1
|
Liu Y, Wang Y, Liao J, Chen Q, Jin W, Li S, Zhu T, Li S. Identification and Characterization of the BBX Gene Family in Bambusa pervariabilis × Dendrocalamopsis grandis and Their Potential Role under Adverse Environmental Stresses. Int J Mol Sci 2023; 24:13465. [PMID: 37686287 PMCID: PMC10488121 DOI: 10.3390/ijms241713465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Zinc finger protein (ZFP) transcription factors play a pivotal role in regulating plant growth, development, and response to biotic and abiotic stresses. Although extensively characterized in model organisms, these genes have yet to be reported in bamboo plants, and their expression information is lacking. Therefore, we identified 21 B-box (BBX) genes from a transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis. Consequently, multiple sequence alignments and an analysis of conserved motifs showed that they all had highly similar structures. The BBX genes were divided into four subgroups according to their phylogenetic relationships and conserved domains. A GO analysis predicted multiple functions of the BBX genes in photomorphogenesis, metabolic processes, and biological regulation. We assessed the expression profiles of 21 BBX genes via qRT-PCR under different adversity conditions. Among them, eight genes were significantly up-regulated under water deficit stress (BBX4, BBX10, BBX11, BBX14, BBX15, BBX16, BBX17, and BBX21), nine under salt stress (BBX2, BBX3, BBX7, BBX9, BBX10, BBX12, BBX15, BBX16, and BBX21), twelve under cold stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21), and twelve under pathogen infestation stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21). Three genes (BBX10, BBX15, and BBX21) were significantly up-regulated under both biotic and abiotic stresses. These results suggest that the BBX gene family is integral to plant growth, development, and response to multivariate stresses. In conclusion, we have comprehensively analyzed the BDBBX genes under various adversity stress conditions, thus providing valuable information for further functional studies of this gene family.
Collapse
Affiliation(s)
- Yi Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Yaxuan Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Jiao Liao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Qian Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Wentao Jin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| |
Collapse
|
2
|
Laskar P, Dhasmana A, Kotnala S, Jaggi M, Yallapu MM, Chauhan SC. Glutathione-Responsive Tannic Acid-Assisted FRET Nanomedicine for Cancer Therapy. Pharmaceutics 2023; 15:1326. [PMID: 37242568 PMCID: PMC10222396 DOI: 10.3390/pharmaceutics15051326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023] Open
Abstract
In cancer combination therapy, a multimodal delivery vector is used to improve the bioavailability of multiple anti-cancer hydrophobic drugs. Further, targeted delivery of therapeutics along with simultaneous monitoring of the drug release at the tumor site without normal organ toxicity is an emerging and effective strategy for cancer treatment. However, the lack of a smart nano-delivery system limits the application of this therapeutic strategy. To overcome this issue, a PEGylated dual drug, conjugated amphiphilic polymer (CPT-S-S-PEG-CUR), has been successfully synthesized by conjugating two hydrophobic fluorescent anti-cancer drugs, curcumin (CUR) and camptothecin (CPT), through an ester and a redox-sensitive disulfide (-S-S-) linkage, respectively, with a PEG chain via in situ two-step reactions. CPT-S-S-PEG-CUR is spontaneously self-assembled in the presence of tannic acid (TA, a physical crosslinker) into anionic, comparatively smaller-sized (~100 nm), stable nano-assemblies in water in comparison to only polymer due to stronger H-bond formation between polymer and TA. Further, due to the spectral overlap between CPT and CUR and a stable, smaller nano-assembly formation by the pro-drug polymer in water in presence of TA, a successful Fluorescence Resonance Energy Transfer (FRET) signal was generated between the conjugated CPT (FRET donor) and conjugated CUR (FRET acceptor). Interestingly, these stable nano-assemblies showed a preferential breakdown and release of CPT in a tumor-relevant redox environment (in the presence of 50 mM glutathione), leading to the disappearance of the FRET signal. These nano-assemblies exhibited a successful cellular uptake by the cancer cells and an enhanced antiproliferative effect in comparison to the individual drugs in cancer cells (AsPC1 and SW480). Such promising in vitro results with a novel redox-responsive, dual-drug conjugated, FRET pair-based nanosized multimodal delivery vector can be highly useful as an advanced theranostic system towards effective cancer treatment.
