1
|
Stojanovic L, Abbotts R, Tripathi K, Coon CM, Rajendran S, Farid EA, Hostetter G, Guarnieri JW, Wallace DC, Liu S, Wan J, Calendo G, Marker R, Gohari Z, Inayatullah MMA, Tiwari VK, Kader T, Santagata S, Drapkin R, Kommoss S, Pfisterer J, Konecny GE, Coopergard R, Issa JP, Winterhoff BJN, Topper MJ, Sandusky GE, Miller KD, Baylin SB, Nephew KP, Rassool FV. ZNFX1 is a Novel Master Regulator in Epigenetically-induced Pathogen Mimicry and Inflammasome Signaling in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618659. [PMID: 39484607 PMCID: PMC11526927 DOI: 10.1101/2024.10.18.618659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
DNA methyltransferase and poly(ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon (IFN) genes (STING)-dependent pathogen mimicry response (PMR) in ovarian (OC) and other cancers. We now show that combining DNMTis and PARPis upregulates expression of a little-studied nucleic-acid sensor, NFX1-type zinc finger-containing 1 protein (ZNFX1). We demonstrate that ZNFX1 is a novel master regulator for PMR induction in mitochondria, serving as a gateway for STING-dependent PMR. In patient OC databases, high ZNFX1 expression levels correlate with advanced stage disease. ZNFX1 expression alone significantly correlates with an increase in overall survival in a phase 3 trial for therapy-resistant OC patients receiving bevacizumab in combination with chemotherapy. In correlative RNA-seq data, inflammasome signaling through ZNFX1 correlates with abnormal vasculogenesis. ZNFX1 controls PMR signaling through the mitochondria and may serve as a biomarker to facilitate offering personalized therapy in OC patients, highlighting the strong translational significance of our findings. Significance statement DNA methyltransferase and poly(ADP-ribose) polymerase inhibitors upregulate expression of a novel nucleic-acid sensor, ZNFX1 that serves as a mitochondrial gateway to STING-dependent interferon/inflammasome signaling with tumor suppressor properties in ovarian cancer.
Collapse
|
2
|
Che T, Yang X, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. Mitochondria-Regulated Information Processing Nanosystem Promoting Immune Cell Communication for Liver Fibrosis Regression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400413. [PMID: 38721946 DOI: 10.1002/smll.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Indexed: 10/04/2024]
Abstract
Liver fibrosis is a coordinated response to tissue injury that is mediated by immune cell interactions. A mitochondria-regulated information-processing (MIP) nanosystem that promotes immune cell communication and interactions to inhibit liver fibrosis is designed. The MIP nanosystem mimics the alkaline amino acid domain of mitochondrial precursor proteins, providing precise targeting of the mitochondria. The MIP nanosystem is driven by light to modulate the mitochondria of hepatic stellate cells, resulting in the release of mitochondrial DNA into the fibrotic microenvironment, as detected by macrophages. By activating the STING signaling pathway, the developed nanosystem-induced macrophage phenotype switches to a reparative subtype (Ly6Clow) and downstream immunostimulatory transcriptional activity, fully restoring the fibrotic liver to its normal tissue state. The MIP nanosystem serves as an advanced information transfer system, allowing precise regulation of trained immunity, and offers a promising approach for effective liver fibrosis immunotherapy with the potential for clinical translation.
Collapse
Affiliation(s)
- Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
3
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
Singh B, Pahuja I, Yadav P, Shaji A, Chaturvedi S, Ranganathan A, Dwivedi VP, Das G. Adjunct Therapy With All-trans-Retinoic Acid Improves Therapeutic Efficacy Through Immunomodulation While Treating Tuberculosis With Antibiotics in Mice. J Infect Dis 2024; 229:1509-1518. [PMID: 37863472 DOI: 10.1093/infdis/jiad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023] Open
Abstract
Tuberculosis is the second leading infectious killer after coronavirus disease 2019 (COVID-19). Standard antitubercular drugs exhibit various limitations like toxicity, long treatment regimens, and lack of effect against dormant and drug-resistant organisms. Here, we report that all-trans-retinoic acid (ATRA) improves Mycobacterium tuberculosis clearance in mice during treatment with the antitubercular drug isoniazid. Interestingly, ATRA promoted activities of lysosomes and mitochondria, and production of various inflammatory mediators in macrophages. Furthermore, ATRA upregulated the expression of genes of lipid metabolism pathways in macrophages. We demonstrated that ATRA activated the MEK/ERK pathway in macrophages in vitro and MEK/ERK and p38 MAPK pathways in mice. Finally, ATRA induced both Th1 and Th17 responses in lungs and spleens of M. tuberculosis-infected mice. Together, these data indicate that ATRA provides beneficial adjunct therapeutic value by modulating MEK/ERK and p38 MAPK pathways and thus warrants further testing for human use.
