1
|
Dutta A, Dutreux F, Garin M, Caradec C, Friedrich A, Brach G, Thiele P, Gaudin M, Llorente B, Schacherer J. Multiple independent losses of crossover interference during yeast evolutionary history. PLoS Genet 2024; 20:e1011426. [PMID: 39325820 PMCID: PMC11460703 DOI: 10.1371/journal.pgen.1011426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Meiotic recombination is essential for the accurate chromosome segregation and the generation of genetic diversity through crossover and gene conversion events. Although this process has been studied extensively in a few selected model species, understanding how its properties vary across species remains limited. For instance, the ancestral ZMM pathway that generates interference-dependent crossovers has undergone multiple losses throughout evolution, suggesting variations in the regulation of crossover formation. In this context, we first characterized the meiotic recombination landscape and properties of the Kluyveromyces lactis budding yeast. We then conducted a comprehensive analysis of 29,151 recombination events (19, 212 COs and 9, 939 NCOs) spanning 577 meioses in the five budding yeast species Saccharomyces cerevisiae, Saccharomyces paradoxus, Lachancea kluyveri, Lachancea waltii and K. lactis. Eventually, we found that the Saccharomyces yeasts displayed higher recombination rates compared to the non-Saccharomyces yeasts. In addition, bona fide crossover interference and associated crossover homeostasis were detected in the Saccharomyces species only, adding L. kluyveri and K. lactis to the list of budding yeast species that lost crossover interference. Finally, recombination hotspots, although highly conserved within the Saccharomyces yeasts are not conserved beyond the Saccharomyces genus. Overall, these results highlight great variability in the recombination landscape and properties through budding yeasts evolution.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Marion Garin
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Gauthier Brach
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Pia Thiele
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
| | - Maxime Gaudin
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
de Abreu CG, Roesch LFW, Andreote FD, Silva SR, de Moraes TSJ, Zied DC, de Siqueira FG, Dias ES, Varani AM, Pylro VS. Decoding the chromosome-scale genome of the nutrient-rich Agaricus subrufescens: a resource for fungal biology and biotechnology. Res Microbiol 2023; 174:104116. [PMID: 37573924 DOI: 10.1016/j.resmic.2023.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Agaricus subrufescens, also known as the "sun mushroom," has significant nutritional and medicinal value. However, its short shelf life due to the browning process results in post-harvest losses unless it's quickly dehydrated. This restricts its availability to consumers in the form of capsules. A genome sequence of A. subrufescens may lead to new cultivation alternatives or the application of gene editing strategies to delay the browning process. We assembled a chromosome-scale genome using a hybrid approach combining Illumina and Nanopore sequencing. The genome was assembled into 13 chromosomes and 31 unplaced scaffolds, totaling 44.5 Mb with 96.5% completeness and 47.24% GC content. 14,332 protein-coding genes were identified, with 64.6% of the genome covered by genes and 23.41% transposable elements. The mitogenome was circularized and encoded fourteen typical mitochondrial genes. Four polyphenol oxidase (PPO) genes and the Mating-type locus were identified. Phylogenomic analysis supports the placement of A. subrufescens in the Agaricomycetes clade. This is the first available genome sequence of a strain of the "sun mushroom." Results are available through a Genome Browser (https://plantgenomics.ncc.unesp.br/gen.php?id=Asub) and can support further fungal biological and genomic studies.
Collapse
Affiliation(s)
| | | | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Saura Rodrigues Silva
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | | | - Diego Cunha Zied
- Department of Crop Production, School of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, São Paulo, Brazil
| | | | - Eustáquio Souza Dias
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | - Alessandro M Varani
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900, SP, Brazil.
| | - Victor Satler Pylro
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Sun X, Liu D, Zhao X. Transcription factors: switches for regulating growth and development in macrofungi. Appl Microbiol Biotechnol 2023; 107:6179-6191. [PMID: 37624406 DOI: 10.1007/s00253-023-12726-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Macrofungi (or mushrooms) act as an extraordinarily important part to human health due to their nutritional and/or medicinal value, but the detailed researches in growth and development mechanisms have yet to be explored further. Transcription factors (TFs) play indispensable roles in signal transduction and affect growth, development, and metabolism of macrofungi. In recent years, increasing research effort has been employed to probe the relationship between the development of macrofungi and TFs. Herein, the present review comprehensively summarized the functional TFs researched in macrofungi, including modulating mycelial growth, fructification, sclerotial formation, sexual reproduction, spore formation, and secondary metabolism. Meanwhile, the possible effect mechanisms of TFs on the growth and development of some macrofungi were also revealed. Specific examples of functional characterizations of TFs in macrofungi (such as Schizophyllum commune and Coprinopsis cinerea) were described to a better comprehension of regulatory effect. Future research prospects in the field of TFs of macrofungi are discussed. We illustrated the functional versatility of the TFs in macrofungi based on specific examples. A systematical realization of the interaction and possible mechanisms between TFs and macrofungi can supply possible solutions to regulate genetic characteristics, which supply novel insights into the regulation of growth, development and metabolism of macrofungi. KEY POINTS: • The functional TFs researched in macrofungi were summarized. • The possible effect mechanisms of TFs in macrofungal were described. • The multiple physiological functions of TFs in macrofungi were discussed.
