). The limits of quantification (LOQs) of both investigated analytes were 0.25 ng mL−1. The method was linear in the range of 0.25−20.0 ng mL−1 with correlation coefficients (R2) higher than 0.98. Recovery of analytes was in the range of 99.9 to 104.3% and intra-assay and inter-assay precision expressed by relative standard deviations (RSD%) were less than 5%. BPA was detected in 12 AH samples with mean concentrations of 1.41 ng mL−1. BPF was not detected at all. Furthermore, two structural isomers termed BPA-1, and BPA-2 were identified, for the first time, in 40.9% of the AH samples, with almost twice higher mean concentrations of 2.15 ng mL−1, and 2.25 ng mL−1, respectively. The total content of BPs were higher in patients with coexisting ocular pathologies such as glaucoma, age-related macular degeneration (AMD), and diabetes in comparison to cataracts alone. However, the difference between these groups did not reach statistical significance (p > 0.05). Performed investigations indicate the need for further research on a larger population with the aim of knowing the consequences of BPs’ accumulation in AH for visual function.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Tomasz Śniegocki
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Joanna Dolar-Szczasny
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| |
Collapse
|
9
|
Chen Y, Coorey NJ, Zhang M, Zeng S, Madigan MC, Zhang X, Gillies MC, Zhu L, Zhang T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants (Basel) 2022; 11:antiox11050942. [PMID: 35624805 PMCID: PMC9137684 DOI: 10.3390/antiox11050942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
The human retina, which is part of the central nervous system, has exceptionally high energy demands that requires an efficient metabolism of glucose, lipids, and amino acids. Dysregulation of retinal metabolism disrupts local energy supply and redox balance, contributing to the pathogenesis of diverse retinal diseases, including age-related macular degeneration, diabetic retinopathy, inherited retinal degenerations, and Macular Telangiectasia. A better understanding of the contribution of dysregulated metabolism to retinal diseases may provide better therapeutic targets than we currently have.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | | | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (M.Z.); (T.Z.)
| | - Shaoxue Zeng
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Michele C. Madigan
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China;
- Beijing Retinal and Choroidal Vascular Study Group, Beijing 100073, China
| | - Mark C. Gillies
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- Correspondence: (M.Z.); (T.Z.)
| |
Collapse
|
10
|
Roy A, Tolone A, Hilhorst R, Groten J, Tomar T, Paquet-Durand F. Kinase activity profiling identifies putative downstream targets of cGMP/PKG signaling in inherited retinal neurodegeneration. Cell Death Dis 2022; 8:93. [PMID: 35241647 PMCID: PMC8894370 DOI: 10.1038/s41420-022-00897-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022]
Abstract
Inherited retinal diseases (IRDs) are a group of neurodegenerative disorders that lead to photoreceptor cell death and eventually blindness. IRDs are characterised by a high genetic heterogeneity, making it imperative to design mutation-independent therapies. Mutations in a number of IRD disease genes have been associated with a rise of cyclic 3’,5’-guanosine monophosphate (cGMP) levels in photoreceptors. Accordingly, the cGMP-dependent protein kinase (PKG) has emerged as a new potential target for the mutation-independent treatment of IRDs. However, the substrates of PKG and the downstream degenerative pathways triggered by its activity have yet to be determined. Here, we performed kinome activity profiling of different murine organotypic retinal explant cultures (diseased rd1 and wild-type controls) using multiplex peptide microarrays to identify proteins whose phosphorylation was significantly altered by PKG activity. In addition, we tested the downstream effect of a known PKG inhibitor CN03 in these organotypic retina cultures. Among the PKG substrates were potassium channels belonging to the Kv1 family (KCNA3, KCNA6), cyclic AMP-responsive element-binding protein 1 (CREB1), DNA topoisomerase 2-α (TOP2A), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (F263), and the glutamate ionotropic receptor kainate 2 (GRIK2). The retinal expression of these PKG targets was further confirmed by immunofluorescence and could be assigned to various neuronal cell types, including photoreceptors, horizontal cells, and ganglion cells. Taken together, this study confirmed the key role of PKG in photoreceptor cell death and identified new downstream targets of cGMP/PKG signalling that will improve the understanding of the degenerative mechanisms underlying IRDs.