Collapse
Affiliation(s)
- Baldeep Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Priyanka Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Aishwarya Shaji
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shivam Chaturvedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Tan X, Chen Q, Chen Z, Sun Z, Chen W, Wei R. Mitochondrial DNA-Activated cGAS-STING Signaling in Environmental Dry Eye. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 38648040 PMCID: PMC11044830 DOI: 10.1167/iovs.65.4.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose The cGAS-STING pathway has been shown to be an important mediator of inflammation. There is emerging evidence of the importance of this signaling cascade in a variety of inflammatory diseases settings. Here, we present evidence that the mitochondrial DNA (mtDNA) damage-mediated cGAS-STING pathway plays an important role in the induction of inflammation in environmental dry eye (DE). Methods RT-qPCR and Western blot were used to assess the induction of the cGAS-STING pathway and inflammatory cytokines in environmental DE mouse model, primary human corneal epithelial cells (pHCECs), and patients with DE. RNA sequencing was used to determine mRNA expression patterns of high osmotic pressure (HOP)-stimulated pHCECs. mtDNA was detected with electron microscopy, flow cytometry, and immunofluorescent staining. mtDNA was isolated and transfected into pHCECs for evaluating the activation of the cGAS-STING pathway. Results The expression levels of cGAS, STING, TBK1, IRF3, and IFNβ were significantly increased in an environmental DE model and HOP-stimulated pHCECs. The STING inhibitor decreased the expression of inflammatory factors in DE. An upregulation of STING-mediated immune responses and IRF3 expression mediated by TBK1 were observed in the HOP group. HOP stimulation induced mitochondrial oxidative damage and the leakage of mtDNA into the cytoplasm. Then, mtDNA activated the cGAS-STING pathway and induced intracytoplasmic STING translocated to the Golgi apparatus. Finally, we also found activated cGAS-STING signaling in the human conjunctival blot cell of patients with DE. Conclusions Our findings suggest that the cGAS-STING pathway is activated by recognizing cytoplasmic mtDNA leading to STING translocation, further exacerbating the development of inflammation in environmental DE.
Collapse
Affiliation(s)
- Xiying Tan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhonghua Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenzhen Sun
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruifen Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang Y, Ye F, Fu X, Li S, Wang L, Chen Y, Li H, Hao S, Zhao K, Feng Q, Li P. Mitochondrial Regulation of Macrophages in Innate Immunity and Diverse Roles of Macrophages During Cochlear Inflammation. Neurosci Bull 2024; 40:255-267. [PMID: 37391607 PMCID: PMC10838870 DOI: 10.1007/s12264-023-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 07/02/2023] Open
Abstract
Macrophages are essential components of the innate immune system and constitute a non-specific first line of host defense against pathogens and inflammation. Mitochondria regulate macrophage activation and innate immune responses in various inflammatory diseases, including cochlear inflammation. The distribution, number, and morphological characteristics of cochlear macrophages change significantly across different inner ear regions under various pathological conditions, including noise exposure, ototoxicity, and age-related degeneration. However, the exact mechanism underlying the role of mitochondria in macrophages in auditory function remains unclear. Here, we summarize the major factors and mitochondrial signaling pathways (e.g., metabolism, mitochondrial reactive oxygen species, mitochondrial DNA, and the inflammasome) that influence macrophage activation in the innate immune response. In particular, we focus on the properties of cochlear macrophages, activated signaling pathways, and the secretion of inflammatory cytokines after acoustic injury. We hope this review will provide new perspectives and a basis for future research on cochlear inflammation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaolong Fu
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250000, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaojuan Hao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kun Zhao
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| | - Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center of Kidney Disease, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Yang J, Yang M, Wang Y, Sun J, Liu Y, Zhang L, Guo B. STING in tumors: a focus on non-innate immune pathways. Front Cell Dev Biol 2023; 11:1278461. [PMID: 37965570 PMCID: PMC10642211 DOI: 10.3389/fcell.2023.1278461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING) are involved in mediating innate immunity by promoting the release of interferon and other inflammatory factors. Mitochondrial DNA (mtDNA) with a double-stranded structure has greater efficiency and sensitivity in being detected by DNA sensors and thus has an important role in the activation of the cGAS-STING pathway. Many previous findings suggest that the cGAS-STING pathway-mediated innate immune regulation is the most important aspect affecting tumor survival, not only in its anti-tumor role but also in shaping the immunosuppressive tumor microenvironment (TME) through a variety of pathways. However, recent studies have shown that STING regulation of non-immune pathways is equally profound and also involved in tumor cell progression. In this paper, we will focus on the non-innate immune system pathways, in which the cGAS-STING pathway also plays an important role in cancer.
