1
|
Zhang X, Li J, Zhang L, Wu X, Wang Y, Zhang L, Zhou Y, Han L, Wang L, Liu E. Integration WGCNA with LC-MS data for evaluating the processing status and transformation rules of Ligustri Lucidi Fructus: A novel strategy for evaluating the processing technology of traditional Chinese medicines. Talanta 2024; 282:127029. [PMID: 39418977 DOI: 10.1016/j.talanta.2024.127029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ligustri Lucidi Fructus (LLF) is a traditional Chinese medicine (TCM) to treat hepatopathy and osteopathy. Wine-processed LLF (WLLF) was much more widely used than raw LLF (RLLF) in clinical practice, however, there is no consensus on processing time. To investigate the processing status of WLLF and transformation rules during processing, a UHPLC-Q-Orbitrap-MS method combined with data-independent acquisition (DIA) mode was firstly established and 227 compounds were identified or tentatively identified. Subsequently, a novel strategy using integration weighted gene co-expression network analysis (WGCNA) with LC-MS data was proposed. A total of 73 differential metabolites were screened out between RLLF and WLLF (wine steaming for 18 h). Meanwhile, the concentration of 11 differential compounds for WLLF was quantified. Finally, correlations between compounds were analyzed by WGCNA and the top five compounds negatively correlated with salidroside were validated, revealing that G13, specnuezhenide, oleuropein, acteoside, and neonuzhenide could be transformed into salidroside and its analogues during processing, respectively. The results indicated that our proposed strategy could be effectively employed to evaluate the processing status of TCMs.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinyan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaolin Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijun Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Wang B, Wu W, Wang Z, Chen Z, Wang X. Soil-Mulching Treatment Enhances the Content of Stilbene in Grape Berries: A Transcriptomic and Metabolomic Analysis. Foods 2024; 13:3208. [PMID: 39410242 PMCID: PMC11476259 DOI: 10.3390/foods13193208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Soil mulching is a useful agronomic practice that promotes early fruit maturation and affects fruit quality. However, the regulatory mechanism of fruit metabolites under soil-mulching treatments remains unknown. In this study, variations in the gene sets and metabolites of grape berries after mulching (rice straw + felt + plastic film) using transcriptome and metagenomic sequencing were investigated. The results of the cluster analysis and orthogonal projection to latent structures discriminant analysis of the metabolites showed a difference between the mulching and control groups, as did the principal component analysis results for the transcriptome. In total, 36 differentially expressed metabolites were identified, of which 10 (resveratrol, ampelopsin F, piceid, 3,4'-dihydroxy-5-methoxystilbene, ε-viniferin, trans resveratrol, epsilon-viniferin, 3'-hydroxypterostilbene, 1-methyl-resveratrol, and pterostil-bene) were stilbenes. Their content increased after mulching, indicating that stilbene synthase activity increased after mulching. The weighted gene co-expression network analysis revealed that the turquoise and blue modules were positively and negatively related to stilbene compounds. The network analysis identified two seed genes (VIT_09s0054g00610, VIT_13s0156g00260) and two transcription factors (VIT_13s0156g00260, VIT_02s0025g04590). Overall, soil mulching promoted the accumulation of stilbene compounds in grapes, and the results provided key genetic information for further studies.
Collapse
Affiliation(s)
| | | | | | | | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing 210014, China; (B.W.)
