1
|
Liu Y, Kuang W, Yue B, Zhou C. Genomic diversity and demographic history of the endangered Sichuan hill-partridge (Arborophila rufipectus). J Hered 2024; 115:532-540. [PMID: 38635970 DOI: 10.1093/jhered/esae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Species conservation can be improved by knowledge of genetic diversity and demographic history. The Sichuan hill-partridge (Arborophila rufipectus, SP) is an endangered species endemic to the mountains in southwestern China. However, little is known about this species' genomic variation and demographic history. Here, we present a comprehensive whole-genome analysis of six SP individuals from the Laojunshan National Nature Reserve in Sichuan Province, China. We observe a relatively high genetic diversity and low level of recent inbreeding in the studied SP individuals. This suggests that the current population carries genetic variability that may benefit the long-term survival of this species, and that the present population may be larger than currently recognized. Analyses of demographic history showed that fluctuations in the effective population size of SP are inconsistent with changes of the historical climate. Strikingly, evidence from demographic modeling suggests SPs population decreased dramatically 15,100 years ago after the Last Glacial Maximum, possibly due to refugial isolation and later human interference. These results provide the first detailed and comprehensive genomic insights into genetic diversity, genomic inbreeding levels, and demographic history of the Sichuan hill-partridge, which are crucial for the conservation and management of this endangered species.
Collapse
Affiliation(s)
- Yi Liu
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, China
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuang Zhou
- Key Laboratory of Bioresources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Tang K, Tao L, Wang Y, Wang Q, Fu C, Chen B, Zhang Z, Fu Y. Temporal Variations in the Gut Microbiota of the Globally Endangered Sichuan Partridge (Arborophila rufipectus): Implications for Adaptation to Seasonal Dietary Change and Conservation. Appl Environ Microbiol 2023; 89:e0074723. [PMID: 37272815 PMCID: PMC10305732 DOI: 10.1128/aem.00747-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Host-associated microbiotas are known to influence host health by aiding digestion, metabolism, nutrition, physiology, immune function, and pathogen resistance. Although an increasing number of studies have investigated the avian microbiome, there is a lack of research on the gut microbiotas of wild birds, especially endangered pheasants. Owing to the difficulty of characterizing the dynamics of dietary composition, especially in omnivores, how the gut microbiotas of birds respond to seasonal dietary changes remains poorly understood. The Sichuan partridge (Arborophila rufipectus) is an endangered pheasant species with a small population endemic to the mountains of southwest China. Here, 16S rRNA sequencing and Tax4Fun were used to characterize and compare community structure and functions of the gut microbiota in the Sichuan partridges across three critical periods of their annual life cycle (breeding, postbreeding wandering, and overwintering). We found that the microbial communities were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Cyanobacteria throughout the year. Diversity of the gut microbiotas was highest during postbreeding wandering and lowest during the overwintering periods. Seasonal dietary changes and reassembly of the gut microbial community occurred consistently. Composition, diversity, and functions of the gut microbiota exhibited diet-associated variations, which might facilitate host adaptation to diverse diets in response to environmental shifts. Moreover, 28 potential pathogenic genera were detected, and their composition differed significantly between the three periods. Investigation of the wild bird gut microbiota dynamics has enhanced our understanding of diet-microbiota associations over the annual life cycle of birds, aiding in the integrative conservation of this endangered bird. IMPORTANCE Characterizing the gut microbiotas of wild birds across seasons will shed light on their annual life cycle. Due to sampling difficulties and the lack of detailed dietary information, studies on how the gut microbiota adapts to seasonal dietary changes of wild birds are scarce. Based on more detailed dietary composition, we found a seasonal reshaping pattern of the gut microbiota of Sichuan partridges corresponding to their seasonal dietary changes. The variation in diet and gut microbiota potentially facilitated the diversity of dietary niches of this endangered pheasant, revealing a seasonal diet-microbiota association across the three periods of the annual cycle. In addition, identifying a variety of potentially pathogenic bacterial genera aids in managing the health and improving survival of Sichuan partridges. Incorporation of microbiome research in the conservation of endangered species contributes to our comprehensive understanding the diet-host-microbiota relationship in wild birds and refinement of conservation practices.