Collapse
Affiliation(s)
- Jiaying Yang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingtong Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
8
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
9
|
Al Khatib I, Deng J, Lei Y, Torres-Odio S, Rojas GR, Newman LE, Chung BK, Symes A, Zhang H, Huang SYN, Pommier Y, Khan A, Shadel GS, West AP, Gibson WT, Shutt TE. Activation of the cGAS-STING innate immune response in cells with deficient mitochondrial topoisomerase TOP1MT. Hum Mol Genet 2023; 32:2422-2440. [PMID: 37129502 PMCID: PMC10360396 DOI: 10.1093/hmg/ddad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Gladys R Rojas
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura E Newman
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian K Chung
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta T2L 1Y8, Canada
- M.A.G.I.C. Clinic Ltd. (Metabolics and Genetics in Calgary)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta T2M OL6, Canada
| | - Gerald S Shadel
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - William T Gibson
- Department of Medical Genetics, Faculty of Medicine, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
10
|
Farris LC, Torres-Odio S, Adams LG, West AP, Hyde JA. Borrelia burgdorferi Engages Mammalian Type I IFN Responses via the cGAS-STING Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1761-1770. [PMID: 37067290 PMCID: PMC10192154 DOI: 10.4049/jimmunol.2200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/23/2023] [Indexed: 04/18/2023]
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous host pathways to cause a chronic, multisystem inflammatory disease in humans. B. burgdorferi infection can lead to Lyme carditis, neurologic complications, and arthritis because of the ability of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits type I IFN (IFN-I) responses in mammalian cells and tissues that are associated with the development of severe arthritis or other Lyme-related complications. However, the innate immune sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse and human cells in culture, and we document that internalized spirochetes colocalize with the pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated in the absence of cGAS or its adaptor stimulator of IFN genes (STING), which function to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint pathology and inflammation were modestly reduced in cGAS-deficient compared with wild-type mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of mammalian IFN-I signaling and innate immune responses to B. burgdorferi.
Collapse
Affiliation(s)
- Lauren C. Farris
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - L. Garry Adams
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
11
|
Zhang S, Zheng R, Pan Y, Sun H. Potential Therapeutic Value of the STING Inhibitors. Molecules 2023; 28:3127. [PMID: 37049889 PMCID: PMC10096477 DOI: 10.3390/molecules28073127] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The stimulator of interferon genes (STING) is a critical protein in the activation of the immune system in response to DNA. It can participate the inflammatory response process by modulating the inflammation-preferred translation program through the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway or by inducing the secretion of type I interferons (IFNs) and a variety of proinflammatory factors through the recruitment of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) or the regulation of the nuclear factor kappa-B (NF-κB) pathway. Based on the structure, location, function, genotype, and regulatory mechanism of STING, this review summarizes the potential value of STING inhibitors in the prevention and treatment of infectious diseases, psoriasis, systemic lupus erythematosus, non-alcoholic fatty liver disease, and other inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shangran Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runan Zheng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhong Pan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