Collapse
Affiliation(s)
- Akanksha Roy
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Arianna Tolone
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany
| | - Riet Hilhorst
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - John Groten
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Tushar Tomar
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands.
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany.
| |
Collapse
|
11
|
Huang L, Himawan E, Belhadj S, Pérez García RO, Paquet Durand F, Schipper N, Buzgo M, Simaite A, Marigo V. Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles. Pharmaceutics 2021; 14:74. [PMID: 35056970 PMCID: PMC8780956 DOI: 10.3390/pharmaceutics14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > -20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.
Collapse
Affiliation(s)
- Li Huang
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Erico Himawan
- Research and Development Department, InoCure s.r.o, 11000 Prague, Czech Republic; (M.B.); (A.S.)
| | - Soumaya Belhadj
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (S.B.); (F.P.D.)
| | - Raúl Oswaldo Pérez García
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, 151 36 Södertälje, Sweden; (R.O.P.G.); (N.S.)
| | - François Paquet Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (S.B.); (F.P.D.)
| | - Nicolaas Schipper
- Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, RISE Research Institutes of Sweden, Forskargatan 18, 151 36 Södertälje, Sweden; (R.O.P.G.); (N.S.)
| | - Matej Buzgo
- Research and Development Department, InoCure s.r.o, 11000 Prague, Czech Republic; (M.B.); (A.S.)
| | - Aiva Simaite
- Research and Development Department, InoCure s.r.o, 11000 Prague, Czech Republic; (M.B.); (A.S.)
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
12
|
Cyclic Nucleotide (cNMP) Analogues: Past, Present and Future. Int J Mol Sci 2021; 22:ijms222312879. [PMID: 34884683 PMCID: PMC8657615 DOI: 10.3390/ijms222312879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclic nucleotides are important second messengers involved in cellular events, and analogues of this type of molecules are promising drug candidates. Some cyclic nucleotide analogues have become standard tools for the investigation of biochemical and physiological signal transduction pathways, such as the Rp-diastereomers of adenosine and guanosine 3′,5′-cyclic monophosphorothioate, which are competitive inhibitors of cAMP- and cGMP-dependent protein kinases. Next generation analogues exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity, or are caged or photoactivatable for fast and/or targeted cellular imaging. Novel specific nucleotide analogues activating or inhibiting cyclic nucleotide-dependent ion channels, EPAC/GEF proteins, and bacterial target molecules have been developed, opening new avenues for basic and applied research. This review provides an overview of the current state of the field, what can be expected in the future and some practical considerations for the use of cyclic nucleotide analogues in biological systems.
Collapse
|
13
|
Pérez O, Schipper N, Bollmark M. Preparative Synthesis of an R P-Guanosine-3',5'-Cyclic Phosphorothioate Analogue, a Drug Candidate for the Treatment of Retinal Degenerations. Org Process Res Dev 2021; 25:2453-2460. [PMID: 34840493 PMCID: PMC8609652 DOI: 10.1021/acs.oprd.1c00230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/28/2022]
Abstract
![]()
Cyclic guanosine
monophosphorothioate analogue 1a is
currently showing potential as a drug for the treatment of inherited
retinal neurodegenerations. To support ongoing preclinical and clinical
work, we have developed a diastereoselective synthesis via cyclization
and sulfurization of the nucleoside 5′-H-phosphonate
monoester, which affords the desired RP-3′,5′-cyclic phosphorothioate in 9:1 ratio to the
undesired SP-diastereomer. This route
was made viable as a result of the silyl protection sequence used,
which achieved >80% selectivity for 2′,5′-hydroxyls
over 3′,5′-hydroxyls. Finally, the chromatography-free
process allowed for a scale-up, as intermediates and the final product
were isolated by crystallization to give 125 g of 1a (13.8%
total yield) with over 99.9% HPLC purity.