Collapse
Affiliation(s)
- Keyi Tang
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Ling Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yufeng Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Qiong Wang
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Changkun Fu
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Benping Chen
- Laojunshan National Nature Reserve Administration, Pingshan, Sichuan, China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yiqiang Fu
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
3
|
Li X, Wang X, Yang C, Lin L, Yuan H, Lei F, Huang Y. A de novo assembled genome of the Tibetan Partridge (Perdix hodgsoniae) and its high-altitude adaptation. Integr Zool 2023; 18:225-236. [PMID: 36049502 DOI: 10.1111/1749-4877.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Tibetan Partridge (Perdix hodgsoniae) is an endemic species distributed in high-altitude areas of 3600-5600 m on the Qinghai-Tibet Plateau. To explore how the species is adapted to the high elevation environment, we assembled a draft genome based on both the Illumina and PacBio sequencing platforms with its population genetics and genomics analysis. In total, 134.74 Gb short reads and 30.81 Gb long reads raw data were generated. The 1.05-Gb assembled genome had a contig N50 of 4.56 Mb, with 91.94% complete BUSCOs. The 17 457 genes were annotated, and 11.35% of the genome was composed of repeat sequences. The phylogenetic tree showed that P. hodgsoniae was located at the basal position of the clade, including Golden Pheasant (Chrysolophus pictus), Common Pheasant (Phasianus colchicus), and Mikado Pheasant (Syrmaticus mikado). We found that 1014, 2595, and 2732 of the 6641 one-to-one orthologous genes were under positive selection in P. hodgsoniae, detected using PAML, BUSTED, and aBSREL programs, respectively, of which 965 genes were common under positive selection with 3 different programs. Several positively selected genes and immunity pathways relevant to high-altitude adaptation were detected. Gene family evolution showed that 99 gene families experienced significant expansion events, while 6 gene families were under contraction. The total number of olfactory receptor genes was relatively low in P. hodgsoniae. Genomic data provide an important resource for a further study on the evolutionary history of P. hodgsoniae, which provides a new insight into its high-altitude adaptation mechanisms.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyang Wang
- School of Biological and Environmental Engeering, Xi'an University, Xi'an, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Liliang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, the Chinese Academy of Sciences, Beijing, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
4
|
Chen X, Bai X, Liu H, Zhao B, Yan Z, Hou Y, Chu Q. Population Genomic Sequencing Delineates Global Landscape of Copy Number Variations that Drive Domestication and Breed Formation of in Chicken. Front Genet 2022; 13:830393. [PMID: 35391799 PMCID: PMC8980806 DOI: 10.3389/fgene.2022.830393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Copy number variation (CNV) is an important genetic mechanism that drives evolution and generates new phenotypic variations. To explore the impact of CNV on chicken domestication and breed shaping, the whole-genome CNVs were detected via multiple methods. Using the whole-genome sequencing data from 51 individuals, corresponding to six domestic breeds and wild red jungle fowl (RJF), we determined 19,329 duplications and 98,736 deletions, which covered 11,123 copy number variation regions (CNVRs) and 2,636 protein-coding genes. The principal component analysis (PCA) showed that these individuals could be divided into four populations according to their domestication and selection purpose. Seventy-two highly duplicated CNVRs were detected across all individuals, revealing pivotal roles of nervous system (NRG3, NCAM2), sensory (OR), and follicle development (VTG2) in chicken genome. When contrasting the CNVs of domestic breeds to those of RJFs, 235 CNVRs harboring 255 protein-coding genes, which were predominantly involved in pathways of nervous, immunity, and reproductive system development, were discovered. In breed-specific CNVRs, some valuable genes were identified, including HOXB7 for beard trait in Beijing You chicken; EDN3, SLMO2, TUBB1, and GFPT1 for melanin deposition in Silkie chicken; and SORCS2 for aggressiveness in Luxi Game fowl. Moreover, CSMD1 and NTRK3 with high duplications found exclusively in White Leghorn chicken, and POLR3H, MCM9, DOCK3, and AKR1B1L found in Recessive White Rock chicken may contribute to high egg production and fast-growing traits, respectively. The candidate genes of breed characteristics are valuable resources for further studies on phenotypic variation and the artificial breeding of chickens.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xue Bai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Binbin Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Li XJ, Wang XY, Yang C, Lin LL, Zhao L, Yu XP, Lei FM, Huang Y. The De Novo Genome Sequencing of Silver Pheasant (Lophura nycthemera). Genome Biol Evol 2021; 13:6460815. [PMID: 34904656 PMCID: PMC8691047 DOI: 10.1093/gbe/evab275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/03/2023] Open
Abstract
Silver pheasant (Lophura nycthemera) belongs to Phasianidae, Galliformes, which exhibits high subspecific differentiation. In this study, we assembled a novel genome based on 98.42 Gb of Illumina sequencing data and 30.20 Gb of PacBio sequencing data. The size of the final assembled genome was 1.01 Gb, with a contig N50 of 6.96 Mb. Illumina paired-end reads (94.96%) were remapped to the contigs. The assemble genome shows high completeness, with a complete BUSCO score of 92.35% using the avian data set. A total of 16,747 genes were predicted from the generated assembly, and 16,486 (98.44%) of the genes were annotated. The average length of genes, exons, and introns were 19,827.53, 233.69, and 1841.19 bp, respectively. Noncoding RNAs included 208 miRNAs, 40 rRNAs, and 264 tRNAs, and a total of 189 pseudogenes were identified; 116.31 Mb (11.47%) of the genome consisted of repeat sequences, with the greatest proportion of LINEs. This assembled genome provides a valuable reference genome for further studies on the evolutionary history and conversion genetics of L. nycthemera and the phylogenomics of the Galliformes lineage.