12
|
Kumar M, Shelly A, Dahiya P, Ray A, Mazumder S. Aeromonas hydrophila inhibits autophagy triggering cytosolic translocation of mtDNA which activates the pro-apoptotic caspase-1/IL-1β-nitric oxide axis in headkidney macrophages. Virulence 2022; 13:60-76. [PMID: 34967692 PMCID: PMC9794009 DOI: 10.1080/21505594.2021.2018767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanisms underlying Aeromonas hydrophila-pathogenesis are not well understood. Using head kidney macrophages (HKM) of Clarias gariepinus, we previously reported the role of ER-stress in A. hydrophila-induced pathogenesis. Here, we report that PI3K/PLC-induced cytosolic-Ca2+ imbalance induces the expression of pro-apoptotic ER-stress marker, CHOP in A. hydrophila-infected HKM. CHOP promotes HKM apoptosis by inhibiting AKT activation and enhancing JNK signaling. Elevated mitochondrial ROS (mtROS) was recorded which declined significantly by ameliorating ER-stress and in the presence of ER-Ca2+ release modulators (2-APB and dantrolene) and mitochondrial-Ca2+ uptake inhibitor, Ru360, together suggesting the role of ER-mitochondrial Ca2+ dynamics in mtROS generation. Inhibiting mtROS production reduced HKM death implicating the pro-apoptotic role of mtROS in A. hydrophila-pathogenesis. The expression of autophagic proteins (LC3B, beclin-1, and atg 5) was suppressed in the infected HKM. Our results with autophagy-inducer rapamycin demonstrated that impaired autophagy favored the cytosolic accumulation of mitochondrial DNA (mtDNA) and the process depended on mtROS levels. Enhanced caspase-1 activity and IL-1β production was detected and transfection studies coupled with pharmacological inhibitors implicated mtROS/mtDNA axis to be crucial for activating the caspase-1/IL-1β cascade in infected HKM. RNAi studies further suggested the involvement of IL-1β in generating pro-apoptotic NO in A. hydrophila-infected HKM. Our study suggests a novel role of ER-mitochondria cross-talk in regulating A. hydrophila pathogenesis. Based on our observations, we conclude that A. hydrophila induces ER-stress and inhibits mitophagy resulting in mitochondrial dysfunction which leads to mtROS production and translocation of mtDNA into cytosol triggering the activation of caspase-1/IL-1β-mediated NO production, culminating in HKM apoptosis.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Dahiya
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India,Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India,CONTACT Shibnath Mazumder Faculty of Life Sciences and Biotechnology
| |
Collapse
|
13
|
Zhao D, Du B, Xu J, Xie Q, Lu Z, Kang Y. Baicalin promotes antibacterial defenses by modulating mitochondrial function. Biochem Biophys Res Commun 2022; 621:130-136. [PMID: 35820283 DOI: 10.1016/j.bbrc.2022.06.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
Natural flavonoids, such as baicalin, have been extensively studied for their role in bacterial infection. However, the underlying mechanisms remain poorly understood. We demonstrated that baicalin coordinates mitochondrial function and dynamics to promote antibacterial response. Baicalin protected against Staphylococcus aureus infections and alleviates inflammatory responses in vivo and in vitro. An increase in mitochondrial mass and elevated expression of factors regulating mitochondrial fission and fusion were observed in baicalin-treated macrophages. Baicalin induced Drp1-dependent biogenesis, which contributes to the generation of additional mitochondria. Baicalin improved the mitochondrial membrane potential, ATP levels, and mitochondrial reactive oxygen species (mtROS) production. Importantly, the inhibition of mitochondrial function by rotenone or MitoTEMPO suppressed the antimicrobial activity of baicalin in macrophages. We conclude that baicalin can regulate immune responses during S. aureus infection by improving mitochondrial function and dynamics, implying that it is a promising therapeutic agent for controlling infection and inflammatory diseases.
