1
|
Padhiar AA, Yang X, Zaidi SAA, Li Z, Liao J, Shu W, Chishti AA, He L, Alam G, Faqeer A, Ali I, Zhang S, Wang T, Liu T, Zhou M, Wang G, Zhou Y, Zhou G. MAM-STAT3-Driven Mitochondrial Ca +2 Upregulation Contributes to Immunosenescence in Type A Mandibuloacral Dysplasia Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407398. [PMID: 39661729 DOI: 10.1002/advs.202407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Individuals with homozygous laminA/C p.R527C mutations manifest a severe form of Mandibuloacral dysplasia-(MAD) and exhibit overlapping progeroid symptoms, for which the underlying molecular pathology remains unknown. Herein, it is shown that MAD patients achieved inflammaging with different pro-inflammatory cytokines compared to progeria-(HGPS) patient. Characterization of MAD iPSC-derived Mesenchymal stem cells (MAD-iMSC) uncovers deregulated mitochondrial Ca+2 as the primary cause of inflammaging, mediated through inflammasome formation rather than the cGAS-STING pathway. Moreover, MAD-iMSCs extracellular vesicles (EVs) can also upregulate mitochondrial Ca+2 in healthy cells. This deregulated Ca+2 homeostasis is indirectly mediated by mitochondrial calcium mediator, signal transducer, and activator of transcription-3 (STAT3), situated on the mitochondrial associated membrane (MAM). Inflammaging is mitigated by various FDA-approved MAM-STAT3 upstream inhibitors, such as (Tocilizumab) or by correcting R527C mutation with CRISPR/CAS9. These results provide new insights into MAD disease and propose targeting defective mitochondrial Ca+2 homeostasis as a promising therapy for reversing immunosenescence.
Collapse
Affiliation(s)
- Arshad Ahmed Padhiar
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
- Senotherapeutics Ltd., Hangzhou, 311100, China
| | - Xiaohong Yang
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Department of Laboratory Medicine, Puning Traditional Chinese Medicine Hospital, Puning, Guangdong, 515343, China
| | - Syed Aqib Ali Zaidi
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhu Li
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jinqi Liao
- Senotherapeutics Ltd., Hangzhou, 311100, China
- Lungene Biotech Ltd., Yinxing Scientific Building, Shenzhen, 510086, China
| | - Wei Shu
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541004, China
| | - Arif Ali Chishti
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Liangge He
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Gulzar Alam
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Abdullah Faqeer
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ilyas Ali
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shuai Zhang
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Ting Wang
- Senotherapeutics Ltd., Hangzhou, 311100, China
- Lungene Biotech Ltd., Yinxing Scientific Building, Shenzhen, 510086, China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541004, China
| | - Tao Liu
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518001, China
| | - Meiling Zhou
- Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518001, China
| | - Gang Wang
- Senotherapeutics Ltd., Hangzhou, 311100, China
| | - Yan Zhou
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Senotherapeutics Ltd., Hangzhou, 311100, China
- Lungene Biotech Ltd., Yinxing Scientific Building, Shenzhen, 510086, China
| | - Guangqian Zhou
- Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Senotherapeutics Ltd., Hangzhou, 311100, China
- Lungene Biotech Ltd., Yinxing Scientific Building, Shenzhen, 510086, China
| |
Collapse
|
2
|
Gamez-Garcia A, Espinosa-Alcantud M, Bueno-Costa A, Alari-Pahissa E, Marazuela-Duque A, Thackray JK, Ray C, Berenguer C, Kumari P, Bech JJ, Braun T, Ianni A, Tischfield JA, Serrano L, Esteller M, Sardina JL, De La Torre C, Sigvardsson M, Vazquez BN, Vaquero A. A SIRT7-dependent acetylation switch regulates early B cell differentiation and lineage commitment through Pax5. Nat Immunol 2024; 25:2308-2319. [PMID: 39424985 PMCID: PMC11588656 DOI: 10.1038/s41590-024-01995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
B lymphopoiesis is orchestrated by lineage-specific transcription factors. In B cell progenitors, lineage commitment is mediated by Pax5, which is commonly mutated in B cell acute lymphoblastic leukemia. Despite its essential role in immunity, the mechanisms regulating Pax5 function remain largely unknown. Here, we found that the NAD+-dependent enzyme SIRT7 coordinates B cell development through deacetylation of Pax5 at K198, which promotes Pax5 protein stability and transcriptional activity. Neither Pax5K198 deacetylated nor acetylated mimics rescued B cell differentiation in Pax5-/- pro-B cells, suggesting that B cell development requires Pax5 dynamic deacetylation. The Pax5K198 deacetylation mimic restored lineage commitment in Pax5-/- pro-B cells and B cell differentiation in Sirt7-/- pro-B cells, suggesting the uncoupling of differentiation from lineage commitment. The SIRT7-Pax5 interplay was conserved in B cell acute lymphoblastic leukemia, where SIRT7 expression correlated with good prognosis. Our findings reveal a crucial mechanism for B lymphopoiesis and highlight the relevance of sirtuins in immune function.
