1
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
2
|
Liu Q, Xu Y, Li X, Qi T, Li B, Wang H, Zhu Y. Genome-Wide Identification and Characterization of MYB Transcription Factors in Sudan Grass under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2645. [PMID: 39339621 PMCID: PMC11435211 DOI: 10.3390/plants13182645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Sudan grass (Sorghum sudanense S.) is a warm-season annual grass with high yield, rich nutritional value, good regeneration, and tolerance to biotic and abiotic stresses. However, prolonged drought affects the yield and quality of Sudan grass. As one of the largest families of multifunctional transcription factors in plants, MYB is widely involved in regulating plant growth and development, hormonal signaling, and stress responses at the gene transcription level. However, the regulatory role of MYB genes has not been well characterized in Sudan grass under abiotic stress. In this study, 113 MYB genes were identified in the Sudan grass genome and categorized into three groups by phylogenetic analysis. The promoter regions of SsMYB genes contain different cis-regulatory elements, which are involved in developmental, hormonal, and stress responses, and may be closely related to their diverse regulatory functions. In addition, collinearity analysis showed that the expansion of the SsMYB gene family occurred mainly through segmental duplications. Under drought conditions, SsMYB genes showed diverse expression patterns, which varied at different time points. Interaction networks of 74 SsMYB genes were predicted based on motif binding sites, expression correlations, and protein interactions. Heterologous expression showed that SsMYB8, SsMYB15, and SsMYB64 all significantly enhanced the drought tolerance of yeast cells. Meanwhile, the subcellular localization of all three genes is in the nucleus. Overall, this study provides new insights into the evolution and function of MYB genes and provides valuable candidate genes for breeding efforts in Sudan grass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongqun Zhu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Q.L.); (Y.X.); (X.L.); (T.Q.); (B.L.); (H.W.)
| |
Collapse
|
3
|
Miao Y, Duan W, Li A, Yuan M, Meng J, Wang H, Pan L, Sun S, Cui G, Shi C, Niu L, Zeng W. The MYB transcription factor PpMYB5 regulates Pp4CL1/Pp4CL2 expression to promote lignin biosynthesis of fruit russeting in the flat nectarine. PLANT CELL REPORTS 2024; 43:231. [PMID: 39276239 DOI: 10.1007/s00299-024-03321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
KEY MESSAGE Transcription factor PpMYB5 promotes lignin synthesis by directly binding to the Pp4CL1/Pp4CL2 promoter and affecting their expression, which may be related to nectarine russeting formation. Nectarine russeting is usually considered to be a non-invasive physiological disease that usually occurs on late-maturing cultivars and seriously affects their appearance quality and commercial value. The cause of nectarine fruit rust is currently unknown. In this study, we compared two flat nectarine cultivars, 'zhongyoupanweidi' (HD; russeting-free cultivar) and 'zhongyoupanweihou' (TH; russeting-prone cultivar), with respect to nectarine russeting by means of microscopy, transcriptomics, and hormone analysis. Compared to HD fruits, TH fruits had a broken cuticle, missing wax layer, and heavy lignin deposition. RNA sequencing (RNA-seq) revealed significant alternations in the expression of genes related to lignin synthesis. Moreover, structure genes Pp4CL1 and Pp4CL2, MYB transcription factor (TF) gene PpMYB5 were identified through weighted gene co-expression network analysis (WGCNA). Molecular experiments and transgenic evidence suggested that PpMYB5 regulates Pp4CL1/Pp4CL2 expression to promote lignin synthesis. Overall, in addition to providing new insights into the formation of mechanisms for nectarine russeting, our study also establishes a foundation for nectarine russeting prevention.