Collapse
Affiliation(s)
- Xue-Juan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Yang Wang
- School of Biological and Environmental Engineering, Xi'an University, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Li-Liang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Le Zhao
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xiao-Ping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fu-Min Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
6
|
Zhou C, Liu Y, Qiao L, Liu Y, Yang N, Meng Y, Yue B. The draft genome of the blood pheasant ( Ithaginis cruentus): Phylogeny and high-altitude adaptation. Ecol Evol 2020; 10:11440-11452. [PMID: 33144976 PMCID: PMC7593199 DOI: 10.1002/ece3.6782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
The blood pheasant (Ithaginis cruentus), the only species in the genus Ithaginis, lives in an extremely inhospitable high-altitude environment, coping with hypoxia and ultraviolet (UV) radiation. To further investigate the phylogeny of Phasianidae species based on complete genomes and understand the molecular genetic mechanisms of the high-altitude adaptation of the blood pheasant, we de novo assembled and annotated the complete genome of the blood pheasant. The blood pheasant genome size is 1.04 Gb with scaffold N50 of 10.88 Mb. We identified 109.92 Mb (10.62%) repetitive elements, 279,037 perfect microsatellites, and 17,209 protein-coding genes. The phylogenetic tree of Phasianidae based on whole genomes revealed three highly supported major clades with the blood pheasant included in the "erectile clade." Comparative genomics analysis showed that many genes were positively selected in the blood pheasant, which was associated with response to hypoxia and/or UV radiation. More importantly, among these positively selected genes (PSGs) which were related to high-altitude adaptation, sixteen PSGs had blood pheasant-specific missense mutations. Our data and analysis lay solid foundation to the study of Phasianidae phylogeny and provided new insights into the potential adaptation mechanisms to the high altitude employed by the blood pheasant.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Yi Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lu Qiao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Yang Liu
- Chengdu Zoo/Chengdu Wildlife Research InstituteChengduChina
| | - Nan Yang
- Institute of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduChina
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
7
|
Chen D, Liu Y, Davison G, Yong DL, Gao S, Hu J, Li SH, Zhang Z. Disentangling the evolutionary history and biogeography of hill partridges (Phasianidae, Arborophila) from low coverage shotgun sequences. Mol Phylogenet Evol 2020; 151:106895. [PMID: 32562823 DOI: 10.1016/j.ympev.2020.106895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022]
Abstract
The advent of the phylogenomic era has significantly improved our understanding of the evolutionary history and biogeography of Southeast Asia's diverse avian fauna. However, the taxonomy and phylogenetic relationships of many Southeast Asian birds remain poorly resolved, especially for those with large geographic ranges, which might have experienced both ancient and recent geological and environmental changes. In this study, we examined the evolutionary history and biogeography of the hill partridges (Galliformes: Phasianidae: Arborophila spp.), currently the second most speciose galliform genus, and thought to have colonized Southeast Asia from Africa. We present a well-resolved phylogeny of 14 Arborophila species inferred from ultra-conserved elements, exons, and mitochondrial genomes from both fresh and museum samples, which representing almost complete coverage of the genus. Our fossil-calibrated divergence time estimates and biogeographic modeling showed the ancestor of Arborophila arrived in Indochina during the early Miocene, but the initial divergence within Arborophila did not occur until ~10 Ma when global cooling intensified. Subsequent dispersal and diversification within Arborophila were driven by several tectonic and climatic events. In particular, we found evidence of rapid radiation in Indochinese Arborophila during the Pliocene global cooling and extensive dispersal and speciation of Sundaic Arborophila during the Pleistocene sea-level fluctuations. Taken together, these results suggest that the evolutionary history and biogeography of Arborophila were influenced by complex interactions among historical, geological and climatic events in Southeast Asia.
Collapse
Affiliation(s)
- De Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Geoffrey Davison
- National Biodiversity Centre, National Parks Board, 1 Cluny Road, 259569, Singapore
| | - Ding Li Yong
- BirdLife International (Asia), 354 Tanglin Road, #01-16/17, Tanglin International Centre, Singapore 247672, Singapore; Fenner School of Environment and Society, The Australian National University, Linnaeus Way, Canberra, ACT 2601, Australia
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junhua Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan, China
| | - Zhengwang Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|