| |
Collapse
|
3
|
Abhijith Shankar PS, Parida P, Bhardwaj R, Yadav A, Swapnil P, Seth CS, Meena M. Deciphering molecular regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) signalling networks in Oryza genus amid environmental stress. PLANT CELL REPORTS 2024; 43:185. [PMID: 38951279 DOI: 10.1007/s00299-024-03264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
The Oryza genus, containing Oryza sativa L., is quintessential to sustain global food security. This genus has a lot of sophisticated molecular mechanisms to cope with environmental stress, particularly during vulnerable stages like flowering. Recent studies have found key involvements and genetic modifications that increase resilience to stress, including exogenous application of melatonin, allantoin, and trehalose as well as OsSAPK3 and OsAAI1 in the genetic realm. Due to climate change and anthropogenic reasons, there is a rise in sea level which raises a concern of salinity stress. It is tackled through osmotic adjustment and ion homeostasis, mediated by genes like P5CS, P5CR, GSH1, GSH2, and SPS, and ion transporters like NHX, NKT, and SKC, respectively. Oxidative damage is reduced by a complex action of antioxidants, scavenging RONS. A complex action of genes mediates cold stress with studies highlighting the roles of OsWRKY71, microRNA2871b, OsDOF1, and OsICE1. There is a need to research the mechanism of action of proteins like OsRbohA in ROS control and the action of regulatory genes in stress response. This is highly relevant due to the changing climate which will raise a lot of environmental changes that will adversely affect production and global food security if certain countermeasures are not taken. Overall, this study aims to unravel the molecular intricacies of ROS and RNS signaling networks in Oryza plants under stress conditions, with the ultimate goal of informing strategies for enhancing stress tolerance and crop performance in this important agricultural genus.
Collapse
Affiliation(s)
- P S Abhijith Shankar
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Pallabi Parida
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| |
Collapse
|
4
|
Qin T, Wang Y, Pu Z, Shi N, Dormatey R, Wang H, Sun C. Comprehensive Transcriptome and Proteome Analyses Reveal the Drought Responsive Gene Network in Potato Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1530. [PMID: 38891338 PMCID: PMC11175002 DOI: 10.3390/plants13111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The root system plays a decisive role in the growth and development of plants. The water requirement of a root system depends strongly on the plant species. Potatoes are an important food and vegetable crop grown worldwide, especially under irrigation in arid and semi-arid regions. However, the expected impact of global warming on potato yields calls for an investigation of genes related to root development and drought resistance signaling pathways in potatoes. In this study, we investigated the molecular mechanisms of different drought-tolerant potato root systems in response to drought stress under controlled water conditions, using potato as a model. We analyzed the transcriptome and proteome of the drought-sensitive potato cultivar Atlantic (Atl) and the drought-tolerant cultivar Qingshu 9 (Q9) under normal irrigation (CK) and weekly drought stress (D). The results showed that a total of 14,113 differentially expressed genes (DEGs) and 5596 differentially expressed proteins (DEPs) were identified in the cultivars. A heat map analysis of DEGs and DEPs showed that the same genes and proteins in Atl and Q9 exhibited different expression patterns under drought stress. Weighted gene correlation network analysis (WGCNA) showed that in Atl, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched pathways were related to pyruvate metabolism and glycolysis, as well as cellular signaling and ion transmembrane transporter protein activity. However, GO terms and KEGG-enriched pathways related to phytohormone signaling and the tricarboxylic acid cycle were predominantly enriched in Q9. The present study provides a unique genetic resource to effectively explore the functional genes and uncover the molecular regulatory mechanism of the potato root system in response to drought stress.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Zhuanfang Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Ningfan Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Richard Dormatey
- CSIR—Crops Research Institute, P.O. Box 3785, Kumasi 00233, Ghana;
| | - Huiqiong Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| |
Collapse
|
5
|
Yang X, Yu S, Yan S, Wang H, Fang W, Chen Y, Ma X, Han L. Progress in Rice Breeding Based on Genomic Research. Genes (Basel) 2024; 15:564. [PMID: 38790193 PMCID: PMC11121554 DOI: 10.3390/genes15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The role of rice genomics in breeding progress is becoming increasingly important. Deeper research into the rice genome will contribute to the identification and utilization of outstanding functional genes, enriching the diversity and genetic basis of breeding materials and meeting the diverse demands for various improvements. Here, we review the significant contributions of rice genomics research to breeding progress over the last 25 years, discussing the profound impact of genomics on rice genome sequencing, functional gene exploration, and novel breeding methods, and we provide valuable insights for future research and breeding practices.