Collapse
Affiliation(s)
- Yule Miao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Wenyi Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Mingzhu Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Junren Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Hongmei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Lei Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Shihang Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China
| | - Guochao Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Caiyun Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Liang Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Wenfang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, People's Republic of China.
| |
Collapse
|
4
|
Yang T, Wang Y, Li Y, Liang S, Yang Y, Huang Z, Li Y, Gao J, Ma N, Zhou X. The transcription factor RhMYB17 regulates the homeotic transformation of floral organs in rose (Rosa hybrida) under cold stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2965-2981. [PMID: 38452221 PMCID: PMC11103112 DOI: 10.1093/jxb/erae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Low temperatures affect flower development in rose (Rosa hybrida), increasing petaloid stamen number and reducing normal stamen number. We identified the low-temperature-responsive R2R3-MYB transcription factor RhMYB17, which is homologous to Arabidopsis MYB17 by similarity of protein sequences. RhMYB17 was up-regulated at low temperatures, and RhMYB17 transcripts accumulated in floral buds. Transient silencing of RhMYB17 by virus-induced gene silencing decreased petaloid stamen number and increased normal stamen number. According to the ABCDE model of floral organ identity, class A genes APETALA 1 (AP1) and AP2 contribute to sepal and petal formation. Transcription factor binding analysis identified RhMYB17 binding sites in the promoters of rose APETALA 2 (RhAP2) and APETALA 2-LIKE (RhAP2L). Yeast one-hybrid assays, dual-luciferase reporter assays, and electrophoretic mobility shift assays confirmed that RhMYB17 directly binds to the promoters of RhAP2 and RhAP2L, thereby activating their expression. RNA sequencing further demonstrated that RhMYB17 plays a pivotal role in regulating the expression of class A genes, and indirectly influences the expression of the class C gene. This study reveals a novel mechanism for the homeotic transformation of floral organs in response to low temperatures.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yuqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Shangyi Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunyao Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ziwei Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Bulgakov VP. Chromatin modifications and memory in regulation of stress-related polyphenols: finding new ways to control flavonoid biosynthesis. Crit Rev Biotechnol 2024:1-17. [PMID: 38697923 DOI: 10.1080/07388551.2024.2336529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
The influence of epigenetic factors on plant defense responses and the balance between growth and defense is becoming a central area in plant biology. It is believed that the biosynthesis of secondary metabolites can be regulated by epigenetic factors, but this is not associated with the formation of a "memory" to the previous biosynthetic status. This review shows that some epigenetic effects can result in epigenetic memory, which opens up new areas of research in secondary metabolites, in particular flavonoids. Plant-controlled chromatin modifications can lead to the generation of stress memory, a phenomenon through which information regarding past stress cues is retained, resulting in a modified response to recurring stress. How deeply are the mechanisms of chromatin modification and memory generation involved in the control of flavonoid biosynthesis? This article collects available information from the literature and interactome databases to address this issue. Visualization of the interaction of chromatin-modifying proteins with the flavonoid biosynthetic machinery is presented. Chromatin modifiers and "bookmarks" that may be involved in the regulation of flavonoid biosynthesis through memory have been identified. Through different mechanisms of chromatin modification, plants can harmonize flavonoid metabolism with: stress responses, developmental programs, light-dependent processes, flowering, and longevity programs. The available information points to the possibility of developing chromatin-modifying technologies to control flavonoid biosynthesis.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
6
|