Collapse
Affiliation(s)
- Oswaldo Pérez
- Research Institutes of Sweden-Chemical Processes and Pharmaceutical Development, Forskargatan 18 (visitors)/20J (deliveries), 151 36 Södertälje, Sweden.,Faculty of Pharmaceutical Sciences, University of Iceland, Sæmundargata 2, 102 Reykjavík, Iceland
| | - Nicolaas Schipper
- Research Institutes of Sweden-Chemical Processes and Pharmaceutical Development, Forskargatan 18 (visitors)/20J (deliveries), 151 36 Södertälje, Sweden
| | - Martin Bollmark
- Research Institutes of Sweden-Chemical Processes and Pharmaceutical Development, Forskargatan 18 (visitors)/20J (deliveries), 151 36 Södertälje, Sweden
| |
Collapse
|
14
|
Technological advancements to study cellular signaling pathways in inherited retinal degenerative diseases. Curr Opin Pharmacol 2021; 60:102-110. [PMID: 34388439 DOI: 10.1016/j.coph.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Inherited retinal degenerative diseases (IRDs) are rare neurodegenerative disorders with mutations in hundreds of genes leading to vision loss, primarily owing to photoreceptor cell death. This genetic diversity is impeding development of effective treatment options. Gene-based therapies have resulted in the first FDA-approved drug (Luxturna) for RPE65-specific IRD. Although currently explored in clinical trials, genomic medicines are mutation-dependent, hence suitable only for patients harboring a specific mutation. Better understanding of the pathways leading to photoreceptor degeneration may help to determine common targets and develop mutation-independent therapies for larger groups of patients with IRDs. In this review, we discuss the key pathways involved in photoreceptor cell death studied by transcriptomics, proteomics, and metabolomics techniques to identify potential therapeutic targets in IRDs.
Collapse
|
15
|
Zhang L, Chen C, Fu J, Lilley B, Berlinicke C, Hansen B, Ding D, Wang G, Wang T, Shou D, Ye Y, Mulligan T, Emmerich K, Saxena MT, Hall KR, Sharrock AV, Brandon C, Park H, Kam TI, Dawson VL, Dawson TM, Shim JS, Hanes J, Ji H, Liu JO, Qian J, Ackerley DF, Rohrer B, Zack DJ, Mumm JS. Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. eLife 2021; 10:e57245. [PMID: 34184634 PMCID: PMC8425951 DOI: 10.7554/elife.57245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP. We tested 2934 compounds, mostly human-approved drugs, across six concentrations, resulting in 113 compounds being identified as hits. Secondary tests of 42 high-priority hits confirmed eleven lead candidates. Leads were then evaluated in a series of mouse RP models in an effort to identify compounds effective across species and RP models, that is, potential pan-disease therapeutics. Nine of 11 leads exhibited neuroprotective effects in mouse primary photoreceptor cultures, and three promoted photoreceptor survival in mouse rd1 retinal explants. Both shared and complementary mechanisms of action were implicated across leads. Shared target tests implicated parp1-dependent cell death in our zebrafish RP model. Complementation tests revealed enhanced and additive/synergistic neuroprotective effects of paired drug combinations in mouse photoreceptor cultures and zebrafish, respectively. These results highlight the value of cross-species/multi-model phenotypic drug discovery and suggest combinatorial drug therapies may provide enhanced therapeutic benefits for RP patients.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Conan Chen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Jie Fu
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Baranda Hansen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Wang
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- School of Chemistry, Xuzhou College of Industrial TechnologyXuzhouChina
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjingChina
| | - Daniel Shou
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ying Ye
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelsi R Hall
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Abigail V Sharrock
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Hyejin Park
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, TaipaMacauChina
| | - Justin Hanes
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oncology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - David F Ackerley
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
16
|
Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:33-59. [PMID: 34170501 DOI: 10.1007/5584_2021_649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The photoreceptor phosphodiesterase (PDE6) is a member of large family of Class I phosphodiesterases responsible for hydrolyzing the second messengers cAMP and cGMP. PDE6 consists of two catalytic subunits and two inhibitory subunits that form a tetrameric protein. PDE6 is a peripheral membrane protein that is localized to the signal-transducing compartment of rod and cone photoreceptors. As the central effector enzyme of the G-protein coupled visual transduction pathway, activation of PDE6 catalysis causes a rapid decrease in cGMP levels that results in closure of cGMP-gated ion channels in the photoreceptor plasma membrane. Because of its importance in the phototransduction pathway, mutations in PDE6 genes result in various retinal diseases that currently lack therapeutic treatment strategies due to inadequate knowledge of the structure, function, and regulation of this enzyme. This review focuses on recent progress in understanding the structure of the regulatory and catalytic domains of the PDE6 holoenzyme, the central role of the multi-functional inhibitory γ-subunit, the mechanism of activation by the heterotrimeric G protein, transducin, and future directions for pharmacological interventions to treat retinal degenerative diseases arising from mutations in the PDE6 genes.