Collapse
Affiliation(s)
- Xingye Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Shicong Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Hao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Wei Fang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Yanqing Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.Y.); (S.Y.); (H.W.); (W.F.); (Y.C.)
| | - Longzhi Han
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Ding X, Tian Y, Qiu Y, Duan P, Wang X, Li Z, Li L, Liu Y, Wang L. Effects of Long-Term Cryopreservation on the Transcriptomes of Giant Grouper Sperm. Genes (Basel) 2024; 15:523. [PMID: 38674457 PMCID: PMC11050297 DOI: 10.3390/genes15040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The giant grouper fish (Epinephelus lanceolatus), one of the largest and rarest groupers, is a fast-growing economic fish. Grouper sperm is often used for cross-breeding with other fish and therefore sperm cryopreservation is important. However, freezing damage cannot be avoided. Herein, we performed a transcriptome analysis to compare fresh and frozen sperm of the giant grouper with frozen storage times of 0, 23, 49, and 61 months. In total, 1911 differentially expressed genes (DEGs), including 91 in El-0-vs-El-23 (40 upregulated and 51 downregulated), 251 in El-0-vs-El-49 (152 upregulated and 69 downregulated), and 1569 in El-0-vs-El-61 (984 upregulated and 585 downregulated), were obtained in the giant grouper sperm. DEGs were significantly increased at 61 months of cryopreservation (p < 0.05). GO and KEGG enrichment analyses of the DEGs revealed significant enrichment in the pilus assembly, metabolic process, MAPK signaling pathway, apoptosis, and P53 signaling pathway. Time-series expression profiling of the DEGs showed that consistently upregulated modules were also significantly enriched in signaling pathways associated with apoptosis. Four genes, scarb1, odf3, exoc8, and atp5f1d, were associated with mitochondria and flagella in a weighted correlation network analysis. These genes may play an important role in the response to sperm freezing. The experimental results show that long-term cryopreservation results in freezing damage to the giant grouper sperm. This study provides rich data for studies of the mechanism underlying frozen fish sperm damage as well as a technical reference and evaluation index for the long-term cryopreservation of fish sperm.
Collapse
Affiliation(s)
- Xiaoyu Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Yongsheng Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Yishu Qiu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Pengfei Duan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Xinyi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
| | - Zhentong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linlin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linna Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| |
Collapse
|
7
|
Fugate KK, Eide JD, Lafta AM, Tehseen MM, Chu C, Khan MFR, Finger FL. Transcriptomic and metabolomic changes in postharvest sugarbeet roots reveal widespread metabolic changes in storage and identify genes potentially responsible for respiratory sucrose loss. FRONTIERS IN PLANT SCIENCE 2024; 15:1320705. [PMID: 38352647 PMCID: PMC10861796 DOI: 10.3389/fpls.2024.1320705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Endogenous metabolism is primarily responsible for losses in sucrose content and processing quality in postharvest sugarbeet roots. The genes responsible for this metabolism and the transcriptional changes that regulate it, however, are largely unknown. To identify genes and metabolic pathways that participate in postharvest sugarbeet root metabolism and the transcriptional changes that contribute to their regulation, transcriptomic and metabolomic profiles were generated for sugarbeet roots at harvest and after 12, 40 and 120 d storage at 5 and 12°C and gene expression and metabolite concentration changes related to storage duration or temperature were identified. During storage, 8656 genes, or 34% of all expressed genes, and 225 metabolites, equivalent to 59% of detected metabolites, were altered in expression or concentration, indicating extensive transcriptional and metabolic changes in stored roots. These genes and metabolites contributed to a wide range of cellular and molecular functions, with carbohydrate metabolism being the function to which the greatest number of genes and metabolites classified. Because respiration has a central role in postharvest metabolism and is largely responsible for sucrose loss in sugarbeet roots, genes and metabolites involved in and correlated to respiration were identified. Seventy-five genes participating in respiration were differentially expressed during storage, including two bidirectional sugar transporter SWEET17 genes that highly correlated with respiration rate. Weighted gene co-expression network analysis identified 1896 additional genes that positively correlated with respiration rate and predicted a pyruvate kinase gene to be a central regulator or biomarker for respiration rate. Overall, these results reveal the extensive and diverse physiological and metabolic changes that occur in stored sugarbeet roots and identify genes with potential roles as regulators or biomarkers for respiratory sucrose loss.