Wang N, Shu X, Zhang F, Song G, Wang Z. Characterization of the Heat Shock Transcription Factor Family in Lycoris radiata and Its Potential Roles in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:271. [PMID: 38256823 PMCID: PMC10819275 DOI: 10.3390/plants13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Heat shock transcription factors (HSFs) are an essential plant-specific transcription factor family that regulates the developmental and growth stages of plants, their signal transduction, and their response to different abiotic and biotic stresses. The HSF gene family has been characterized and systematically observed in various species; however, research on its association with Lycoris radiata is limited. This study identified 22 HSF genes (LrHSFs) in the transcriptome-sequencing data of L. radiata and categorized them into three classes including HSFA, HSFB, and HSFC, comprising 10, 8, and 4 genes, respectively. This research comprises basic bioinformatics analyses, such as protein sequence length, molecular weight, and the identification of its conserved motifs. According to the subcellular localization assessment, most LrHSFs were present in the nucleus. Furthermore, the LrHSF gene expression in various tissues, flower developmental stages, two hormones stress, and under four different abiotic stresses were characterized. The data indicated that LrHSF genes, especially LrHSF5, were essentially involved in L. radiata development and its response to different abiotic and hormone stresses. The gene-gene interaction network analysis revealed the presence of synergistic effects between various LrHSF genes' responses against abiotic stresses. In conclusion, these results provided crucial data for further functional analyses of LrHSF genes, which could help successful molecular breeding in L. radiata.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
7
|
Dai G, Liu Y, Shen W, Zhu B, Chen L, Chen D, Tan C. Molecular evolution analysis of MYB5 in Brassicaceae with specific focus on seed coat color of Brassica napus. BMC PLANT BIOLOGY 2024; 24:52. [PMID: 38229007 DOI: 10.1186/s12870-023-04718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND MYB transcription factors are splay a vital role in plant biology, with previous research highlighting the significant impact of the R2R3-MYB-like transcription factor MYB5 on seed mucilage biosynthesis, trichome branching, and seed coat development. However, there is a dearth of studies investigating its role in the regulation of proanthocyanidin (PA) biosynthesis. RESULTS In this study, a total of 51 MYB5 homologous genes were identified across 31 species belonging to the Brassicaceae family, with particular emphasis on Brassica napus for subsequent investigation. Through phylogenetic analysis, these genes were categorized into four distinct subclasses. Protein sequence similarity and identity analysis demonstrated a high degree of conservation of MYB5 among species within the Brassicaceae family. Additionally, the examination of selection pressure revealed that MYB5 predominantly underwent purifying selection during its evolutionary history, as indicated by the Ka/Ks values of all MYB5 homologous gene pairs being less than one. Notably, we observed a higher rate of non-synonymous mutations in orthologous genes compared to paralogous genes, and the Ka/Ks value displayed a stronger correlation with Ka. In B. napus, an examination of expression patterns in five tissues revealed that MYB5 exhibited particularly high expression in the black seed coat. The findings from the WGCNA demonstrated a robust correlation between MYB5 and BAN(ANR) associated with PA biosynthesis in the black seed coat, providing further evidence of their close association and co-expression. Furthermore, the results obtained from of the analysis of protein interaction networks offer supplementary support for the proposition that MYB5 possesses the capability to interact with transcriptional regulatory proteins, specifically TT8 and TT2, alongside catalytic enzymes implicated in the synthesis of PAs, thereby making a contribution to the biosynthesis of PAs. These findings imply a plausible and significant correlation between the nuique expression pattern of MYB5 and the pigmentation of rapeseed coats. Nevertheless, additional research endeavors are imperative to authenticate and substantiate these findings. CONCLUSIONS This study offers valuable insights into the genetic evolution of Brassicaceae plants, thereby serving as a significant reference for the genetic enhancement of Brassicaceae seed coat color.
Collapse
Affiliation(s)
- Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
9
|
Nguyen TTT, Bae EK, Tran TNA, Lee H, Ko JH. Exploring the Seasonal Dynamics and Molecular Mechanism of Wood Formation in Gymnosperm Trees. Int J Mol Sci 2023; 24:ijms24108624. [PMID: 37239969 DOI: 10.3390/ijms24108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Forests, comprising 31% of the Earth's surface, play pivotal roles in regulating the carbon, water, and energy cycles. Despite being far less diverse than angiosperms, gymnosperms account for over 50% of the global woody biomass production. To sustain growth and development, gymnosperms have evolved the capacity to sense and respond to cyclical environmental signals, such as changes in photoperiod and seasonal temperature, which initiate growth (spring and summer) and dormancy (fall and winter). Cambium, the lateral meristem responsible for wood formation, is reactivated through a complex interplay among hormonal, genetic, and epigenetic factors. Temperature signals perceived in early spring induce the synthesis of several phytohormones, including auxins, cytokinins, and gibberellins, which in turn reactivate cambium cells. Additionally, microRNA-mediated genetic and epigenetic pathways modulate cambial function. As a result, the cambium becomes active during the summer, resulting in active secondary xylem (i.e., wood) production, and starts to become inactive in autumn. This review summarizes and discusses recent findings regarding the climatic, hormonal, genetic, and epigenetic regulation of wood formation in gymnosperm trees (i.e., conifers) in response to seasonal changes.