Collapse
Affiliation(s)
- Dongjiu Zhao
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Binhao Du
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jihao Xu
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qinzi Xie
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhe Lu
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanhua Kang
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
14
|
Mahmoodpoor A, Sanaie S, Ostadi Z, Eskandari M, Behrouzi N, Asghari R, Zahirnia A, Sohrabifar N, Kazeminasab S. Roles of mitochondrial DNA in dynamics of the immune response to COVID-19. Gene 2022; 836:146681. [PMID: 35728769 PMCID: PMC9219426 DOI: 10.1016/j.gene.2022.146681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 12/18/2022]
Abstract
Mitochondria dynamics have a pivotal role in many aspects of immune function. Viral infections affect mitochondrial dynamics and trigger the release of mitochondrial DNA (mtDNA) in host cells. Released mtDNA guides the immune response towards an inflammatory response against pathogens. In addition, circulating cell-free mtDNA (ccf-mtDNA) is considered an invaluable indicator for the prognosis and severity of infectious diseases. This study provides an overview of the role of mtDNA in the dynamics of the immune response to COVID-19. We focused on the possible roles of mtDNA in inducing the signaling pathways, and the inflammasome activation and regulation in SARS-CoV-2. Targeting mtDNA-related pathways can provide critical insights into therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Research Center for Integrative Medicine in Aging, Aging research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zoherh Ostadi
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maqsoud Eskandari
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Behrouzi
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqayyeh Asghari
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Zahirnia
- Nasle Farda Health Foundation, Medical Genetic Laboratory, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Nasle Farda Health Foundation, Medical Genetic Laboratory, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Liu Q, Kausar S, Tang Y, Huang W, Tang B, Abbas MN, Dai L. The Emerging Role of STING in Insect Innate Immune Responses and Pathogen Evasion Strategies. Front Immunol 2022; 13:874605. [PMID: 35619707 PMCID: PMC9127187 DOI: 10.3389/fimmu.2022.874605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence reveals that the stimulator of the interferon genes (STING) signaling pathway in insects and other animal cells helps them to sense and effectively respond to infection caused by numerous types of microbial pathogens. Recent studies have shown that genomic material from microbial pathogens induces the STING signaling pathway for the production of immune factors to attenuate infection. In contrast, microbial pathogens are equipped with various factors that assist them in evading the STING signaling cascade. Here we discuss the STING signaling pathway different animal groups compared to human and then focus on its crucial biological roles and application in the microbial infection of insects. In addition, we examine the negative and positive modulators of the STING signaling cascade. Finally, we describe the microbial pathogen strategies to evade this signaling cascade for successful invasion.
Collapse
Affiliation(s)
- Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yingyu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Liao S, Luo J, Kadier T, Ding K, Chen R, Meng Q. Mitochondrial DNA Release Contributes to Intestinal Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:854994. [PMID: 35370747 PMCID: PMC8966724 DOI: 10.3389/fphar.2022.854994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria release many damage-associated molecular patterns (DAMPs) when cells are damaged or stressed, with mitochondrial DNA (mtDNA) being. MtDNA activates innate immune responses and induces inflammation through the TLR-9, NLRP3 inflammasome, and cGAS-STING signaling pathways. Released inflammatory factors cause damage to intestinal barrier function. Many bacteria and endotoxins migrate to the circulatory system and lymphatic system, leading to systemic inflammatory response syndrome (SIRS) and even damaging the function of multiple organs throughout the body. This process may ultimately lead to multiple organ dysfunction syndrome (MODS). Recent studies have shown that various factors, such as the release of mtDNA and the massive infiltration of inflammatory factors, can cause intestinal ischemia/reperfusion (I/R) injury. This destroys intestinal barrier function, induces an inflammatory storm, leads to SIRS, increases the vulnerability of organs, and develops into MODS. Mitophagy eliminates dysfunctional mitochondria to maintain cellular homeostasis. This review discusses mtDNA release during the pathogenesis of intestinal I/R and summarizes methods for the prevention or treatment of intestinal I/R. We also discuss the effects of inflammation and increased intestinal barrier permeability on drugs.
Collapse
Affiliation(s)
- Shishi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Noll D, Leon F, Brandt D, Pistorius P, Le Bohec C, Bonadonna F, Trathan PN, Barbosa A, Rey AR, Dantas GPM, Bowie RCK, Poulin E, Vianna JA. Positive selection over the mitochondrial genome and its role in the diversification of gentoo penguins in response to adaptation in isolation. Sci Rep 2022; 12:3767. [PMID: 35260629 PMCID: PMC8904570 DOI: 10.1038/s41598-022-07562-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although mitochondrial DNA has been widely used in phylogeography, evidence has emerged that factors such as climate, food availability, and environmental pressures that produce high levels of stress can exert a strong influence on mitochondrial genomes, to the point of promoting the persistence of certain genotypes in order to compensate for the metabolic requirements of the local environment. As recently discovered, the gentoo penguins (Pygoscelis papua) comprise four highly divergent lineages across their distribution spanning the Antarctic and sub-Antarctic regions. Gentoo penguins therefore represent a suitable animal model to study adaptive processes across divergent environments. Based on 62 mitogenomes that we obtained from nine locations spanning all four gentoo penguin lineages, we demonstrated lineage-specific nucleotide substitutions for various genes, but only lineage-specific amino acid replacements for the ND1 and ND5 protein-coding genes. Purifying selection (dN/dS < 1) is the main driving force in the protein-coding genes that shape the diversity of mitogenomes in gentoo penguins. Positive selection (dN/dS > 1) was mostly present in codons of the Complex I (NADH genes), supported by two different codon-based methods at the ND1 and ND4 in the most divergent lineages, the eastern gentoo penguin from Crozet and Marion Islands and the southern gentoo penguin from Antarctica respectively. Additionally, ND5 and ATP6 were under selection in the branches of the phylogeny involving all gentoo penguins except the eastern lineage. Our study suggests that local adaptation of gentoo penguins has emerged as a response to environmental variability promoting the fixation of mitochondrial haplotypes in a non-random manner. Mitogenome adaptation is thus likely to have been associated with gentoo penguin diversification across the Southern Ocean and to have promoted their survival in extreme environments such as Antarctica. Such selective processes on the mitochondrial genome may also be responsible for the discordance detected between nuclear- and mitochondrial-based phylogenies of gentoo penguin lineages.