Collapse
Affiliation(s)
- Karen K. Fugate
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - John D. Eide
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Abbas M. Lafta
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | | - Chenggen Chu
- Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Mohamed F. R. Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- University of Minnesota Extension Service, St. Paul, MN, United States
| | - Fernando L. Finger
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
8
|
Barratt LJ, Franco Ortega S, Harper AL. Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses. FRONTIERS IN PLANT SCIENCE 2024; 14:1252885. [PMID: 38235195 PMCID: PMC10791870 DOI: 10.3389/fpls.2023.1252885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Introduction Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.
Collapse
Affiliation(s)
| | | | - Andrea L. Harper
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
9
|
Guo Y, Zhang L, Li Y, Chen Q, Wen J, Tang J, Song H, Liu T, Lv B, Kang D, Gao S, Chen Z. Integrated multi-omic data and analyses reveal the response pathways of to high-temperature stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14112. [PMID: 38148228 DOI: 10.1111/ppl.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
With the intensification of the greenhouse effect and the continuous rise of global temperature, high temperatures in summer seriously affect the growth of green onion (Allium fistulosum L.var.caespitosum Makino) and reduce its yield and quality. It is important to study the mechanism of heat tolerance in green onion for selecting and breeding new varieties with high-temperature tolerance. In this study, we used the heat-tolerant green onion variety AF60 and heat-sensitive green onion variety AF35 and measured their physiological indexes under different durations of heat stress. The results showed that high-temperature stress adversely affected the water content, protein composition and antioxidant system of green onion. In addition, a comprehensive analysis using transcriptomics and metabolomics showed that heat-tolerant green onions responded positively to heat stress by up-regulating the expression of heat shock proteins, whereas heat-sensitive green onions responded to heat stress by activating the galactose metabolic pathway and maintained normal physiological activities. This study revealed the physiological performance and high-temperature response pathways of different heat-tolerant green onion cultivars under heat stress. The results further deepen the understanding of the molecular mechanism of green onion's heat stress response.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Li Zhang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yang Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Qin Chen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Junli Wen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Juan Tang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huanzhong Song
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dexian Kang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zhendong Chen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
10
|
Dolferus R, Onyemaobi O. Editorial on Genetic Diversity of Plant Tolerance to Environmental Restraints. Genes (Basel) 2023; 14:1992. [PMID: 38002935 PMCID: PMC10670972 DOI: 10.3390/genes14111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Environmental restraints like cold, drought and heat adversely affect growth and development in different ways and at different plant developmental stages, leading to reduced crop yield [...].
Collapse
Affiliation(s)
- Rudy Dolferus
- Commonwealth Scientific & Industrial Research Organisation (CSIRO) Agriculture & Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Olive Onyemaobi
- Commonwealth Scientific & Industrial Research Organisation (CSIRO) Agriculture & Food, GPO Box 1700, Canberra, ACT 2601, Australia;
- CSIRO Agriculture and Food, Floreat, WA 6014, Australia
| |
Collapse
|
11
|
Wu J, Zhang F, Liu G, Abudureheman R, Bai S, Wu X, Zhang C, Ma Y, Wang X, Zha Q, Zhong H. Transcriptome and coexpression network analysis reveals properties and candidate genes associated with grape ( Vitis vinifera L.) heat tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1270933. [PMID: 38023926 PMCID: PMC10643163 DOI: 10.3389/fpls.2023.1270933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Temperature is one of the most important environmental factors affecting grape season growth and geographical distribution. With global warming and the increasing occurrence of extreme high-temperature weather, the impact of high temperatures on grape production has intensified. Therefore, identifying the molecular regulatory networks and key genes involved in grape heat tolerance is crucial for improving the resistance of grapes and promoting sustainable development in grape production. In this study, we observed the phenotypes and cellular structures of four grape varieties, namely, Thompson Seedless (TS), Brilliant Seedless (BS), Jumeigui (JMG), and Shine Muscat (SM), in the naturally high-temperature environment of Turpan. Heat tolerance evaluations were conducted. RNA-seq was performed on 36 samples of the four varieties under three temperature conditions (28°C, 35°C, and 42°C). Through differential expression analysis revealed the fewest differentially expressed genes (DEGs) between the heat-tolerant materials BS and JMG, and the DEGs common to 1890 were identified among the four varieties. The number of differentially expressed genes within the materials was similar, with a total of 3767 common DEGs identified among the four varieties. KEGG enrichment analysis revealed that fatty acid metabolism, starch and sucrose metabolism, plant hormone signal transduction, the MAPK signaling pathway, and plant-pathogen interactions were enriched in both between different temperatures of the same material, and between different materials of the same temperature. We also conducted statistical and expression pattern analyses of differentially expressed transcription factors. Based on Weighted correlation network analysis (WGCNA), four specific modules highly correlated with grape heat tolerance were identified by constructing coexpression networks. By calculating the connectivity of genes within the modules and expression analysis, six candidate genes (VIT_04s0044g01430, VIT_17s0000g09190, VIT_01s0011g01350, VIT_01s0011g03330, VIT_04s0008g05610, and VIT_16s0022g00540) related to heat tolerance were discovered. These findings provide a theoretical foundation for further understanding the molecular mechanisms of grape heat tolerance and offer new gene resources for studying heat tolerance in grapes.