Collapse
|
17
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
18
|
Lin TY, Chang YC, Hsiao YJ, Chien Y, Jheng YC, Wu JR, Ching LJ, Hwang DK, Hsu CC, Lin TC, Chou YB, Huang YM, Chen SJ, Yang YP, Tsai PH. Identification of Novel Genomic-Variant Patterns of OR56A5, OR52L1, and CTSD in Retinitis Pigmentosa Patients by Whole-Exome Sequencing. Int J Mol Sci 2021; 22:ijms22115594. [PMID: 34070492 PMCID: PMC8198027 DOI: 10.3390/ijms22115594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are rare but highly heterogeneous genetic disorders that affect individuals and families worldwide. However, given its wide variability, its analysis of the driver genes for over 50% of the cases remains unexplored. The present study aims to identify novel driver genes, disease-causing variants, and retinitis pigmentosa (RP)-associated pathways. Using family-based whole-exome sequencing (WES) to identify putative RP-causing rare variants, we identified a total of five potentially pathogenic variants located in genes OR56A5, OR52L1, CTSD, PRF1, KBTBD13, and ATP2B4. Of the variants present in all affected individuals, genes OR56A5, OR52L1, CTSD, KBTBD13, and ATP2B4 present as missense mutations, while PRF1 and CTSD present as frameshift variants. Sanger sequencing confirmed the presence of the novel pathogenic variant PRF1 (c.124_128del) that has not been reported previously. More causal-effect or evidence-based studies will be required to elucidate the precise roles of these SNPs in the RP pathogenesis. Taken together, our findings may allow us to explore the risk variants based on the sequencing data and upgrade the existing variant annotation database in Taiwan. It may help detect specific eye diseases such as retinitis pigmentosa in East Asia.
Collapse
Affiliation(s)
- Ting-Yi Lin
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Yun-Chia Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Yu-Jer Hsiao
- College of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ying-Chun Jheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Big Data Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Jing-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
| | - Lo-Jei Ching
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Bai Chou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Yi-Ming Huang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Critical Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Correspondence: (Y.-P.Y.); (P.H.T.); Tel.: +886-2-2875-7394 (Y.-P.Y.); +886-2-2875-7394 (P.H.T.)
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (Y.-P.Y.); (P.H.T.); Tel.: +886-2-2875-7394 (Y.-P.Y.); +886-2-2875-7394 (P.H.T.)
| |
Collapse
|
19
|
Das S, Chen Y, Yan J, Christensen G, Belhadj S, Tolone A, Paquet-Durand F. The role of cGMP-signalling and calcium-signalling in photoreceptor cell death: perspectives for therapy development. Pflugers Arch 2021; 473:1411-1421. [PMID: 33864120 PMCID: PMC8370896 DOI: 10.1007/s00424-021-02556-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The second messengers, cGMP and Ca2+, have both been implicated in retinal degeneration; however, it is still unclear which of the two is most relevant for photoreceptor cell death. This problem is exacerbated by the close connections and crosstalk between cGMP-signalling and calcium (Ca2+)-signalling in photoreceptors. In this review, we summarize key aspects of cGMP-signalling and Ca2+-signalling relevant for hereditary photoreceptor degeneration. The topics covered include cGMP-signalling targets, the role of Ca2+ permeable channels, relation to energy metabolism, calpain-type proteases, and how the related metabolic processes may trigger and execute photoreceptor cell death. A focus is then put on cGMP-dependent mechanisms and how exceedingly high photoreceptor cGMP levels set in motion cascades of Ca2+-dependent and independent processes that eventually bring about photoreceptor cell death. Finally, an outlook is given into mutation-independent therapeutic approaches that exploit specific features of cGMP-signalling. Such approaches might be combined with suitable drug delivery systems for translation into clinical applications.