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Kyung Bae
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
10
|
Sun M, Xu QY, Zhu ZP, Liu PZ, Yu JX, Guo YX, Tang S, Yu ZF, Xiong AS. AgMYB5, an MYB transcription factor from celery, enhanced β-carotene synthesis and promoted drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2023; 23:151. [PMID: 36941578 PMCID: PMC10029358 DOI: 10.1186/s12870-023-04157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Water shortage caused by global warming seriously affects the yield and quality of vegetable crops. β-carotene, the lipid-soluble natural product with important pharmacological value, is abundant in celery. Transcription factor MYB family extensively disperses in plants and plays regulatory roles in carotenoid metabolism and water scarcity response. RESULTS Here, the AgMYB5 gene encoding 196 amino acids was amplified from celery cv. 'Jinnanshiqin'. In celery, the expression of AgMYB5 exhibited transactivation activity, tissue specificity, and drought-condition responsiveness. Further analysis proved that ectopic expression of AgMYB5 increased β-carotene content and promoted drought tolerance in transgenic Arabidopsis thaliana. Moreover, AgMYB5 expression promoted β-carotene biosynthesis by triggering the expression of AtCRTISO and AtLCYB, which in turn increased antioxidant enzyme activities, and led to the decreased contents of H2O2 and MDA, and the inhibition of O2- generation. Meanwhile, β-carotene accumulation promoted endogenous ABA biosynthesis of transgenic Arabidopsis, which resulted in ABA-induced stomatal closing and delayed water loss. In addition, ectopic expression of AgMYB5 increased expression levels of AtERD1, AtP5CS1, AtRD22, and AtRD29. CONCLUSIONS The findings indicated that AgMYB5 up-regulated β-carotene biosynthesis and drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Qin-Yi Xu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Peng Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Pei-Zhuo Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian-Xiang Yu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Yao-Xian Guo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Shu Tang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Fang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
11
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
12
|
Li K, Li Y, Wang Y, Li Y, He J, Li Y, Du L, Gao Y, Ma N, Gao J, Zhou X. Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida). PLANT CELL REPORTS 2022; 41:2293-2303. [PMID: 35999377 DOI: 10.1007/s00299-022-02921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
We find that the R2R3 MYB transcription factor RhMYB123 has a novel function to regulate stamen-petal organ specification in rose. Rose is one of the ornamental plants with economic importance worldwide. Malformed flower seriously affects the ornamental value and fertility of rose. However, the regulatory mechanism is largely unknown. In this work, we identified a R2R3 MYB transcription factor RhMYB123 from rose, the expression of which significantly decreased from flower differentiation stage to floral organ development stage. Phylogenetic analysis indicated that it belongs to the same subgroup as MYB123 of Arabidopsis and located in nucleus. In addition, RhMYB123 was confirmed to have transcriptional activation function by dual luciferase assay. Silencing RhMYB123 using Virus-Induced Gene Silencing (VIGS) in rose could increase the number of malformed petaloid stamen. Furthermore, we identified 549 differential expressed genes (DEGs) in TRV-RhMYB123 lines compared to TRV controls by RNA-seq of floral buds (flower differentiation stage). Among of those genes, expression of 3 MADS box family genes related to floral organ development reduced in TRV-RhMYB123 lines, including AGAMOUS (RhAG), AGAMOUS LIKE 15 (RhAGL15), and SHATTERPROOF 1 (RhSHP1). Given, previous studies have shown that auxin plays a crucial role in floral meristem initiation and stamen-petal organ specification. We also found 6 DEGs were involved in auxin signal transduction, of which five were reduced expression in TRV-RhMYB123. Taken together, our findings suggested that RhMYB123 may govern the development of malformed petaloid stamen by regulating the expressions of some MADS box family members and auxin signaling pathway elements.