Collapse
Affiliation(s)
- Jiuyun Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guohong Liu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Riziwangguli Abudureheman
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shijian Bai
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Xinjiang Uighur Autonomous Region of Grapes and Melons Research Institution, Turpan, China
| | - Xinyu Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuan Zhang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yaning Ma
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiping Wang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Colleges of Horticulture, Northwest A&F University, Xianyang, China
| | - Qian Zha
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Haixia Zhong
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
12
|
Ribone AI, Fass M, Gonzalez S, Lia V, Paniego N, Rivarola M. Co-Expression Networks in Sunflower: Harnessing the Power of Multi-Study Transcriptomic Public Data to Identify and Categorize Candidate Genes for Fungal Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2767. [PMID: 37570920 PMCID: PMC10421300 DOI: 10.3390/plants12152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Fungal plant diseases are a major threat to food security worldwide. Current efforts to identify and list loci involved in different biological processes are more complicated than originally thought, even when complete genome assemblies are available. Despite numerous experimental and computational efforts to characterize gene functions in plants, about ~40% of protein-coding genes in the model plant Arabidopsis thaliana L. are still not categorized in the Gene Ontology (GO) Biological Process (BP) annotation. In non-model organisms, such as sunflower (Helianthus annuus L.), the number of BP term annotations is far fewer, ~22%. In the current study, we performed gene co-expression network analysis using eight terabytes of public transcriptome datasets and expression-based functional prediction to categorize and identify loci involved in the response to fungal pathogens. We were able to construct a reference gene network of healthy green tissue (GreenGCN) and a gene network of healthy and stressed root tissues (RootGCN). Both networks achieved robust, high-quality scores on the metrics of guilt-by-association and selective constraints versus gene connectivity. We were able to identify eight modules enriched in defense functions, of which two out of the three modules in the RootGCN were also conserved in the GreenGCN, suggesting similar defense-related expression patterns. We identified 16 WRKY genes involved in defense related functions and 65 previously uncharacterized loci now linked to defense response. In addition, we identified and classified 122 loci previously identified within QTLs or near candidate loci reported in GWAS studies of disease resistance in sunflower linked to defense response. All in all, we have implemented a valuable strategy to better describe genes within specific biological processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Máximo Rivarola
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA—Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham 1686, Argentina; (A.I.R.); (M.F.); (S.G.); (V.L.); (N.P.)
| |
Collapse
|
13
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
14
|
Zhang S, Liu J, Shi L, Wang Q, Zhang P, Wang H, Liu J, Li H, Li L, Li X, Huang L, Qin P. Identification of core genes associated with different phosphorus levels in quinoa seedlings by weighted gene co-expression network analysis. BMC Genomics 2023; 24:399. [PMID: 37454047 DOI: 10.1186/s12864-023-09507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Quinoa is a highly nutritious and novel crop that is resistant to various abiotic stresses. However, its growth and development is restricted due to its limited utilization of soil phosphorus. Studies on the levels of phosphorus in quinoa seedlings are limited; therefore, we analyzed transcriptome data from quinoa seedlings treated with different concentrations of phosphorus. RESULTS To identify core genes involved in responding to various phosphorus levels, the weighted gene co-expression network analysis method was applied. From the 12,085 expressed genes, an analysis of the gene co-expression network was done. dividing the expressed genes into a total of twenty-five different modules out of which two modules were strongly correlated with phosphorus levels. Subsequently we identified five core genes that correlated strongly either positively or negatively with the phosphorus levels. Gene ontology and assessments of the Kyoto Encyclopedia of Genes and Genomes have uncovered important biological processes and metabolic pathways that are involved in the phosphorus level response. CONCLUSIONS We discovered crucial new core genes that encode proteins from various transcription factor families, such as MYB, WRKY, and ERF, which are crucial for abiotic stress resistance. This new library of candidate genes associated with the phosphorus level responses in quinoa seedlings will help in breeding varieties that are tolerant to phosphorus levels.