Collapse
Affiliation(s)
- Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
5
|
Zhang SS, Li X, Li GJ, Huang Q, Tian JH, Wang JL, Li M, Li SM. Genetic and Molecular Evidence of a Tetrapolar Mating System in the Edible Mushroom Grifola frondosa. J Fungi (Basel) 2023; 9:959. [PMID: 37888215 PMCID: PMC10607315 DOI: 10.3390/jof9100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Grifola frondosa is a valuable edible fungus with high nutritional and medicinal values. The mating systems of fungi not only offer practical strategies for breeding, but also have far-reaching effects on genetic variability. Grifola frondosa has been considered as a sexual species with a tetrapolar mating system based on little experimental data. In the present study, one group of test crosses and six groups of three-round mating experiments from two parental strains were conducted to determine the mating system in G. frondosa. A chi-squared test of the results of the test-cross mating experiments indicated that they satisfied Mendelian segregation, while a series of three-round mating experiments showed that Mendelian segregation was not satisfied, implying a segregation distortion phenomenon in G. frondosa. A genomic map of the G. frondosa strain, y59, grown from an LMCZ basidiospore, with 40.54 Mb and 12 chromosomes, was generated using genome, transcriptome and Hi-C sequencing technology. Based on the genomic annotation of G. frondosa, the mating-type loci A and B were located on chromosomes 1 and 11, respectively. The mating-type locus A coded for the β-fg protein, HD1, HD2 and MIP, in that order. The mating-type locus B consisted of six pheromone receptors (PRs) and five pheromone precursors (PPs) in a crossed order. Moreover, both HD and PR loci may have only one sublocus that determines the mating type in G. frondosa. The nonsynonymous SNP and indel mutations between the A1B1 and A2B2 mating-type strains and the reference genome of y59 only occurred on genes HD2 and PR1/2, preliminarily confirming that the mating type of the y59 strain was A1B2 and not A1B1. Based on the genetic evidence and the more reliable molecular evidence, the results reveal that the mating system of G. frondosa is tetrapolar. This study has important implications for the genetics and hybrid breeding of G. frondosa.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
| | - Xiao Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Guo-Jie Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Qi Huang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
| | - Jing-Hua Tian
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Jun-Ling Wang
- College of Life Science, Hebei Agricultural University, Baoding 071001, China;
| | - Ming Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Shou-Mian Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| |
Collapse
|
6
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
7
|
Choi YJ, Jung S, Eom H, Hoang T, Han HG, Kim S, Ro HS. Structural Analysis of the A Mating Type Locus and Development of the Mating Type Marker of Agaricus bisporus var. bisporus. J Fungi (Basel) 2023; 9:jof9030284. [PMID: 36983452 PMCID: PMC10051438 DOI: 10.3390/jof9030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Karyotyping in Agaricus bisporus is crucial for both the isolation of homokaryotic strains and the confirmation of dikaryon establishment. For the verification of the karyotype, the A mating type loci of two homokaryotic strains, H39 and H97, were analyzed through comparative sequence analysis. The two loci showed major differences in two sequence regions designated as Region 1 and Region 2. H97 had a putative DNA transposon in Region 1 that had target site duplications (TSDs), terminal inverted repeats (TIRs), and a loop sequence, in contrast to H39, which only had the insertional target sequence. Homologous sequences of the transposon were discovered in the two different chromosomes of H97 and in one of H39, all of which have different TSDs but share high sequence homology in TIR. Region 2 shared three consensus sequences between H97 and H39. However, it was only from H97 that a large insertional sequence of unknown origin was discovered between the first and second consensus sequences. The difference in length in Region 1, employed for the verification of the A mating type, resulted in the successful verification of mating types in the heterokaryotic and homokaryotic strains. This length difference enables the discrimination between homo- and heterokaryotic spores by PCR. The present study suggests that the A mating type locus in A. bisporus H97 has evolved through transposon insertion, allowing the discrimination of the mating type, and thus the nuclear type, between A. bisporus H97 and H39.