Collapse
Affiliation(s)
- Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- The Ångström Laboratory, Macromolecular Chemistry, Department of Chemistry, Uppsala University, 751 21 Uppsala, Sweden
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Cancer Research Institute, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun 248016, India
| | - Sudhir Kotnala
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Hatami E, B Nagesh PK, Sikander M, Dhasmana A, Chauhan SC, Jaggi M, Yallapu MM. Tannic Acid Exhibits Antiangiogenesis Activity in Nonsmall-Cell Lung Cancer Cells. ACS OMEGA 2022; 7:23939-23949. [PMID: 35847334 PMCID: PMC9281317 DOI: 10.1021/acsomega.2c02727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonsmall-cell lung cancer (NSCLC) is the most common type of lung cancer, with a dismal prognosis. NSCLC is a highly vascularized tumor, and chemotherapy is often hampered by the development of angiogenesis. Therefore, suppression of angiogenesis is considered a potential treatment approach. Tannic acid (TA), a natural polyphenol, has been demonstrated to have anticancer properties in a variety of cancers; however, its angiogenic properties have yet to be studied. Hence, in the current study, we investigated the antiproliferative and antiangiogenic effects of TA on NSCLC cells. The (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay revealed that TA induced a dose- and time-dependent decrease in the proliferation of A549 and H1299 cells. However, TA had no significant toxicity effects on human bronchial epithelial cells. Clonogenicity assay revealed that TA suppressed colony formation ability in NSCLC cells in a dose-dependent manner. The anti-invasiveness and antimigratory potential of TA were confirmed by Matrigel and Boyden chamber studies, respectively. Importantly, TA also decreased the ability of human umbilical vein endothelial cells (HUVEC) to form tube-like networks, demonstrating its antiangiogenic properties. Extracellular vascular endothelial growth factor (VEGF) release was reduced in TA-treated cells compared to that in control cells, as measured by the enzyme-linked immunosorbent assay (ELISA). Overall, these results demonstrate that TA can induce antiproliferative and antiangiogenic effects against NSCLC.
Collapse
Affiliation(s)
- Elham Hatami
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Prashanth K. B Nagesh
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Laboratory
of Signal Transduction, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Mohammed Sikander
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Anupam Dhasmana
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C. Chauhan
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meena Jaggi
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M. Yallapu
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- . Tel: 956-296-1734
| |
Collapse
|
4
|
Silva MC, Eugénio P, Faria D, Pesquita C. Ontologies and Knowledge Graphs in Oncology Research. Cancers (Basel) 2022; 14:cancers14081906. [PMID: 35454813 PMCID: PMC9029532 DOI: 10.3390/cancers14081906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
The complexity of cancer research stems from leaning on several biomedical disciplines for relevant sources of data, many of which are complex in their own right. A holistic view of cancer—which is critical for precision medicine approaches—hinges on integrating a variety of heterogeneous data sources under a cohesive knowledge model, a role which biomedical ontologies can fill. This study reviews the application of ontologies and knowledge graphs in cancer research. In total, our review encompasses 141 published works, which we categorized under 14 hierarchical categories according to their usage of ontologies and knowledge graphs. We also review the most commonly used ontologies and newly developed ones. Our review highlights the growing traction of ontologies in biomedical research in general, and cancer research in particular. Ontologies enable data accessibility, interoperability and integration, support data analysis, facilitate data interpretation and data mining, and more recently, with the emergence of the knowledge graph paradigm, support the application of Artificial Intelligence methods to unlock new knowledge from a holistic view of the available large volumes of heterogeneous data.