Collapse
Affiliation(s)
- Kun Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yuqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunju Li
- Yunnan Yuntianhua Modern Agriculture Development Co., Ltd, Kunming, China
| | - Lisi Du
- Yunnan Yuntianhua Modern Agriculture Development Co., Ltd, Kunming, China
| | - Yuerong Gao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Rivière Q, Corso M, Ciortan M, Noël G, Verbruggen N, Defrance M. Exploiting Genomic Features to Improve the Prediction of Transcription Factor-Binding Sites in Plants. PLANT & CELL PHYSIOLOGY 2022; 63:1457-1473. [PMID: 35799371 DOI: 10.1093/pcp/pcac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The identification of transcription factor (TF) target genes is central in biology. A popular approach is based on the location by pattern matching of potential cis-regulatory elements (CREs). During the last few years, tools integrating next-generation sequencing data have been developed to improve the performance of pattern matching. However, such tools have not yet been comprehensively evaluated in plants. Hence, we developed a new streamlined method aiming at predicting CREs and target genes of plant TFs in specific organs or conditions. Our approach implements a supervised machine learning strategy, which allows decision rule models to be learnt using TF ChIP-chip/seq experimental data. Different layers of genomic features were integrated in predictive models: the position on the gene, the DNA sequence conservation, the chromatin state and various CRE footprints. Among the tested features, the chromatin features were crucial for improving the accuracy of the method. Furthermore, we evaluated the transferability of predictive models across TFs, organs and species. Finally, we validated our method by correctly inferring the target genes of key TFs controlling metabolite biosynthesis at the organ level in Arabidopsis. We developed a tool-Wimtrap-to reproduce our approach in plant species and conditions/organs for which ChIP-chip/seq data are available. Wimtrap is a user-friendly R package that supports an R Shiny web interface and is provided with pre-built models that can be used to quickly get predictions of CREs and TF gene targets in different organs or conditions in Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa and Zea mays.
Collapse
Affiliation(s)
- Quentin Rivière
- Brussels Bioengineering School, Laboratory of Plant Physiology and molecular Genetics, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Massimiliano Corso
- Brussels Bioengineering School, Laboratory of Plant Physiology and molecular Genetics, Université Libre de Bruxelles, Brussels 1050, Belgium
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles 78000, France
| | - Madalina Ciortan
- Interuniversity Institute of Bioinformatics in Brussels, Machine Learning Group, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Grégoire Noël
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Nathalie Verbruggen
- Brussels Bioengineering School, Laboratory of Plant Physiology and molecular Genetics, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Machine Learning Group, Université Libre de Bruxelles, Brussels 1050, Belgium
| |
Collapse
|
14
|
Kim D, Jeon SJ, Yanders S, Park SC, Kim HS, Kim S. MYB3 plays an important role in lignin and anthocyanin biosynthesis under salt stress condition in Arabidopsis. PLANT CELL REPORTS 2022; 41:1549-1560. [PMID: 35562569 DOI: 10.1007/s00299-022-02878-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Nuclear-localized Arabidopsis MYB3 functions as a transcriptional repressor for regulation of lignin and anthocyanin biosynthesis under high salt conditions. Salinity stress is a major factor which reduces plant growth and crop yield worldwide. To improve growth of crops in high salinity environments, plant responses to salinity stress must be tightly controlled. Here, to further understand the regulation of plant responses under high salinity conditions, the function of the MYB3 transcription factor was studied as a repressor to control accumulation of lignin and anthocyanin under salt stress conditions. Nuclear-localized MYB3 forms a homodimer. It is ubiquitously expressed, especially in vascular tissues, with expression highly induced by NaCl in tissues such as roots, leaves, stems, and flowers. myb3 mutant plants exhibited longer root growth in high NaCl conditions than wild-type plants. However, several NaCl responsive genes were not significantly altered in myb3 compared to wild-type. Interestingly, high accumulation of lignin and anthocyanin occurred in myb3 under NaCl treatment, as well as increased expression of genes involved in lignin and anthocyanin biosynthesis, such as phenylalanine ammonia lyase 1 (PAL1), cinnamate 4-hydroxylase (C4H), catechol-O-methyltransferase (COMT), 4-coumaric acid-CoA ligase (4CL3), dihydroflavonol reductase (DFR), and leucoanthocyanidin dioxygenase (LDOX). According to yeast two-hybrid screenings, various transcription factors, including anthocyanin regulators Transparent Testa 8 (TT8) and Enhancer of Glabra 3 (EGL3), were isolated as MYB3 interacting proteins. MYB3 was characterized as a transcriptional repressor, with its repressor domain located in the C-terminus. Overall, these results suggest that nuclear-localized MYB3 functions as a transcriptional repressor to control lignin and anthocyanin accumulation under salinity stress conditions.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Plant Science, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Su Jeong Jeon
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Samantha Yanders
- Division of Plant Science, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sung-Chul Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Sewon Kim
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, 52828, Republic of Korea.