Collapse
Grants
- PROYE20042VAQU Fundación Científica Asociación Española Contra el Cáncer (Scientific Foundation, Spanish Association Against Cancer)
- SAF2017-88975R Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- 2017-SGR-148 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- 2021-SGR-01378 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- FI_B 00293 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- 2021-SGR-01494 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- 2016-BP-00250 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- MSC-2021-101065013 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- MSC-2020-895979 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- 2022-0019 Barncancerfonden (Swedish Childhood Cancer Foundation)
- 2021-02379 Forskningsrådet om Hälsa, Arbetsliv och Välfärd (Swedish Research Council for Health, Working Life and Welfare)
- Spanish Ministry of Science, innovation and Universities-AEI [PID2020-117284RB-I00] Instituto de Salud Carlos III (Institute of Health Carlos III) [Proteored]
- Human Genetics Institute of New Jersey (HGINJ)
- Instituto de Salud Carlos III (Institute of Health Carlos III) [CP19/00176] Spanish Ministry of Science, innovation and Universities-AEI [PID2019-111243RA-I00]
- Instituto de Salud Carlos III (Institute of Health Carlos III) [Proteored] Instituto de Salud Carlos III (Institute of Health Carlos III) [PT13/0001]
- Swedish Cancer Foundation [20-1153]
Collapse
Affiliation(s)
- Andres Gamez-Garcia
- Chromatin Biology Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain
| | | | - Alberto Bueno-Costa
- Cancer Epigenetics Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain
| | | | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain
| | - Joshua K Thackray
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Chandni Ray
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Clara Berenguer
- Epigenetic Control of Hematopoiesis Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joan Josep Bech
- Proteomics Unit, Josep Carreras Leukemia Research Institute, Badalona, Spain
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jay A Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Lourdes Serrano
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Manel Esteller
- Cancer Epigenetics Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jose L Sardina
- Epigenetic Control of Hematopoiesis Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain
| | | | - Mikael Sigvardsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Berta N Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain.
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukemia Research Institute, Badalona, Spain.
| |
Collapse
|
3
|
He R, Xu L, Guo M, Cheng K, Song Z, Xie Y, Wang H, Zhou X, Gu X, Xu J, Deng H, Yang G. Histone deacetylase 2 and 3 of Sarcoptes scabiei: characterization of a potential drug target. Microbiol Spectr 2024; 12:e0073724. [PMID: 39436071 PMCID: PMC11619365 DOI: 10.1128/spectrum.00737-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
Scabies is a contagious zoonotic parasitic disease that causes a substantial risk to both human and animal health and results in significant financial losses. No vaccine is available for scabies, and drug resistance to the conventional treatment for the disease has increased. Histone deacetylase (HDAC) modifies proteins by removing acetyl moieties from histones, regulates transcription, and is crucial for the immune system and apoptotic processes. This study aimed to clone, express, and determine the immunoreactivity of HDAC-2 and HDAC-3 of scabies mites to investigate their potential as scabies drug targets. The effects of inhibitors on recombinant Sarcoptes scabiei HDAC-2 (rSsHDAC-2) and rSsHDAC-3, as well as on the survival rate and ultrastructure of scabies mites in vitro, were also verified. The findings showed that the inhibitors reduced the acetylase activity of rSsHDAC-2 and rSsHDAC-3. Additionally, these inhibitors could significantly reduce the survival rate of scabies mites, making structural alterations in the mites such as mitochondrial pyknosis and cytoplasmic vacuoles and reaching a fatality rate of 76.7% after 24 h of action. In conclusion, HDAC-2 and HDAC-3 were critical to the survival of scabies mites and might be targeted by medications. Furthermore, the effect of inhibitors on the survival rate and structure of isolated scabies mites provides a new direction for developing therapeutic drugs for scabies.IMPORTANCEIn this study, we successfully cloned and expressed recombinant SsHDAC-2 and SsHDAC-3 in a prokaryotic system and confirmed their acetylation-deacetylase activities. These results provide a solid experimental foundation for subsequent research on SsHDAC-2 and SsHDAC-3. Furthermore, we report for the first time the use of SsHDAC-2 and SsHDAC-3 as drug targets. We demonstrated that the inhibition of these HDACs by pharmacological agents can lead to structural damage in the parasite, thereby impacting the survival activity of the scabies mite. This finding opens up a novel therapeutic avenue for the treatment of scabies.