Collapse
Affiliation(s)
- Soumyaparna Das
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Yiyi Chen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Jie Yan
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Gustav Christensen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Soumaya Belhadj
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Arianna Tolone
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany.
| |
Collapse
|
20
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
21
|
Visual Side Effects Linked to Sildenafil Consumption: An Update. Biomedicines 2021; 9:biomedicines9030291. [PMID: 33809319 PMCID: PMC7998971 DOI: 10.3390/biomedicines9030291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors such as Viagra® (sildenafil citrate) have demonstrated efficacy in the treatment of erectile dysfunction (ED) by inducing cyclic guanosine monophosphate (cGMP) elevation followed by vasodilation and increased blood flow. It also exerts minor inhibitory action against PDE6, which is present exclusively in rod and cone photoreceptors. The effects of sildenafil on the visual system have been investigated in a wide variety of clinical and preclinical studies due to the fact that a high dose of sildenafil may cause mild and transient visual symptoms in some patients. A literature review was performed using PubMed, Cochrane Library and Clinical Trials databases from 1990 up to 2020, focusing on the pathophysiology of visual disorders induced by sildenafil. The aim of this review was not only to gather and summarize the information available on sildenafil clinical trials (CTs), but also to spot subpopulations with increased risk of developing undesirable visual side effects. This PDE inhibitor has been associated with transient and reversible ocular side effects, including changes in color vision and light perception, blurred vision, photophobia, conjunctival hyperemia and keratitis, and alterations in the electroretinogram (ERG). Sildenafil may induce a reversible increase in intraocular pressure (IOP) and a few case reports suggest it is involved in the development of nonarteritic ischemic optic neuropathy (NAION). Reversible idiopathic serous macular detachment, central serous retinopathy and ERG disturbances have been related to the significant impact of sildenafil on retinal perfusion. So far, sildenafil does not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors as long as the therapeutic dose is not exceeded and is taken under a physician’s direction to treat a medical condition. However, the recreational use of sildenafil can lead to harmful side effects, including vision changes.
Collapse
|
22
|
Identification of Novel Substrates for cGMP Dependent Protein Kinase (PKG) through Kinase Activity Profiling to Understand Its Putative Role in Inherited Retinal Degeneration. Int J Mol Sci 2021; 22:ijms22031180. [PMID: 33503999 PMCID: PMC7865299 DOI: 10.3390/ijms22031180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerative diseases (IRDs), which ultimately lead to photoreceptor cell death, are characterized by high genetic heterogeneity. Many IRD-associated genetic defects affect 3′,5′-cyclic guanosine monophosphate (cGMP) levels. cGMP-dependent protein kinases (PKGI and PKGII) have emerged as novel targets, and their inhibition has shown functional protection in IRDs. The development of such novel neuroprotective compounds warrants a better understanding of the pathways downstream of PKGs that lead to photoreceptor degeneration. Here, we used human recombinant PKGs in combination with PKG activity modulators (cGMP, 3′,5′-cyclic adenosine monophosphate (cAMP), PKG activator, and PKG inhibitors) on a multiplex peptide microarray to identify substrates for PKGI and PKGII. In addition, we applied this technology in combination with PKG modulators to monitor kinase activity in a complex cell system, i.e. the retinal cell line 661W, which is used as a model system for IRDs. The high-throughput method allowed quick identification of bona fide substrates for PKGI and PKGII. The response to PKG modulators helped us to identify, in addition to ten known substrates, about 50 novel substrates for PKGI and/or PKGII which are either specific for one enzyme or common to both. Interestingly, both PKGs are able to phosphorylate the regulatory subunit of PKA, whereas only PKGII can phosphorylate the catalytic subunit of PKA. In 661W cells, the results suggest that PKG activators cause minor activation of PKG, but a prominent increase in the activity of cAMP-dependent protein kinase (PKA). However, the literature suggests an important role for PKG in IRDs. This conflicting information could be reconciled by cross-talk between PKG and PKA in the retinal cells. This must be explored further to elucidate the role of PKGs in IRDs.