- National Institute of Agricultural Science, RDA, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
15
|
Qian R, Hu Q, Ma X, Zhang X, Ye Y, Liu H, Gao H, Zheng J. Comparative transcriptome analysis of heat stress responses of Clematis lanuginosa and Clematis crassifolia. BMC PLANT BIOLOGY 2022; 22:138. [PMID: 35321648 PMCID: PMC8941805 DOI: 10.1186/s12870-022-03497-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Clematis species are attractive ornamental plants with a variety of flower colors and patterns. Heat stress is one of the main factors restricting the growth, development, and ornamental value of Clematis. Clematis lanuginosa and Clematis crassifolia are large-flowered and evergreen Clematis species, respectively, that show different tolerance to heat stress. We compared and analyzed the transcriptome of C. lanuginose and C. crassifolia under heat stress to determine the regulatory mechanism(s) of resistance. RESULTS A total of 1720 and 6178 differentially expressed genes were identified from C. lanuginose and C. crassifolia, respectively. The photosynthesis and oxidation-reduction processes of C. crassifolia were more sensitive than C. lanuginose under heat stress. Glycine/serine/threonine metabolism, glyoxylic metabolism, and thiamine metabolism were important pathways in response to heat stress in C. lanuginose, and flavonoid biosynthesis, phenylalanine metabolism, and arginine/proline metabolism were the key pathways in C. crassifolia. Six sHSPs (c176964_g1, c200771_g1, c204924_g1, c199407_g2, c201522_g2, c192936_g1), POD1 (c200317_g1), POD3 (c210145_g2), DREB2 (c182557_g1), and HSFA2 (c206233_g2) may be key genes in the response to heat stress in C. lanuginose and C. crassifolia. CONCLUSIONS We compared important metabolic pathways and differentially expressed genes in response to heat stress between C. lanuginose and C. crassifolia. The results increase our understanding of the response mechanism and candidate genes of Clematis under heat stress. These data may contribute to the development of new Clematis varieties with greater heat tolerance.
Collapse
Affiliation(s)
- Renjuan Qian
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Qingdi Hu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Xiaohua Ma
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Xule Zhang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Youju Ye
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Hongjian Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Handong Gao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Jian Zheng
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| |
Collapse
|
16
|
Zhang S, Sun F, Zhang C, Zhang M, Wang W, Zhang C, Xi Y. Anthocyanin Biosynthesis and a Regulatory Network of Different-Colored Wheat Grains Revealed by Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:887-900. [PMID: 35029408 DOI: 10.1021/acs.jafc.1c05029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colored wheat has always been a popular research area because of its high performance in the field and significant medical uses. Progress has been made mapping the genes of purple or blue grains; however, the reason why different grain colors form in wheat is not well understood. We created wheat lines with different grain colors (purple and blue) using the white grain cultivar Xiaoyan22 and located the candidate region related to the purple and blue grains in chromosome 2A, 2B, and 4D, 2A, respectively, by the bulked segregant RNA-seq. The transcriptomic and metabolomic analyses of the three grains at different developmental stages indicated that the upregulation of flavonoid 3'-hydroxylase/flavonoid 3',5'hydroxylase 2 and TaMYC1/TaMYC4 was important for the formation of purple/blue grains. The blue TaMYC4 had 16 nonsynonymous single nucleotide variants verified by Sanger sequencing and possessed a different splicing mode in the bHLH_MYC_N domain compared with the reference database. Targeted high-performance liquid chromatography-mass spectrometry/mass spectrometry analysis of anthocyanins found that the purple and blue grains contained more pelargonidin, cyanidin, and delphinidin, respectively. This study provides a comprehensive understanding of the different color formations of wheat grains and useful information about genetic improvements in wheat and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuqiu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|