Collapse
|
8
|
Vittorelli N, Rodríguez de la Vega RC, Snirc A, Levert E, Gautier V, Lalanne C, De Filippo E, Gladieux P, Guillou S, Zhang Y, Tejomurthula S, Grigoriev IV, Debuchy R, Silar P, Giraud T, Hartmann FE. Stepwise recombination suppression around the mating-type locus in an ascomycete fungus with self-fertile spores. PLoS Genet 2023; 19:e1010347. [PMID: 36763677 PMCID: PMC9949647 DOI: 10.1371/journal.pgen.1010347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/23/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.
Collapse
Affiliation(s)
- Nina Vittorelli
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
- Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France
| | | | - Alodie Snirc
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Emilie Levert
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Christophe Lalanne
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Elsa De Filippo
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sonia Guillou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Yu Zhang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sravanthi Tejomurthula
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Fanny E. Hartmann
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Experimental Outcrossing in Agaricus bisporus Revealed a Major and Unexpected Involvement of Airborne Mycelium Fragments. J Fungi (Basel) 2022; 8:jof8121278. [PMID: 36547611 PMCID: PMC9783782 DOI: 10.3390/jof8121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Agaricus bisporus var. bisporus, the button mushroom, has a predominantly pseudohomothallic life cycle. Most of its spores are heterokaryotic and give rise to fertile heterokaryons. However, previous studies have suggested that outcrossing should not be rare in wild populations. In order to discover how outcrossing occurs, we experimentally favored it between aerial propagules of a fruiting donor mycelium and a delayed receiver mycelium that only invaded culture trays. Two donor/receiver pairs were studied, and potentially hybrid basidiomata collected on the receiver trays were analyzed with a mitochondrial marker, two unlinked nuclear CAPS markers, then haplotype markers based on DNA sequences obtained after PCR cloning of the rDNA ITS region and the fruk gene. For one of the two pairs, most basidiomata were hybrids between the donor and the receiver. Genotyping of the hybrids revealed only two genotypes consistent with outcrossing involving airborne mycelium fragments rather than basidiospores. The resident receiver heterokaryon that provided its mitochondria to the hybrid basidiomata is suspected to have had a trophic contribution to their growth and successful fruiting. The high level of heterozygosity and the cultivar introgression previously revealed in wild populations of this pseudohomothallic species may result from outcrossing involving airborne pieces of mycelium.
Collapse
|
10
|
Duhamel M, Carpentier F, Begerow D, Hood ME, Rodríguez de la Vega RC, Giraud T. Onset and stepwise extensions of recombination suppression are common in mating-type chromosomes of Microbotryum anther-smut fungi. J Evol Biol 2022; 35:1619-1634. [PMID: 35271741 PMCID: PMC10078771 DOI: 10.1111/jeb.13991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Sex chromosomes and mating-type chromosomes can display large genomic regions without recombination. Recombination suppression often extended stepwise with time away from the sex- or mating-type-determining genes, generating evolutionary strata of differentiation between alternative sex or mating-type chromosomes. In anther-smut fungi of the Microbotryum genus, recombination suppression evolved repeatedly, linking the two mating-type loci and extended multiple times in regions distal to the mating-type genes. Here, we obtained high-quality genome assemblies of alternative mating types for four Microbotryum fungi. We found an additional event of independent chromosomal rearrangements bringing the two mating-type loci on the same chromosome followed by recombination suppression linking them. We also found, in a new clade analysed here, that recombination suppression between the two mating-type loci occurred in several steps, with first an ancestral recombination suppression between one of the mating-type locus and its centromere; later, completion of recombination suppression up to the second mating-type locus occurred independently in three species. The estimated dates of recombination suppression between the mating-type loci ranged from 0.15 to 3.58 million years ago. In total, this makes at least nine independent events of linkage between the mating-type loci across the Microbotryum genus. Several mating-type locus linkage events occurred through the same types of chromosomal rearrangements, where similar chromosome fissions at centromeres represent convergence in the genomic changes leading to the phenotypic convergence. These findings further highlight Microbotryum fungi as excellent models to study the evolution of recombination suppression.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | - Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| | - Dominik Begerow
- Evolution der Pflanzen und PilzeRuhr‐Universität BochumBochumGermany
| | | | | | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360CNRSAgroParisTechUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
11
|
Whole-Genome Sequencing and Comparative Genomics Analysis of the Wild Edible Mushroom ( Gomphus purpuraceus) Provide Insights into Its Potential Food Application and Artificial Domestication. Genes (Basel) 2022; 13:genes13091628. [PMID: 36140797 PMCID: PMC9498453 DOI: 10.3390/genes13091628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Gomphus purpuraceus (Iwade) Yokoyama is a species of wild fungi that grows in southwest China, considered an edible and medicinal fungus with potential commercial prospects. However, the detailed mechanisms related to the development of mycelium and the formation of the fruiting body are unclear. To obtain a comprehensive overview of genetic features, whole-genome and comparative genomics analyses of G. purpuraceus were performed. High-quality DNA was extracted from the mycelium, which was isolated from a fresh fruiting body of G. purpuraceus. The DNA sample was subjected to sequencing using Illumina and Oxford Nanopore sequencing platforms. A genome assembly totaling 40.15 Mb in 50 contigs with an N50 length of 2.06 Mb was generated, and 8705 putative predicted genes were found. Subsequently, phylogenetic analysis revealed a close evolutionary relationship between G. purpuraceus and Gomphus bonarii. Moreover, a total of 403 carbohydrate-active enzymes (CAZymes) were identified in G. purpuraceus, which included 147 glycoside hydrolases (GHs), 85 glycosyl transferases (GTs), 8 polysaccharide lyases (PLs), 76 carbohydrate esterases (CEs), 57 auxiliary activities (AAs) and 30 carbohydrate-binding modules (CBMs). Compared with the other 13 fungi (Laccaria bicolor, Russula virescens, Boletus edulis, etc.), the number and distribution of CAZymes in G. purpuraceus were similar to other mycorrhizal fungi. Furthermore, the optimization of culture medium for G. purpuraceus showed the efficient utilization of disaccharides such as sucrose and maltose. The genome of G. purpuraceus provides new insights into its niche, food applications and potential artificial domestication.
