1
|
Farboud SP, Fathi E, Valipour B, Farahzadi R. Toward the latest advancements in cardiac regeneration using induced pluripotent stem cells (iPSCs) technology: approaches and challenges. J Transl Med 2024; 22:783. [PMID: 39175068 PMCID: PMC11342568 DOI: 10.1186/s12967-024-05499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.
Collapse
Affiliation(s)
- Seyedeh Parya Farboud
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Swaidan NT, Soliman NH, Aboughalia AT, Darwish T, Almeshal RO, Al-Khulaifi AA, Taha RZ, Alanany R, Hussein AY, Salloum-Asfar S, Abdulla SA, Abdallah AM, Emara MM. CCN3, POSTN, and PTHLH as potential key regulators of genomic integrity and cellular survival in iPSCs. Front Mol Biosci 2024; 11:1342011. [PMID: 38375508 PMCID: PMC10875024 DOI: 10.3389/fmolb.2024.1342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Reprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability. Our investigation had revealed three candidate genes CCN3, POSTN, and PTHLH that exhibited differential expression levels and potential roles in iPSC stability. Subsequent analyses identified various protein interactions for these candidate genes. POSTN, significantly upregulated in A53T-PD1 iPSC line, showed interactions with extracellular matrix components and potential involvement in Wnt signaling. CCN3, also highly upregulated, demonstrated interactions with TP53, CDKN1A, and factors related to apoptosis and proliferation. PTHLH, while upregulated, exhibited interactions with CDK2 and genes involved in cell cycle regulation. RT-qPCR validation confirmed elevated CCN3 and PTHLH expression in A53T-PD1 iPSCs, aligning with RNA-seq findings. These genes' roles in preserving pluripotency and cellular stability require further exploration. In conclusion, we identified CCN3, POSTN, and PTHLH as potential contributors to genomic integrity and pluripotency maintenance in iPSCs. Their roles in DNA repair, apoptosis evasion, and signaling pathways could offer valuable insights for enhancing reprogramming efficiency and sustaining pluripotency. Further investigations are essential to unravel the mechanisms underlying their actions.
Collapse
Affiliation(s)
- Nuha T. Swaidan
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nada H. Soliman
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T. Aboughalia
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ruba O. Almeshal
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Azhar A. Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Rania Alanany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdallah M. Abdallah
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Chui JS, Izuel‐Idoype T, Qualizza A, de Almeida RP, Piessens L, van der Veer BK, Vanmarcke G, Malesa A, Athanasouli P, Boon R, Vriens J, van Grunsven L, Koh KP, Verfaillie CM, Lluis F. Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF-κВ and WNT Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307554. [PMID: 38037844 PMCID: PMC10870039 DOI: 10.1002/advs.202307554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/02/2023]
Abstract
Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.
Collapse
Affiliation(s)
- Jonathan Sai‐Hong Chui
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Teresa Izuel‐Idoype
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Alessandra Qualizza
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Rita Pires de Almeida
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Lindsey Piessens
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Gert Vanmarcke
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Aneta Malesa
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Paraskevi Athanasouli
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Ruben Boon
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive MedicineDepartment of Development and RegenerationKU LeuvenHerestraat 49Leuven3000Belgium
| | - Leo van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit BrusselLaarbeeklaan 103Brussels1090Belgium
| | - Kian Peng Koh
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Catherine M. Verfaillie
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Frederic Lluis
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| |
Collapse
|
4
|
Häfner SJ, Jansson MD, Altinel K, Andersen KL, Abay-Nørgaard Z, Ménard P, Fontenas M, Sørensen DM, Gay DM, Arendrup FS, Tehler D, Krogh N, Nielsen H, Kraushar ML, Kirkeby A, Lund AH. Ribosomal RNA 2'-O-methylation dynamics impact cell fate decisions. Dev Cell 2023; 58:1593-1609.e9. [PMID: 37473757 DOI: 10.1016/j.devcel.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Translational regulation impacts both pluripotency maintenance and cell differentiation. To what degree the ribosome exerts control over this process remains unanswered. Accumulating evidence has demonstrated heterogeneity in ribosome composition in various organisms. 2'-O-methylation (2'-O-me) of rRNA represents an important source of heterogeneity, where site-specific alteration of methylation levels can modulate translation. Here, we examine changes in rRNA 2'-O-me during mouse brain development and tri-lineage differentiation of human embryonic stem cells (hESCs). We find distinct alterations between brain regions, as well as clear dynamics during cortex development and germ layer differentiation. We identify a methylation site impacting neuronal differentiation. Modulation of its methylation levels affects ribosome association of the fragile X mental retardation protein (FMRP) and is accompanied by an altered translation of WNT pathway-related mRNAs. Together, these data identify ribosome heterogeneity through rRNA 2'-O-me during early development and differentiation and suggest a direct role for ribosomes in regulating translation during cell fate acquisition.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Martin D Jansson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kübra Altinel