Collapse
|
23
|
Belhadj S, Rentsch A, Schwede F, Paquet-Durand F. Fluorescent detection of PARP activity in unfixed tissue. PLoS One 2021; 16:e0245369. [PMID: 33481867 PMCID: PMC7822349 DOI: 10.1371/journal.pone.0245369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Poly-ADP-ribose-polymerase (PARP) relates to a family of enzymes that can detect DNA breaks and initiate DNA repair. While this activity is generally seen as promoting cell survival, PARP enzymes are also known to be involved in cell death in numerous pathologies, including in inherited retinal degeneration. This ambiguous role of PARP makes it attractive to have a simple and fast enzyme activity assay, that allows resolving its enzymatic activity in situ, in individual cells, within complex tissues. A previously published two-step PARP activity assay uses biotinylated NAD+ and streptavidin labelling for this purpose. Here, we used the fluorescent NAD+ analogues ε-NAD+ and 6-Fluo-10-NAD+ to assess PARP activity directly on unfixed tissue sections obtained from wild-type and retinal degeneration-1 (rd1) mutant retina. In standard UV microscopy ε-NAD+ incubation did not reveal PARP specific signal. In contrast, 6-Fluo-10-NAD+ resulted in reliable detection of in situ PARP activity in rd1 retina, especially in the degenerating photoreceptor cells. When the 6-Fluo-10-NAD+ based PARP activity assay was performed in the presence of the PARP specific inhibitor olaparib, the activity signal was completely abolished, attesting to the specificity of the assay. The incubation of live organotypic retinal explant cultures with 6-Fluo-10-NAD+, did not produce PARP specific signal, indicating that the fluorescent marker may not be sufficiently membrane-permeable to label living cells. In summary, we present a new, rapid, and simple to use fluorescence assay for the cellular resolution of PARP activity on unfixed tissue, for instance in complex neuronal tissues such as the retina.
Collapse
Affiliation(s)
- Soumaya Belhadj
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Andreas Rentsch
- Biolog Life Science Institute GmbH & Co. KG, Bremen, Germany
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Bremen, Germany
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Yang P, Lockard R, Titus H, Hiblar J, Weller K, Wafai D, Weleber RG, Duvoisin RM, Morgans CW, Pennesi ME. Suppression of cGMP-Dependent Photoreceptor Cytotoxicity With Mycophenolate Is Neuroprotective in Murine Models of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 32785677 PMCID: PMC7441375 DOI: 10.1167/iovs.61.10.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the effect of mycophenolate mofetil (MMF) on retinal degeneration on two mouse models of retinitis pigmentosa. Methods Intraperitoneal injections of MMF were administered daily in rd10 and c57 mice starting at postoperative day 12 (P12) and rd1 mice starting at P8. The effect of MMF was assessed with optical coherence tomography, immunohistochemistry, electroretinography, and OptoMotry. Whole retinal cyclic guanosine monophosphate (cGMP) and mycophenolic acid levels were quantified with mass spectrometry. Photoreceptor cGMP cytotoxicity was evaluated with cell counts of cGMP immunostaining. Results MMF treatment significantly delays the onset of retinal degeneration and cGMP-dependent photoreceptor cytotoxicity in rd10 and rd1 mice, albeit a more modest effect in the latter. In rd10 mice, treatment with MMF showed robust preservation of the photoreceptors up to P22 with associated suppression of cGMP immunostaining and microglial activation; The neuroprotective effect diminished after P22, but outer retinal thickness was still significantly thicker by P35 and OptoMotry response was significantly better up to P60. Whereas cGMP immunostaining of the photoreceptors were present in rd10 and rd1 mice, hyperphysiological whole retinal cGMP levels were observed only in rd1 mice. Conclusions Early treatment with MMF confers potent neuroprotection in two animal models of RP by suppressing the cGMP-dependent common pathway for photoreceptor cell death. The neuroprotective effect of MMF on cGMP-dependent cytotoxicity occurs independently of the presence of hyperphysiological whole retinal cGMP levels. Thus our data suggest that MMF may be an important new class of neuroprotective agent that could be useful in the treatment of patients with RP.
Collapse
Affiliation(s)
- Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Rachel Lockard
- School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Hope Titus
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Jordan Hiblar
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Kyle Weller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Dahlia Wafai
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Robert M Duvoisin
- Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Catherine W Morgans
- Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
25
|
Koch M, Scheel C, Ma H, Yang F, Stadlmeier M, Glück AF, Murenu E, Traube FR, Carell T, Biel M, Ding XQ, Michalakis S. The cGMP-Dependent Protein Kinase 2 Contributes to Cone Photoreceptor Degeneration in the Cnga3-Deficient Mouse Model of Achromatopsia. Int J Mol Sci 2020; 22:E52. [PMID: 33374621 PMCID: PMC7793084 DOI: 10.3390/ijms22010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.