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Luyang Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Maochuan Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kai Cheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyi Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hui Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuan Zhou
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Sato K, Takayama KI, Saito Y, Inoue S. ERRα and ERRγ coordinate expression of genes associated with Alzheimer's disease, inhibiting DKK1 to suppress tau phosphorylation. Proc Natl Acad Sci U S A 2024; 121:e2406854121. [PMID: 39231208 PMCID: PMC11406303 DOI: 10.1073/pnas.2406854121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by cognitive decline and learning/memory impairment associated with neuronal cell loss. Estrogen-related receptor α (ERRα) and ERRγ, which are highly expressed in the brain, have emerged as potential AD regulators, with unelucidated underlying mechanisms. Here, we identified genome-wide binding sites for ERRα and ERRγ in human neuronal cells. They commonly target a subset of genes associated with neurodegenerative diseases, including AD. Notably, Dickkopf-1 (DKK1), a Wnt signaling pathway antagonist, was transcriptionally repressed by both ERRα and ERRγ in human neuronal cells and brain. ERRα and ERRγ repress RNA polymerase II (RNAP II) accessibility at the DKK1 promoter by modulating a specific active histone modification, histone H3 lysine acetylation (H3K9ac), with the potential contribution of their corepressor. This transcriptional repression maintains Wnt signaling activity, preventing tau phosphorylation and promoting a healthy neuronal state in the context of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuko Saito
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
5
|
Wu J, Han K, Sack MN. Targeting NAD+ Metabolism to Modulate Autoimmunity and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1043-1050. [PMID: 38498807 PMCID: PMC10954088 DOI: 10.4049/jimmunol.2300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 03/20/2024]
Abstract
NAD+ biology is involved in controlling redox balance, functioning as a coenzyme in numerous enzymatic reactions, and is a cofactor for Sirtuin enzymes and a substrate for multiple regulatory enzyme reactions within and outside the cell. At the same time, NAD+ levels are diminished with aging and are consumed during the development of inflammatory and autoimmune diseases linked to aberrant immune activation. Direct NAD+ augmentation via the NAD+ salvage and Priess-Handler pathways is being investigated as a putative therapeutic intervention to improve the healthspan in inflammation-linked diseases. In this review, we survey NAD+ biology and its pivotal roles in the regulation of immunity and inflammation. Furthermore, we discuss emerging studies evaluate NAD+ boosting in murine models and in human diseases, and we highlight areas of research that remain unresolved in understanding the mechanisms of action of these nutritional supplementation strategies.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Klutstein M, Gonen N. Epigenetic aging of mammalian gametes. Mol Reprod Dev 2023; 90:785-803. [PMID: 37997675 DOI: 10.1002/mrd.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
7
|
Chen R, Routh BN, Gaudet AD, Fonken LK. Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging. J Biol Rhythms 2023; 38:419-446. [PMID: 37357738 PMCID: PMC10475217 DOI: 10.1177/07487304231178950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Circadian clocks confer 24-h periodicity to biological systems, to ultimately maximize energy efficiency and promote survival in a world with regular environmental light cycles. In mammals, circadian rhythms regulate myriad physiological functions, including the immune, endocrine, and central nervous systems. Within the central nervous system, specialized glial cells such as astrocytes and microglia survey and maintain the neuroimmune environment. The contributions of these neuroimmune cells to both homeostatic and pathogenic demands vary greatly across the day. Moreover, the function of these cells changes across the lifespan. In this review, we discuss circadian regulation of the neuroimmune environment across the lifespan, with a focus on microglia and astrocytes. Circadian rhythms emerge in early life concurrent with neuroimmune sculpting of brain circuits and wane late in life alongside increasing immunosenescence and neurodegeneration. Importantly, circadian dysregulation can alter immune function, which may contribute to susceptibility to neurodevelopmental and neurodegenerative diseases. In this review, we highlight circadian neuroimmune interactions across the lifespan and share evidence that circadian dysregulation within the neuroimmune system may be a critical component in human neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Brandy N. Routh
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Gaudet
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
- Department of Psychology, The University of Texas at Austin, Austin, Texas
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
8
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
9
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
10
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
11
|