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zehra Abay-Nørgaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Fontenas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel M Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David M Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederic S Arendrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark; Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Novak TE, Bailey NP, Stevison LS. Genetic characterization of Macaca arctoides: A highlight of key genes and pathways. Primates 2023:10.1007/s10329-023-01064-x. [PMID: 37142891 DOI: 10.1007/s10329-023-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
When compared to the approximately 22 other macaque species, Macaca arctoides has many unique phenotypes. These traits fall into various phenotypic categories, including genitalia, coloration, mating, and olfactory traits. Here we used a previously identified whole genome set of 690 outlier genes to look for possible genetic explanations of these unique traits. Of these, 279 genes were annotated miRNAs, which are non-coding. Patterns within the remaining outliers in coding genes were investigated using GO (n = 370) and String (n = 383) analysis, which showed many interconnected immune-related genes. Further, we compared the outliers to candidate pathways associated with M. arcotides' unique phenotypes, revealing 10/690 outlier genes that overlapped these four pathways: hedgehog signaling, WNT signaling, olfactory, and melanogenesis. Of these, genes in all pathways except olfactory had higher FST values than the rest of the genes in the genome based on permutation tests. Overall, our results point to many genes each having a small impact on phenotype, working in tandem to cause large systemic changes. Additionally, these results may indicate pleiotropy. This seems to be especially true with the development and coloration of M. arctoides. Our results highlight that development, melanogenesis, immune function, and miRNAs may be heavily involved in M. arctoides' evolutionary history.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | - Nick P Bailey
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| |
Collapse
|
6
|
Sadeghi M, Andani MR, Hajian M, Sanei N, Moradi-Hajidavaloo R, Mahvash N, Jafarpour F, Nasr-Esfahani MH. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS One 2023; 18:e0281331. [PMID: 37075045 PMCID: PMC10115261 DOI: 10.1371/journal.pone.0281331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023] Open
Abstract
The specific role of the canonical WNT/β-catenin signaling pathway during the preimplantation development of goat remains unclear. Our objective was to investigate the expression of β-CATENIN, one of the critical components of Wnt signaling pathway, in IVF embryos and compare it with SCNT embryos in goat. In addition, we evaluated the consequence of inhibition of β-catenin using IWR1. Initially, we observed cytoplasmic expression of β-CATENIN in 2 and 8-16 cell stage embryos and membranous expression of β-CATENIN in compact morula and blastocyst stages. Furthermore, while we observed exclusively membranous localization of β-catenin in IVF blastocysts, we observed both membranous and cytoplasmic localization in SCNT blastocysts. We observed that Inhibition of WNT signaling by IWR1 during compact morula to blastocyst transition (from day 4 till day 7 of in vitro culture) increased blastocyst formation rate in both IVF and SCNT embryos. In conclusion, it seems that WNT signaling system has functional role in the preimplantation goat embryos, and inhibition of this pathway during the period of compact morula to blastocyst transition (D4-D7) can improve preimplantation embryonic development.
Collapse
Affiliation(s)
- Marjan Sadeghi
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafiseh Sanei
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nasrin Mahvash
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
7
|
Burton B, Collins K, Brooks J, Marx K, Renner A, Wilcox K, Moore E, Osowski K, Riley J, Rowe J, Pawlus M. The biotoxin BMAA promotes dysfunction via distinct mechanisms in neuroblastoma and glioblastoma cells. PLoS One 2023; 18:e0278793. [PMID: 36893156 PMCID: PMC9997973 DOI: 10.1371/journal.pone.0278793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/26/2023] [Indexed: 03/10/2023] Open
Abstract
Chronic exposure to the Cyanobacteria biotoxin Beta-methylamino-L-alanine (BMAA) has been associated with development of a sporadic form of ALS called Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), as observed within certain Indigenous populations of Guam and Japan. Studies in primate models and cell culture have supported the association of BMAA with ALS/PDC, yet the pathological mechanisms at play remain incompletely characterized, effectively stalling the development of rationally-designed therapeutics or application of preventative measures for this disease. In this study we demonstrate for the first time that sub-excitotoxic doses of BMAA modulate the canonical Wnt signaling pathway to drive cellular defects in human neuroblastoma cells, suggesting a potential mechanism by which BMAA may promote neurological disease. Further, we demonstrate here that the effects of BMAA can be reversed in cell culture by use of pharmacological modulators of the Wnt pathway, revealing the potential value of targeting this pathway therapeutically. Interestingly, our results suggest the existence of a distinct Wnt-independent mechanism activated by BMAA in glioblastoma cells, highlighting the likelihood that neurological disease may result from the cumulative effects of distinct cell-type specific mechanisms of BMAA toxicity.