Collapse
Affiliation(s)
- D Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - F Leon
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - D Brandt
- Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - P Pistorius
- Department of Zoology, 11DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| | - C Le Bohec
- CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France.,Département de Biologie Polaire, Centre Scientifique de Monaco, 98000, Monaco City, Monaco
| | - F Bonadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier Cedex 5, France
| | | | - A Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - A Raya Rey
- Centro Austral de Investigaciones Científicas - Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Argentina.,Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina.,Wildlife Conservation Society, Buenos Aires, Argentina
| | - G P M Dantas
- PPG in Vertebrate Biology, Pontificia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - R C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - E Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - J A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile. .,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile. .,Fondo de Desarrollo de Áreas Prioritarias (FONDAP), Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
18
|
Bourke BP, Justi SA, Caicedo-Quiroga L, Pecor DB, Wilkerson RC, Linton YM. Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data. Parasit Vectors 2021; 14:589. [PMID: 34838107 PMCID: PMC8627034 DOI: 10.1186/s13071-021-05090-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex. METHODS Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees. RESULTS Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species-Anopheles janconnae and An. albitarsis G-which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits. CONCLUSION The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J.
Collapse
Affiliation(s)
- Brian P Bourke
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA.
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA.
| | - Silvia A Justi
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Laura Caicedo-Quiroga
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - David B Pecor
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Richard C Wilkerson
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| |
Collapse
|
19
|
De Gaetano A, Solodka K, Zanini G, Selleri V, Mattioli AV, Nasi M, Pinti M. Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells 2021; 10:2898. [PMID: 34831121 PMCID: PMC8616383 DOI: 10.3390/cells10112898] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions.
Collapse
Affiliation(s)
- Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
| | - Kateryna Solodka
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| |
Collapse
|
20
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
21
|
Wang L, Sun L, Byrd KM, Ko CC, Zhao Z, Fang J. AIM2 Inflammasome's First Decade of Discovery: Focus on Oral Diseases. Front Immunol 2020; 11:1487. [PMID: 32903550 PMCID: PMC7438472 DOI: 10.3389/fimmu.2020.01487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
A common feature of many acute and chronic oral diseases is microbial-induced inflammation. Innate immune responses are the first line of defense against pathogenic microorganisms and are initiated by pattern recognition receptors (PRRs) that specifically recognize pathogen-associated molecular patterns and danger-associated molecular patterns. The activation of certain PRRs can lead to the assembly of macromolecular oligomers termed inflammasomes, which are responsible for pro-inflammatory cytokine maturation and secretion and thus activate host inflammatory responses. About 10 years ago, the absent in melanoma 2 (AIM2) was independently discovered by four research groups, and among the “canonical” inflammasomes [including AIM2, NLR family pyrin domain (NLRP)1, NLRP3, NLR family apoptosis inhibitory protein (NAIP)/NLR family, caspase activation and recruitment domain (CARD) containing (NLRC)4, and pyrin], AIM2 so far is the only one that simultaneously acts as a cytosolic DNA sensor due to its DNA-binding ability. Undoubtedly, such a double-faceted role gives AIM2 greater mission and more potential in the mediation of innate immune responses. Therefore, AIM2 has garnered much attention from the broad scientific community during its first 10 years of discovery (2009–2019). How the AIM2 inflammasome is related to oral diseases has aroused debate over the past few years and is under active investigation. AIM2 inflammasome may potentially be a key link between oral diseases and innate immunity. In this review, we highlight the current knowledge of the AIM2 inflammasome and its critical role in the pathogenesis of various oral diseases, which might offer future possibilities for disease prevention and targeted therapy utilizing this continued understanding.
Collapse
Affiliation(s)
- Lufei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Kevin M Byrd
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|