Collapse
Affiliation(s)
- Mirja Koch
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
| | - Constanze Scheel
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (H.M.); (F.Y.); (X.-Q.D.)
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (H.M.); (F.Y.); (X.-Q.D.)
| | - Michael Stadlmeier
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Andrea F. Glück
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Elisa Murenu
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
- Department of Ophthalmology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Franziska R. Traube
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Martin Biel
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (H.M.); (F.Y.); (X.-Q.D.)
| | - Stylianos Michalakis
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
- Department of Ophthalmology, Ludwig-Maximilians-University, 80336 Munich, Germany
| |
Collapse
|
26
|
Bujakowska KM, Comander J. Moving Towards PDE6A Gene Supplementation Therapy. JAMA Ophthalmol 2020; 138:1251-1252. [PMID: 33057571 DOI: 10.1001/jamaophthalmol.2020.4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| | - Jason Comander
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| |
Collapse
|
27
|
Sheet S, Krishnamoorthy S, Park W, Lim D, Park JE, Ko M, Choi BH. Mechanistic insight into the progressive retinal atrophy disease in dogs via pathway-based genome-wide association analysis. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:765-776. [PMID: 33987558 PMCID: PMC7721568 DOI: 10.5187/jast.2020.62.6.765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
The retinal degenerative disease, progressive retinal atrophy (PRA) is a major
reason of vision impairment in canine population. Canine PRA signifies an
inherently dissimilar category of retinal dystrophies which has solid
resemblances to human retinis pigmentosa. Even though much is known about the
biology of PRA, the knowledge about the intricate connection among genetic loci,
genes and pathways associated to this disease in dogs are still remain unknown.
Therefore, we have performed a genome wide association study (GWAS) to identify
susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was
performed using a case–control based association analysis method on PRA
dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway
analysis were conducted in this study. A total of 1,114 markers associations
with PRA trait at p < 0.01 were extracted and mapped to
640 unique genes, and then selected significant (p <
0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways contain these genes. In particular, apoptosis process,
homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO
terms as well as pathways related to focal adhesion, cyclic guanosine
monophosphate)-protein kinase G signaling, and axon guidance were more likely
associated to the PRA disease in dogs. These data could provide new insight for
further research on identification of potential genes and causative pathways for
PRA in dogs.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Srikanth Krishnamoorthy
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minjeong Ko
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
28
|
Karlen SJ, Miller EB, Burns ME. Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors. Annu Rev Vis Sci 2020; 6:149-169. [PMID: 32936734 PMCID: PMC10135402 DOI: 10.1146/annurev-vision-121219-081730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoreceptors are highly specialized sensory neurons with unique metabolic and physiological requirements. These requirements are partially met by Müller glia and cells of the retinal pigment epithelium (RPE), which provide essential metabolites, phagocytose waste, and control the composition of the surrounding microenvironment. A third vital supporting cell type, the retinal microglia, can provide photoreceptors with neurotrophic support or exacerbate neuroinflammation and hasten neuronal cell death. Understanding the physiological requirements for photoreceptor homeostasis and the factors that drive microglia to best promote photoreceptor survival has important implications for the treatment and prevention of blinding degenerative diseases like retinitis pigmentosa and age-related macular degeneration.