Collapse
Affiliation(s)
- Bryan Burton
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kate Collins
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Brooks
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Karly Marx
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Abigail Renner
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kaylei Wilcox
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Ellie Moore
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Keith Osowski
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Riley
- Department of Biology, University of Sioux Falls, Sioux Falls, South Dakota, United States of America
| | - Jarron Rowe
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Matthew Pawlus
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| |
Collapse
|
8
|
Athanasouli P, Balli M, De Jaime-Soguero A, Boel A, Papanikolaou S, van der Veer BK, Janiszewski A, Vanhessche T, Francis A, El Laithy Y, Nigro AL, Aulicino F, Koh KP, Pasque V, Cosma MP, Verfaillie C, Zwijsen A, Heindryckx B, Nikolaou C, Lluis F. The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency. Nat Commun 2023; 14:1210. [PMID: 36869101 PMCID: PMC9984534 DOI: 10.1038/s41467-023-36914-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Martina Balli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Anchel De Jaime-Soguero
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| | - Annekatrien Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Sofia Papanikolaou
- Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, 70013, Heraklion, Greece.,Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Adrian Janiszewski
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Tijs Vanhessche
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Annick Francis
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Youssef El Laithy
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Antonio Lo Nigro
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Vincent Pasque
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.,KU Leuven Institute for Single-Cell Omics (LISCO), 3000, Leuven, Belgium
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Catherine Verfaillie
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Christoforos Nikolaou
- Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
9
|
Askari N, Parvizpour S, Marashi SMB, Baghery F, Khanamani Falahati-Pour S. In vitro and Pharmacoinformatics-based phytochemical screening for anticancer impacts of pistachio hull essential oil on AGS, PLC/PRF/5, and CACO2 cell lines. Mol Biol Rep 2023; 50:465-473. [PMID: 36348196 DOI: 10.1007/s11033-022-07980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The essential oil of pistacia vera (cv. Ohadi) hull (PHEO) was checked using gas chromatography mass spectrometry (GC/MS) analysis. It was studied the genes of the wnt pathway with a certain concentration of PHEO on Human gastric cancer (AGS), human hepatocellular carcinoma (PLC/PRF/5), and human colon cancer (CACO2) cell lines. METHODS AND RESULTS After evaluating the survival rate of cancer cells by MTT test and determining IC50, pistachio hull essential oil (PHEO) was used for 24-hours to treat the cells. After RNA extraction, the expression of wnt pathway genes was evaluated by Real-Time PCR. Considering the crucial role of β-catenin accumulation and its effect on the progression of gastrointestinal cancers, Western blot analysis was also used to determine the effect of PHEO in protein expression of β-catenin inhibition. Also, an in silico analysis was carried out to investigate the effect of PHEO extracted compounds on protein expression of β-catenin and FZD7 inhibition. According to the results, wnt pathway genes were changed in samples treated using PHEO. The results showed the up-regulation of GSK-3β and down-regulation of Wnt-1, LEF-1, TCF1, and CTNNB1 genes compared to the control. CONCLUSION We showed inhibition of β-catenin protein in cancer cell lines. Four compounds of PHEO were suggested to have an inhibition effect on β-catenin and FZD7. These compounds can be useful in the treatment of gastrointestinal cancers. Altogether, the inhibitory role of β-catenin protein can be very effective and can be considered one of the therapeutic goals in the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Sepideh Parvizpour
- Research center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Baghery
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
10
|
Byers C, Spruce C, Fortin HJ, Hartig EI, Czechanski A, Munger SC, Reinholdt LG, Skelly DA, Baker CL. Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells. EMBO J 2022; 41:e109445. [PMID: 34931323 PMCID: PMC8762565 DOI: 10.15252/embj.2021109445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.
Collapse
Affiliation(s)
- Candice Byers
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Haley J Fortin
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | - Ellen I Hartig
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Steven C Munger
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | | | - Christopher L Baker
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
11
|
Yan L, Xie M, Tan B, Xu H, Yi Q, Ye L, Zhang X, Zhang Y, Tian J, Zhu J. The effects of β-catenin on cardiomyogenesis via Islet-1 and MLIP ubiquitination. Exp Biol Med (Maywood) 2022; 247:1956-1967. [PMID: 36112854 PMCID: PMC9742745 DOI: 10.1177/15353702221119792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can treat myocardial injury-related diseases by differentiating into cardiomyocytes. Islet-1 plays an essential role in cardiac maturation. We have discovered that Islet-1 plays a crucial role in the histone acetylation regulation in this process. In addition, to increase GATA4/Nkx2.5 expression, Islet-1 may bind to Gcn5 and then guide Gcn5 to the GATA4/Nkx2.5 promoters, thereby facilitating the differentiation of MSCs into cardiomyocytes. Islet-1 is an important factor in the maturation of the heart. We have previously found that the pivotal factor in histone acetylation regulation in this process is Islet-1. Furthermore, Islet-1 and Gcn5 may boost GATA4/Nkx2.5 expression, which in turn promotes cardiomyocyte differentiation from MSCs. But the molecular mechanism of Islet-1 binding to GCN5 has not been elucidated. In this study, we found that the competitive binding relationship between Islet-1 and MLIP and GCN5 affected myocardial differentiation. The key enzymes of ubiquitination modification of MLIP and Islet-1 are UBE3C and WWP1, respectively. When short hairpin RNA (shRNA) was used to inhibit β-catenin expression, we found that the expression of UBE3C was upregulated, modifying MLIP ubiquitination and reducing its expression, and it upregulated Islet-1 by inhibiting the expression of WWP1. By using the chromatin immunoprecipitation (ChIP) and luciferase reporter system, we found that when MLIP binds to Islet-1, it significantly inhibits the transcriptional activity of Islet-1. In summary, our results show that decreasing β-catenin regulates the ubiquitination of Islet-1 and MLIP, affecting their expression, reducing the amount of Islet-1 binding to MLIP, and increasing the amount of binding to GCN5 in the nucleus. Therefore, the transcriptional activity of Islet-1 is significantly activated, inducing C3H10T1/2 cells to differentiate into myocytes. Further knowledge of biochemical pathways, including molecular signaling pathways, can provide more insights into the myocardial differentiation mechanism of MSCs.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Min Xie
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Bin Tan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Hao Xu
- Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China,Department of Clinical Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 404100, P.R. China
| | - Qin Yi
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Liang Ye
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Xinyuan Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Yin Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Jie Tian
- Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China,Department of Cardiovascular (Internal Medicine), Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China
| | - Jing Zhu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China,Jing Zhu.