Collapse
|
12
|
Genetic Analyses of Discrete Geographic Samples of a Golden Chanterelle in Canada Reveal Evidence for Recent Regional Differentiation. Genes (Basel) 2022; 13:genes13071110. [PMID: 35885893 PMCID: PMC9319088 DOI: 10.3390/genes13071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The wild edible mushroom Cantharellus enelensis is a recently described species of the golden chanterelles found in eastern North America. At present, the genetic diversity and population structure of C. enelensis are not known. In this study, we analyzed a total of 230 fruiting bodies of C. enelensis that were collected from three regions of Canada: near the east and west coasts of Newfoundland (NFLD), with 110 fruiting bodies each, and around Hamilton, Ontario (10 fruiting bodies). Among the 110 fruiting bodies from each coast in NFLD, 10 from 2009 were without specific site information, while 100 sampled in 2010 were from each of five patches separated by at least 100 m from each other. Each fruiting body was genotyped at three microsatellite loci. Among the total 28 multilocus genotypes (MLGs) identified, 2 were shared among all three regions, 4 were shared between 2 of the t3hree regions, and the remaining 22 were each found in only 1 region. Minimal spanning network analyses revealed several region-specific MLG clusters, consistent with geographic specific mutation and expansion. Though the most frequently observed MLGs were shared among local (patch) and regional populations, population genetic analyses revealed that both local and regional geographic separations contributed significantly to the observed genetic variation in the total sample. All three regional populations showed excess heterozygosity; for the eastern NFLD population, we reject the null hypothesis of Hardy–Weinberg equilibrium (HWE) at all three loci. However, the analyses of clone-corrected samples revealed that most loci were in HWE. Together, our results suggest that the three discrete regional populations of C. enelensis were likely colonized from a common refugium since the last ice age. However, the local and regional populations are diverging from each other through mutation, drift, and selection at least partly due to heterozygous advantage.
Collapse
|
13
|
Chromosome-Wide Characterization of Intragenic Crossover in Shiitake Mushroom, Lentinula edodes. J Fungi (Basel) 2021; 7:jof7121076. [PMID: 34947058 PMCID: PMC8704546 DOI: 10.3390/jof7121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Meiotic crossover plays a critical role in generating genetic variations and is a central component of breeding. However, our understanding of crossover in mushroom-forming fungi is limited. Here, in Lentinula edodes, we characterized the chromosome-wide intragenic crossovers, by utilizing the single-nucleotide polymorphisms (SNPs) datasets of an F1 haploid progeny. A total of 884 intragenic crossovers were identified in 110 single-spore isolates, the majority of which were closer to transcript start sites. About 71.5% of the intragenic crossovers were clustered into 65 crossover hotspots. A 10 bp motif (GCTCTCGAAA) was significantly enriched in the hotspot regions. Crossover frequencies around mating-type A (MAT-A) loci were enhanced and formed a hotspot in L. edodes. Genome-wide quantitative trait loci (QTLs) mapping identified sixteen crossover-QTLs, contributing 8.5–29.1% of variations. Most of the detected crossover-QTLs were co-located with crossover hotspots. Both cis- and trans-QTLs contributed to the nonuniformity of crossover along chromosomes. On chr2, we identified a QTL hotspot that regulated local, global crossover variation and crossover hotspot in L. edodes. These findings and observations provide a comprehensive view of the crossover landscape in L. edodes, and advance our understandings of conservation and diversity of meiotic recombination in mushroom-forming fungi.
Collapse
|