Lei Z, Chen L, Hu Q, Yang Y, Tong F, Li K, Lin T, Nie Y, Rong H, Yu S, Song Q, Guo J. Ginsenoside Rb1 improves intestinal aging via regulating the expression of sirtuins in the intestinal epithelium and modulating the gut microbiota of mice. Front Pharmacol 2022; 13:991597. [PMID: 36238549 PMCID: PMC9552198 DOI: 10.3389/fphar.2022.991597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal aging seriously affects the absorption of nutrients of the aged people. Ginsenoside Rb1 (GRb1) which has multiple functions on treating gastrointestinal disorders is one of the important ingredients from Ginseng, the famous herb in tradition Chinese medicine. However, it is still unclear if GRb1 could improve intestinal aging. To investigate the function and mechanism of GRb1 on improving intestinal aging, GRb1 was administrated to 104-week-old C57BL/6 mice for 6 weeks. The jejunum, colon and feces were collected for morphology, histology, gene expression and gut microbiota tests using H&E staining, X-gal staining, qPCR, Western blot, immunofluorescence staining, and 16S rDNA sequencing technologies. The numbers of cells reduced and the accumulation of senescent cells increased in the intestinal crypts of old mice, and administration of GRb1 could reverse them. The protein levels of CLDN 2, 3, 7, and 15 were all decreased in the jejunum of old mice, and administration of GRb1 could significantly increase them. The expression levels of Tert, Lgr5, mKi67, and c-Myc were all significantly reduced in the small intestines of old mice, and GRb1 significantly increased them at transcriptional or posttranscriptional levels. The protein levels of SIRT1, SIRT3, and SIRT6 were all reduced in the jejunum of old mice, and GRb1 could increase the protein levels of them. The 16S rDNA sequencing results demonstrated the dysbiosis of the gut microbiota of old mice, and GRb1 changed the composition and functions of the gut microbiota in the old mice. In conclusion, GRb1 could improve the intestinal aging via regulating the expression of Sirtuins family and modulating the gut microbiota in the aged mice.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Keying Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| |
Collapse
|
12
|
Luís C, Maduro AT, Pereira P, Mendes JJ, Soares R, Ramalho R. Nutritional senolytics and senomorphics: Implications to immune cells metabolism and aging – from theory to practice. Front Nutr 2022; 9:958563. [PMID: 36159455 PMCID: PMC9493043 DOI: 10.3389/fnut.2022.958563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is a natural physiological process, but one that poses major challenges in an increasingly aging society prone to greater health risks such as diabetes, cardiovascular disease, cancer, frailty, increased susceptibility to infection, and reduced response to vaccine regimens. The loss of capacity for cell regeneration and the surrounding tissue microenvironment itself is conditioned by genetic, metabolic, and even environmental factors, such as nutrition. The senescence of the immune system (immunosenescence) represents a challenge, especially when associated with the presence of age-related chronic inflammation (inflammaging) and affecting the metabolic programming of immune cells (immunometabolism). These aspects are linked to poorer health outcomes and therefore present an opportunity for host-directed interventions aimed at both eliminating senescent cells and curbing the underlying inflammation. Senotherapeutics are a class of drugs and natural products that delay, prevent, or reverse the senescence process – senolytics; or inhibit senescence-associated secretory phenotype – senomorphics. Natural senotherapeutics from food sources – nutritional senotherapeutics – may constitute an interesting way to achieve better age-associated outcomes through personalized nutrition. In this sense, the authors present herein a framework of nutritional senotherapeutics as an intervention targeting immunosenescence and immunometabolism, identifying research gaps in this area, and gathering information on concluded and ongoing clinical trials on this subject. Also, we present future directions and ideation for future clinical possibilities in this field.
Collapse
Affiliation(s)
- Carla Luís
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana T. Maduro
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Paula Pereira
- Nutritional Immunology – Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Applied Nutrition Study Group (Grupo de Estudos em Nutrição Aplicada – G.E.N.A.-IUEM), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - José João Mendes
- Nutritional Immunology – Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Renata Ramalho
- Nutritional Immunology – Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Applied Nutrition Study Group (Grupo de Estudos em Nutrição Aplicada – G.E.N.A.-IUEM), Egas Moniz Higher Education School, Monte de Caparica, Portugal
- Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
- *Correspondence: Renata Ramalho,
| |
Collapse
|
13
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
14
|
SCA ® Slows the Decline of Functional Parameters Associated with Senescence in Skin Cells. Int J Mol Sci 2022; 23:ijms23126538. [PMID: 35742982 PMCID: PMC9224471 DOI: 10.3390/ijms23126538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
The identification of compounds and natural ingredients that can counteract tissue stress and dysfunction induced by aging in skin cells is warranted. Here, we investigated the activity of the secretion from the snail Cryptomphalus aspersa (SCA®), an active compound with well-established beneficial effects on skin integrity and aging. To determinate its senescence-regulation mechanisms, we used a model where damage was induced by hydrogen peroxide (H2O2). The results showed that SCA® positively modulated factors involved in cell senescence such as β-galactosidase and cell morphology, secretory efficiency markers (SIRT1/6 and carboxymethyl-lysine), and metabolic and redox homeostasis (mTOR and ROS). This study demonstrated a novel compound that is activity-modulating, reduces cell senescence, and increases longevity to maintain skin homeostasis and functionality.
Collapse
|