| |
Collapse
|
12
|
Pancreatic ductal adenocarcinoma: tumor microenvironment and problems in the development of novel therapeutic strategies. Clin Exp Med 2022:10.1007/s10238-022-00886-1. [DOI: 10.1007/s10238-022-00886-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 12/19/2022]
|
13
|
Learning and memory impairment and transcriptomic profile in hippocampus of offspring after maternal fructose exposure during gestation and lactation. Food Chem Toxicol 2022; 169:113394. [PMID: 36049592 DOI: 10.1016/j.fct.2022.113394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Increased fructose intake is a global issue, especially in mothers. Maternal fructose exposure during gestation and lactation can affect learning and memory in offspring; however, the detailed mechanism is still unknown. The hippocampus is a mind locale liable for learning and memory. Here, we established a maternal high-fructose diet model by administering 13% and 40% fructose water, applied the Morris Water Maze test on postnatal day 60 offspring, and performed full-length RNA sequencing using the Oxford Nanopore Technologies platform to explore the changes in gene expression in the hippocampus. The results showed that learning and memory in offspring were negatively affected. Compared with the control group, 369 differentially expressed transcripts (DETs) were identified in the 13% fructose group, and 501 DETs were identified in the 40% fructose group. Gene Ontology enriched term and Kyoto Encyclopedia of Genes and Genomes enriched pathway analyses identified several terms and pathways related to brain development and cognitive function. Furthermore, we confirmed that the Wnt/β-catenin signaling pathway was down-regulated and neuron degeneration was enhanced. In summary, our results indicate that maternal fructose exposure during gestation and lactation can impair learning and memory in offspring and affect brain function at the transcriptome level.
Collapse
|
14
|
Närvä E, Taskinen ME, Lilla S, Isomursu A, Pietilä M, Weltner J, Isola J, Sihto H, Joensuu H, Zanivan S, Norman J, Ivaska J. MASTL is enriched in cancerous and pluripotent stem cells and influences OCT1/OCT4 levels. iScience 2022; 25:104459. [PMID: 35677646 PMCID: PMC9167974 DOI: 10.1016/j.isci.2022.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022] Open
Abstract
MASTL is a mitotic accelerator with an emerging role in breast cancer progression. However, the mechanisms behind its oncogenicity remain largely unknown. Here, we identify a previously unknown role and eminent expression of MASTL in stem cells. MASTL staining from a large breast cancer patient cohort indicated a significant association with β3 integrin, an established mediator of breast cancer stemness. MASTL silencing reduced OCT4 levels in human pluripotent stem cells and OCT1 in breast cancer cells. Analysis of the cell-surface proteome indicated a strong link between MASTL and the regulation of TGF-β receptor II (TGFBR2), a key modulator of TGF-β signaling. Overexpression of wild-type and kinase-dead MASTL in normal mammary epithelial cells elevated TGFBR2 levels. Conversely, MASTL depletion in breast cancer cells attenuated TGFBR2 levels and downstream signaling through SMAD3 and AKT pathways. Taken together, these results indicate that MASTL supports stemness regulators in pluripotent and cancerous stem cells.
Collapse
Affiliation(s)
- Elisa Närvä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Maria E. Taskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jorma Isola
- Laboratory of Cancer Biology, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| | - Heikki Joensuu
- University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Jim Norman
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, 20520 Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| |
Collapse
|
15
|
Abreu de Oliveira WA, El Laithy Y, Bruna A, Annibali D, Lluis F. Wnt Signaling in the Breast: From Development to Disease. Front Cell Dev Biol 2022; 10:884467. [PMID: 35663403 PMCID: PMC9157790 DOI: 10.3389/fcell.2022.884467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt cascade is a primordial developmental signaling pathway that plays a myriad of essential functions throughout development and adult homeostasis in virtually all animal species. Aberrant Wnt activity is implicated in embryonic and tissue morphogenesis defects, and several diseases, most notably cancer. The role of Wnt signaling in mammary gland development and breast cancer initiation, maintenance, and progression is far from being completely understood and is rather shrouded in controversy. In this review, we dissect the fundamental role of Wnt signaling in mammary gland development and adult homeostasis and explore how defects in its tightly regulated and intricated molecular network are interlinked with cancer, with a focus on the breast.