Collapse
|
5
|
Ma R, Chen J, Huang B, Huang Z, Zhang Z. The BBX gene family in Moso bamboo (Phyllostachys edulis): identification, characterization and expression profiles. BMC Genomics 2021; 22:533. [PMID: 34256690 PMCID: PMC8276415 DOI: 10.1186/s12864-021-07821-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The BBX (B-box) family are zinc finger protein (ZFP) transcription factors that play an essential role in plant growth, development and response to abiotic stresses. Although BBX genes have been characterized in many model organisms, genome-wide identification of the BBX family genes have not yet been reported in Moso bamboo (Phyllostachys edulis), and the biological functions of this family remain unknown. RESULT In the present study, we identified 27 BBX genes in the genome of Moso bamboo, and analysis of their conserved motifs and multiple sequence alignments revealed that they all shared highly similar structures. Additionally, phylogenetic and homology analyses indicated that PeBBX genes were divided into three clusters, with whole-genome duplication (WGD) events having facilitated the expansion of this gene family. Light-responsive and stress-related cis-elements were identified by analyzing cis-elements in the promoters of all PeBBX genes. Short time-series expression miner (STEM) analysis revealed that the PeBBX genes had spatiotemporal-specific expression patterns and were likely involved in the growth and development of bamboo shoots. We further explored the downstream target genes of PeBBXs, and GO/KEGG enrichment analysis predicted multiple functions of BBX target genes, including those encoding enzymes involved in plant photosynthesis, pyruvate metabolism and glycolysis/gluconeogenesis. CONCLUSIONS In conclusion, we analyzed the PeBBX genes at multiple different levels, which will contribute to further studies of the BBX family and provide valuable information for the functional validation of this family.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
| |
Collapse
|
6
|
Sundaram MK, Unni S, Somvanshi P, Bhardwaj T, Mandal RK, Hussain A, Haque S. Genistein Modulates Signaling Pathways and Targets Several Epigenetic Markers in HeLa Cells. Genes (Basel) 2019; 10:E955. [PMID: 31766427 PMCID: PMC6947182 DOI: 10.3390/genes10120955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several epigenetic changes are responsible for transcriptional alterations of signaling pathways and tumour suppressor genes (TSGs) contributing to carcinogenesis. This study was aimed to examine the effect of the phytochemical, genistein on various molecular targets in HeLa cells. METHODS Quantitative PCR was used to analyze the expression of various molecular targets. Biochemical assays were employed to study the epigenetic enzymes. To correlate the transcriptional status of the selected TSGs and epigenetic modulation, their promoter 5'CpG methylation levels were evaluated by quantitative methylation array followed by methylation specific restriction digestion. RESULTS The expression of several genes involved in the cell cycle regulation, migration, inflammation, phosphatidylinositol 3-kinase (PI3K) and mitogen activated kinase-like protein (MAPK) pathway were found to be modulated including CCNB1, TWIST1, MMP14, TERT, AKT1, PTPRR, FOS and IL1A. Genistein modulated the expression of DNA methyltransferases (DNMTs), histone deacetylases (HDACs), histone methyltransferases (HMTs), demethylases, and histone phosphorylases. Furthermore, genistein decreased the activity of DNMTs, HDACs, and HMTs and reduced global DNA methylation levels. Promoter methylation of several TSGs, including FHIT, RUNX3, CDH1, PTEN, and SOC51, was lowered with corresponding transcriptional increase. Network analysis indicated similar effect of genistein. CONCLUSION This study presents a comprehensive mechanism of action of genistein showcasing effective epigenetic modulation and widespread transcriptional changes resulting in restoration of tumour suppressor gene expression. This study corroborates the development of genistein as a candidate for anti-cancer therapy.
Collapse
Affiliation(s)
| | - Sreepoorna Unni
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, P.O. Box 19282 Dubai, UAE;
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi-110070, India; (P.S.); (T.B.)
| | - Tulika Bhardwaj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi-110070, India; (P.S.); (T.B.)
| | - Raju K. Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia;
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050 Dubai, UAE;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia;
| |
Collapse
|