Collapse
Affiliation(s)
- Shan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jian Liu
- Institute of Agricultural Sciences of the Lixiache District, Yangzhou, 225007, China
| | - Lian Shi
- Yuxi Academy of Agricultural Sciences, Yuxi, 653100, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinyi Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
15
|
Sferra G, Fantozzi D, Scippa GS, Trupiano D. Key Pathways and Genes of Arabidopsis thaliana and Arabidopsis halleri Roots under Cadmium Stress Responses: Differences and Similarities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091793. [PMID: 37176850 PMCID: PMC10180823 DOI: 10.3390/plants12091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is among the world's major health concerns, as it renders soils unsuitable and unsafe for food and feed production. Phytoremediation has the potential to remediate Cd-polluted soils, but efforts are still needed to develop a deep understanding of the processes underlying it. In this study, we performed a comprehensive analysis of the root response to Cd stress in A. thaliana, which can phytostabilize Cd, and in A. halleri, which is a Cd hyperaccumulator. Suitable RNA-seq data were analyzed by WGCNA to identify modules of co-expressed genes specifically associated with Cd presence. The results evidenced that the genes of the hyperaccumulator A. halleri mostly associated with the Cd presence are finely regulated (up- and downregulated) and related to a general response to chemical and other stimuli. Additionally, in the case of A. thaliana, which can phytostabilize metals, the genes upregulated during Cd stress are related to a general response to chemical and other stimuli, while downregulated genes are associated with functions which, affecting root growth and development, determine a deep modification of the organ both at the cellular and physiological levels. Furthermore, key genes of the Cd-associated modules were identified and confirmed by differentially expressed gene (DEG) detection and external knowledge. Together, key functions and genes shed light on differences and similarities among the strategies that the plants use to cope with Cd and may be considered as possible targets for future research.
Collapse
Affiliation(s)
- Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Daniele Fantozzi
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
16
|
Liu D, Cui Y, Zhao Z, Zhang J, Li S, Liu Z. Transcriptome analysis and mining of genes related to shade tolerance in foxtail millet ( Setaria italica (L.) P. Beauv.). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220953. [PMID: 36249327 PMCID: PMC9532984 DOI: 10.1098/rsos.220953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A stereo interplanting system with foxtail millet beneath chestnut trees is an effective planting method to raise the utilization of land in chestnut orchards, increase yields and improve quality of chestnut nuts. Consequently, exploration of genes involved in shade tolerance response in foxtail millet and breeding shade-tolerant varieties have become urgent issues. In this study, RNA-seq of leaf samples from two shade-tolerant varieties and three shade-intolerant varieties of foxtail millet at the booting stage was performed. Comparisons between the varieties revealed that 70 genes were commonly differentially expressed. Moreover, the ratio of net photosynthetic rate under shaded environment to that under light environment could be used as an indicator of shade tolerance. Subsequently, weighted gene co-expression network analysis was employed to construct a co-expression network and modules were correlated with this ratio. A total of 375 genes were identified as potentially relevant to shade tolerance, among which nine genes were also present in the 70 differentially expressed genes, which implied that they were good candidates for genes involved in shade tolerance. Our results provide valuable resources for elucidation of the molecular mechanisms underlying shade tolerance and will contribute to breeding of shade-tolerant foxtail millet that are adapted to the shaded environment under chestnut trees.
Collapse
Affiliation(s)
- Dan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, People's Republic of China
| | - Yanjiao Cui
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Zilong Zhao
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Jing Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Suying Li
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Zhengli Liu
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| |
Collapse
|