Collapse
Affiliation(s)
- Willy Antoni Abreu de Oliveira
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| | - Youssef El Laithy
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alejandra Bruna
- Centre for Paediatric Oncology Experimental Medicine, Centre for Cancer Evolution, Molecular Pathology Division, London, United Kingdom
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology Laboratory, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| |
Collapse
|
16
|
Cloutier M, Kumar S, Buttigieg E, Keller L, Lee B, Williams A, Mojica-Perez S, Erliandri I, Rocha AMD, Cadigan K, Smith GD, Kalantry S. Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nat Commun 2022; 13:2516. [PMID: 35523820 PMCID: PMC9076865 DOI: 10.1038/s41467-022-30259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation is a paradigm of epigenetic transcriptional regulation. Female human embryonic stem cells (hESCs) often undergo erosion of X-inactivation upon prolonged culture. Here, we investigate the sources of X-inactivation instability by deriving new primed pluripotent hESC lines. We find that culture media composition dramatically influenced the expression of XIST lncRNA, a key regulator of X-inactivation. hESCs cultured in a defined xenofree medium stably maintained XIST RNA expression and coating, whereas hESCs cultured in the widely used mTeSR1 medium lost XIST RNA expression. We pinpointed lithium chloride in mTeSR1 as a cause of XIST RNA loss. The addition of lithium chloride or inhibitors of GSK-3 proteins that are targeted by lithium to the defined hESC culture medium impeded XIST RNA expression. GSK-3 inhibition in differentiating female mouse embryonic stem cells and epiblast stem cells also resulted in a loss of XIST RNA expression. Together, these data may reconcile observed variations in X-inactivation in hESCs and inform the faithful culture of pluripotent stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura Keller
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brandon Lee
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aaron Williams
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandra Mojica-Perez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Indri Erliandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine & Cardiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gary D Smith
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Holtzer L, Wesseling-Rozendaal Y, Verhaegh W, van de Stolpe A. Measurement of activity of developmental signal transduction pathways to quantify stem cell pluripotency and phenotypically characterize differentiated cells. Stem Cell Res 2022; 61:102748. [PMID: 35325817 DOI: 10.1016/j.scr.2022.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022] Open
Abstract
Important challenges in stem cell research and regenerative medicine are reliable assessment of pluripotency state and purity of differentiated cell populations. Pluripotency and differentiation are regulated and determined by activity of developmental signal transduction pathways (STPs). To date activity of these STPs could not be directly measured on a cell sample. Here we validate a novel assay platform for measurement of activity of developmental STPs (STP) for use in stem cells and stem cell derivatives. In addition to previously developed STP assays, we report development of an additional STP assay for the MAPK-AP1 pathway. Subsequently, activity of Notch, Hedgehog, TGFβ, Wnt, PI3K, MAPK-AP1, and NFκB signaling pathways was calculated from Affymetrix transcriptome data of human pluripotent embryonic (hES) and iPS cell lines under different culture conditions, organ-derived multipotent stem cells, and differentiated cell types, to generate quantitative STP activity profiles. Results show that the STP assay technology enables reliable and quantitative measurement of multiple STP activities simultaneously on any individual cell sample. Using the technology, we found that culture conditions dominantly influence the pluripotent stem cell STP activity profile, while the origin of the stem cell line was a minor variable. A pluripotency STP activity profile (Pluripotency qPAP) was defined (active PI3K, MAPK, Hedgehog, Notch, TGFβ, and NFκB pathway, inactive Wnt pathway). Differentiation of hES cells to intestinal progenitor cells resulted in an STP activity profile characterized by active PI3K, Wnt and Notch pathways, comparable to the STP activity profile measured on primary intestinal crypt stem cells. Quantitative STP activity measurement is expected to improve experimental reproducibility and standardization of pluripotent and multipotent stem cell culture/differentiation, and enable controlled manipulation of pluripotency/differentiation state using pathway targeting compounds.
Collapse
Affiliation(s)
- Laurent Holtzer
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | | - Wim Verhaegh
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | |
Collapse
|
18
|
Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol 2022; 10:838356. [PMID: 35359453 PMCID: PMC8963787 DOI: 10.3389/fcell.2022.838356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models’ current ability to mimic blastocysts and give an outlook on potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Erik Vrij
- *Correspondence: Erik Vrij, ; Stefan Giselbrecht,
| |
Collapse
|
19
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
20
|
Świerczek-Lasek B, Dudka D, Bauer D, Czajkowski T, Ilach K, Streminska W, Kominek A, Piwocka K, Ciemerych MA, Archacka K. Comparison of Differentiation Pattern and WNT/SHH Signaling in Pluripotent Stem Cells Cultured under Different Conditions. Cells 2021; 10:cells10102743. [PMID: 34685722 PMCID: PMC8534321 DOI: 10.3390/cells10102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by the ability to self-renew as well as undergo multidirectional differentiation. Culture conditions have a pivotal influence on differentiation pattern. In the current study, we compared the fate of mouse PSCs using two culture media: (1) chemically defined, free of animal reagents, and (2) standard one relying on the serum supplementation. Moreover, we assessed the influence of selected regulators (WNTs, SHH) on PSC differentiation. We showed that the differentiation pattern of PSCs cultured in both systems differed significantly: cells cultured in chemically defined medium preferentially underwent ectodermal conversion while their endo- and mesodermal differentiation was limited, contrary to cells cultured in serum-supplemented medium. More efficient ectodermal differentiation of PSCs cultured in chemically defined medium correlated with higher activity of SHH pathway while endodermal and mesodermal conversion of cells cultured in serum-supplemented medium with higher activity of WNT/JNK pathway. However, inhibition of either canonical or noncanonical WNT pathway resulted in the limitation of endo- and mesodermal conversion of PSCs. In addition, blocking WNT secretion led to the inhibition of PSC mesodermal differentiation, confirming the pivotal role of WNT signaling in this process. In contrast, SHH turned out to be an inducer of PSC ectodermal, not mesodermal differentiation.