Collapse
Affiliation(s)
- Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | - Marie E. Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
29
|
Gallego C, Gonçalves MAFV, Wijnholds J. Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Front Neurosci 2020; 14:838. [PMID: 32973430 PMCID: PMC7468381 DOI: 10.3389/fnins.2020.00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal diseases encompass a highly heterogenous group of disorders caused by a wide range of genetic variants and with diverse clinical symptoms that converge in the common trait of retinal degeneration. Indeed, mutations in over 270 genes have been associated with some form of retinal degenerative phenotype. Given the immune privileged status of the eye, cell replacement and gene augmentation therapies have been envisioned. While some of these approaches, such as delivery of genes through recombinant adeno-associated viral vectors, have been successfully tested in clinical trials, not all patients will benefit from current advancements due to their underlying genotype or phenotypic traits. Gene editing arises as an alternative therapeutic strategy seeking to correct mutations at the endogenous locus and rescue normal gene expression. Hence, gene editing technologies can in principle be tailored for treating retinal degeneration. Here we provide an overview of the different gene editing strategies that are being developed to overcome the challenges imposed by the post-mitotic nature of retinal cell types. We further discuss their advantages and drawbacks as well as the hurdles for their implementation in treating retinal diseases, which include the broad range of mutations and, in some instances, the size of the affected genes. Although therapeutic gene editing is at an early stage of development, it has the potential of enriching the portfolio of personalized molecular medicines directed at treating genetic diseases.
Collapse
Affiliation(s)
- Carmen Gallego
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
30
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
31
|
Akintunde JK, Akintola TE, Hammed MO, Amoo CO, Adegoke AM, Ajisafe LO. Naringin protects against Bisphenol-A induced oculopathy as implication of cataract in hypertensive rat model. Biomed Pharmacother 2020; 126:110043. [PMID: 32172062 DOI: 10.1016/j.biopha.2020.110043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
People who have experienced high blood pressure are at greater risk of susceptibility to other health problems including oculopathy. The patients with these experiences do not have adequate treatment and those who do; spend much funds on the drug purchase. The study examines the protective effect of naringin (NRG) against ocular impairment in L-NAME induced hypertensive rat on exposure to a cellular disruptor. Fifty-six adult male albino rats were randomly distributed into eight (n = 7) groups. Group I: control animals, Group II was treated with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), Group III was treated with 50 mg/kg Bisphenol-A, Group IV was treated with L-NAME +50 mg/kg Bisphenol-A. Group V was administered with L-NAME +80 mg/kg NRG. Group VI was administered with 50 Mg/kg BPA + 80 mg/kg NRG. Group VII was administered with L-NAME+50 mg/kg Bisphenol-A +80 mg/kg NRG. Lastly, group VIII was treated with 80 mg/kg NRG alone for 14 days. Naringin prevented hypertension and ocular dysfunction by depleting the activities of angiotensin-converting enzymes, arginase, aldose-reductase and phosphodiesterase-51 (PDE-51) with corresponding down-regulation of inflammatory markers including TNF-α and IL-B. Moreover, ocular impairment was remarkably reduced by NRG as manifested by the decreased activities of AChE, BuChE, MAO-A and enzymes of ATP hydrolysis (ATPase, ADPase, AMPase) and adenosine deaminase with resultant increased NO level. Also, ocular expression of CD43 transcript, caspaace-9 and tumor suppressor P53 proteins were suppressed on treatment with NRG. This study corroborates the view that NRG may be a useful therapy in alleviating inflammatory markers, apoptosis and metabolic nucleotides disorders via the NOS/cGMP/PKG signaling pathways in hypertensive rat model on exposure to a cellular disruptor.
Collapse
Affiliation(s)
- J K Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| | - T E Akintola
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Hammed
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - C O Amoo
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A M Adegoke
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria
| | - L O Ajisafe
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
32
|
Vázquez-Domínguez I, Garanto A, Collin RWJ. Molecular Therapies for Inherited Retinal Diseases-Current Standing, Opportunities and Challenges. Genes (Basel) 2019; 10:genes10090654. [PMID: 31466352 PMCID: PMC6770110 DOI: 10.3390/genes10090654] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal diseases (IRDs) are both genetically and clinically highly heterogeneous and have long been considered incurable. Following the successful development of a gene augmentation therapy for biallelic RPE65-associated IRD, this view has changed. As a result, many different therapeutic approaches are currently being developed, in particular a large variety of molecular therapies. These are depending on the severity of the retinal degeneration, knowledge of the pathophysiological mechanism underlying each subtype of IRD, and the therapeutic target molecule. DNA therapies include approaches such as gene augmentation therapy, genome editing and optogenetics. For some genetic subtypes of IRD, RNA therapies and compound therapies have also shown considerable therapeutic potential. In this review, we summarize the current state-of-the-art of various therapeutic approaches, including the pros and cons of each strategy, and outline the future challenges that lie ahead in the combat against IRDs.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|