Collapse
Affiliation(s)
- Barbara Świerczek-Lasek
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Dudka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Bauer
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Tomasz Czajkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Władysława Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
- Correspondence: ; Tel.: +48-22-55-42-203
| |
Collapse
|
21
|
Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021; 9:709183. [PMID: 34540831 PMCID: PMC8446652 DOI: 10.3389/fcell.2021.709183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.
Collapse
Affiliation(s)
- Dragana Miloradovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Laboratory for Bioengineering, Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- SPEBO Medical Fertility Hospital, Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
22
|
Hosseini F, Alemi F, Malakoti F, Mahmoodpoor A, Younesi S, Yousefi B, Asemi Z. Targeting Wnt/β-catenin signaling by microRNAs as a therapeutic approach in chemoresistant osteosarcoma. Biochem Pharmacol 2021; 193:114758. [PMID: 34481813 DOI: 10.1016/j.bcp.2021.114758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is an adolescent and young adult malignancy that mostly occurs in long bones. The treatment of OS is still a big challenge for clinicians due to increasing chemoresistance, and many efforts are being made today to find more beneficial treatments. In this regard, the use of microRNAs has shown a high capacity to develop promising therapies. By targeting cancer-involved signaling pathways, microRNAs reduce the cellular level of these protein pathways; thereby reducing the growth and invasion of tumors, and even leading cancer cells to apoptosis. One of these oncogenic pathways that play an important role in OS development and can be targeted by microRNAs is the Wnt/β-catenin signaling pathway. Hence, the first goal of this review article is to explain the cross-talk of microRNAs and the Wnt/β-catenin signaling in OS and then discussing recent findings of the use of microRNAs as a therapeutic approach in OS.
Collapse
Affiliation(s)
- Foroogh Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran; Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
23
|
Sidrat T, Rehman ZU, Joo MD, Lee KL, Kong IK. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease. Int J Mol Sci 2021; 22:ijms22041854. [PMID: 33673357 PMCID: PMC7918746 DOI: 10.3390/ijms22041854] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.
Collapse
Affiliation(s)
- Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Zia-Ur Rehman
- Department of Microbiology, Hazara University, Mansehra 21310, Pakistan;
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Kyeong-Lim Lee
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
24
|
Gan YR, Wei L, Wang YZ, Kou ZK, Liang TX, Ding GW, Ding YH, Xie DX. Dickkopf‑1/cysteine‑rich angiogenic inducer 61 axis mediates palmitic acid‑induced inflammation and apoptosis of vascular endothelial cells. Mol Med Rep 2020; 23:122. [PMID: 33300071 PMCID: PMC7751473 DOI: 10.3892/mmr.2020.11761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of mortality around the world, and the presence of atherosclerosis is the most common characteristic in patients with CVDs. Cysteine-rich angiogenic inducer 61 (CCN1) has been reported to serve an important role in the pathogenesis of atherosclerotic lesions. The aim of the present study was to investigate whether CCN1 could regulate the inflammation and apoptosis of endothelial cells induced by palmitic acid (PA). Dickkopf-1 (DKK1) is an important antagonist of the Wnt signaling pathway, which can specifically inhibit the classic Wnt signaling pathway. Firstly, the mRNA and protein expression levels of CCN1 were detected. Additionally, endothelial nitric oxide (NO) synthase (eNOS), DKK1, β-catenin, and inflammation- and apoptosis-associated proteins were measured. Detection of NO was performed using a commercial kit. The expression levels of inflammatory cytokines were assessed to explore the effect of CCN1 on PA-induced inflammation. TUNEL assay was used to detect the apoptosis of endothelial cells. The results revealed that PA upregulated the expression levels of CCN1, inflammatory cytokines and pro-apoptotic proteins in endothelial cells. PA decreased the production of NO, and the levels of phosphorylated-eNOS, whereas knockdown of CCN1 partially abrogated these effects triggered by PA. Furthermore, the Wnt/β-catenin signaling pathway was activated in PA-induced endothelial cells; however, the levels of DKK1 were downregulated. Overexpression of DKK1 could reduce CCN1 expression via inactivation of the Wnt/β-catenin signaling pathway. In conclusion, knockdown of CCN1 attenuated PA-induced inflammation and apoptosis of endothelial cells via inactivating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yi-Rong Gan
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Ling Wei
- Department of Outpatient, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Yan-Zhen Wang
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Zong-Ke Kou
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Tian-Xiang Liang
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Guan-Waner Ding
- Department of Clinical Medicine, Shijiazhuang People's Medical College, Shijiazhuang, Hebei 050599, P.R. China
| | - Yan-Hong Ding
- Department of Anesthesiology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| | - Ding-Xiong Xie
- Gansu Cardiovascular Institute, The First People's Hospital of Lanzhou City, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
25
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
26
|
Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol 2020; 10:200128. [PMID: 33081636 PMCID: PMC7653355 DOI: 10.1098/rsob.200128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
The Wnt signalling pathways are composed of a highly conserved cascade of events that govern cell differentiation, apoptosis and cell orientation. Three major and distinct Wnt signalling pathways have been characterized: the canonical Wnt pathway (or Wnt/β-catenin pathway), the non-canonical planar cell polarity pathway and the non-canonical Wnt/Ca2+ pathway. Altered Wnt signalling pathway has been associated with diverse diseases such as disorders of bone density, different malignancies, cardiac malformations and heart failure. Coronary artery disease is the most common type of heart disease in the United States. Atherosclerosis is a multi-step pathological process, which starts with lipid deposition and endothelial cell dysfunction, triggering inflammatory reactions, followed by recruitment and aggregation of monocytes. Subsequently, monocytes differentiate into tissue-resident macrophages and transform into foam cells by the uptake of modified low-density lipoprotein. Meanwhile, further accumulations of lipids, infiltration and proliferation of vascular smooth muscle cells, and deposition of the extracellular matrix occur under the intima. An atheromatous plaque or hyperplasia of the intima and media is eventually formed, resulting in luminal narrowing and reduced blood flow to the myocardium, leading to chest pain, angina and even myocardial infarction. The Wnt pathway participates in all different stages of this process, from endothelial dysfunction to lipid deposit, and from initial inflammation to plaque formation. Here, we focus on the role of Wnt cascade in pathophysiological mechanisms that take part in coronary artery disease from both clinical and experimental perspectives.
Collapse
Affiliation(s)
- Ya Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Arpita Neogi
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Kaloğlu C, Bulut HE, Hamutoğlu R, Korkmaz EM, Önder O, Dağdeviren T, Aydemir MN. Wingless ligands and beta-catenin expression in the rat endometrium: The role of Wnt3 and Wnt7a/beta-catenin pathway at the embryo-uterine interface. Mol Reprod Dev 2020; 87:1159-1172. [PMID: 32949181 DOI: 10.1002/mrd.23423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/05/2022]
Abstract
Wnt/beta-catenin signaling may play an essential role in endometrial decidualization, placentation, and the establishment of pregnancy. We investigate here the possible roles, immunolocalizations, and synthesis of the Wnt3, Wnt7a, and beta-catenin proteins in the rat endometrium during the estrous cycle and early postimplantation period. Wnt3 and Wnt7a had a similar localization and dynamic expression relative to the endometrial stages. Wnt7a immunostaining was not limited only to the luminal epithelial cells, but also to strong stainings in the stromal and endothelial cells. Wnt3, Wnt7a, and beta-catenin were highly synthesized and colocalized at the trophoblast-decidual interface; and were more obvious in the primary decidual zone, the GTCs, and the ectoplacental cone. Beta-catenin was strongly localized at the borders of the mature decidual cells; however, Wnt3 and Wnt7a immunolocalizations were decreased in those cells. As such, the immunolocalization of Wnt3, Wnt7a, and beta-catenin shifted with decidualization and placentation. The expression level of Wnt3, Wnt7a, and beta-catenin messenger RNAs increased in early pregnancy, and especially between Days 8.5 and 9.5. The dramatic changes in the expression of Wnt3, Wnt7a, and beta-catenin observed during the early days of pregnancy and the estrous cycle may indicate their roles in decidualization, stromal cell proliferation, and trophoblast invasion.
Collapse
Affiliation(s)
- Celal Kaloğlu
- Assisted Reproduction Technology (ART) Center, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Hüseyin E Bulut
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Rasim Hamutoğlu
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Ertan M Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Ozan Önder
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Tuğba Dağdeviren
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Merve N Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas-Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
28
|
Mani SKK, Yan B, Cui Z, Sun J, Utturkar S, Foca A, Fares N, Durantel D, Lanman N, Merle P, Kazemian M, Andrisani O. Restoration of RNA helicase DDX5 suppresses hepatitis B virus (HBV) biosynthesis and Wnt signaling in HBV-related hepatocellular carcinoma. Theranostics 2020; 10:10957-10972. [PMID: 33042264 PMCID: PMC7532671 DOI: 10.7150/thno.49629] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: RNA helicase DDX5 is downregulated during hepatitis B virus (HBV) replication, and poor prognosis HBV-related hepatocellular carcinoma (HCC). The aim of this study is to determine the mechanism and significance of DDX5 downregulation for HBV-driven HCC, and identify biologics to prevent DDX5 downregulation. Methods: Molecular approaches including immunoblotting, qRT-PCR, luciferase transfections, hepatosphere assays, Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), and RNA-seq were used with cellular models of HBV replication, HBV infection, and HBV-related liver tumors, as well as bioinformatic analyses of liver cancer cells from two independent cohorts. Results: We demonstrate that HBV infection induces expression of the proto-oncogenic miR17~92 and miR106b~25 clusters which target the downregulation of DDX5. Increased expression of these miRNAs is also detected in HBV-driven HCCs exhibiting reduced DDX5 mRNA. Stable DDX5 knockdown (DDX5KD) in HBV replicating hepatocytes increased viral replication, and resulted in hepatosphere formation, drug resistance, Wnt activation, and pluripotency gene expression. ATAC-seq of DDX5KD compared to DDX5 wild-type (WT) cells identified accessible chromatin regions enriched in regulation of Wnt signaling genes. RNA-seq analysis comparing WT versus DDX5KD cells identified enhanced expression of multiple genes involved in Wnt pathway. Additionally, expression of Disheveled, DVL1, a key regulator of Wnt pathway activation, was significantly higher in liver cancer cells with low DDX5 expression, from two independent cohorts. Importantly, inhibitors (antagomirs) to miR17~92 and miR106b~25 restored DDX5 levels, reduced DVL1 expression, and suppressed both Wnt activation and viral replication. Conclusion : DDX5 is a negative regulator of Wnt signaling and hepatocyte reprogramming in HCCs. Restoration of DDX5 levels by miR17~92 / miR106b~25 antagomirs in HBV-infected patients can be explored as both antitumor and antiviral strategy.
Collapse
|
29
|
Aulicino F, Pedone E, Sottile F, Lluis F, Marucci L, Cosma MP. Canonical Wnt Pathway Controls mESC Self-Renewal Through Inhibition of Spontaneous Differentiation via β-Catenin/TCF/LEF Functions. Stem Cell Reports 2020; 15:646-661. [PMID: 32822589 PMCID: PMC7486219 DOI: 10.1016/j.stemcr.2020.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is a key regulator of embryonic stem cell (ESC) self-renewal and differentiation. Constitutive activation of this pathway has been shown to increase mouse ESC (mESC) self-renewal and pluripotency gene expression. In this study, we generated a novel β-catenin knockout model in mESCs to delete putatively functional N-terminally truncated isoforms observed in previous knockout models. We showed that aberrant N-terminally truncated isoforms are not functional in mESCs. In the generated knockout line, we observed that canonical Wnt signaling is not active, as β-catenin ablation does not alter mESC transcriptional profile in serum/LIF culture conditions. In addition, we observed that Wnt signaling activation represses mESC spontaneous differentiation in a β-catenin-dependent manner. Finally, β-catenin (ΔC) isoforms can rescue β-catenin knockout self-renewal defects in mESCs cultured in serum-free medium and, albeit transcriptionally silent, cooperate with TCF1 and LEF1 to inhibit mESC spontaneous differentiation in a GSK3-dependent manner. N-terminally truncated β-catenin isoforms are produced in mESCs upon inducible knockout β-Catenin is fully deleted upon CRISPR/Cas9 whole-gene knockout Wnt/β-catenin prevents differentiation without affecting pluripotency genes β-Catenin/TCF/LEF functions are required to prevent spontaneous differentiation
Collapse
Affiliation(s)
- Francesco Aulicino
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain; Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Elisa Pedone
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Francesco Sottile
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 300 Leuven, Belgium
| | - Lucia Marucci
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
30
|
Deng Y, Lao Y, Ruan Q, Zhang J, Luo C, Shi D, Lu F. Activation of Wnt/β-Catenin Signaling Pathway Enhances the Derivation of Buffalo ( Bubalus bubalis) Embryonic Stem Cell-Like Cells. Cell Reprogram 2020; 22:217-225. [PMID: 32673062 DOI: 10.1089/cell.2020.0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Wnt/β-Catenin signaling pathway plays an important role in maintaining self-renewal and pluripotency of human and mouse embryonic stem cells (ESCs). Activation of Wnt/β-Catenin signaling pathway by glycogen synthase kinase-3 (GSK3) inhibitor, the Wnt signaling agonist, could maintain the pluripotency of human and mouse ESCs in the presence of serum. However, the role of signaling pathway in the derivation of buffalo ESCs remains unclear. In this study, we used GSK3 inhibitors (6-bromoindirubin-3'-oxime [BIO] and CHIR99021) and investigated the effect of Wnt/β-Catenin activation on colony formation, proliferation, self-renewal, and pluripotency of Chinese swamp buffalo (buffalo) embryonic stem cell-like cells (ES-like cells), which were isolated from blastocysts. The results showed that buffalo ES-like cells displayed typical morphological characteristics of pluripotent stem cells: positive for alkaline phosphatase staining, expression of pluripotent markers, including OCT4, SOX2, SSEA-1, SSEA-4, LIN28, CH1, NANOG, and the proliferative markers, PCNA and C-MYC. Furthermore, activation of Wnt/β-Catenin signaling pathway by GSK3 inhibitors could promote colony formation and proliferation of buffalo ES-like cells and maintain their undifferentiated state, and upregulate the expression levels of pluripotent-related genes and proliferation-related genes. These results indicated that Wnt/β-Catenin signaling pathway plays an important role in the derivation and pluripotency of buffalo ES-like cells.
Collapse
Affiliation(s)
- Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China
| | - Yanping Lao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China
| | - Qiuyan Ruan
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China
| | - Jun Zhang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China
| | - Chan Luo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Guangxi, China
| |
Collapse
|
31
|
Rotherham M, Nahar T, Goodman T, Telling N, Gates M, El Haj A. Magnetic Mechanoactivation of Wnt Signaling Augments Dopaminergic Differentiation of Neuronal Cells. ACTA ACUST UNITED AC 2020; 3:e1900091. [PMID: 32648650 DOI: 10.1002/adbi.201900091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Indexed: 01/09/2023]
Abstract
Wnt signaling is a key developmental pathway that regulates dopaminergic progenitor cell proliferation and differentiation during neuronal development. This makes Wnt signaling an important therapeutic target for neurodegenerative conditions such as Parkinson's disease. Wnt signaling can be modulated using peptides such as UM206, which bind to the Wnt receptor Frizzled. Previous work has demonstrated remote activation of the Wnt pathway through Frizzled using peptide-functionalized magnetic nanoparticles (MNPs) with magnetic field stimulation. Using this technology, Wnt signaling is remotely activated in the neuronal cell line SH-SY5Y, and the phenotypic response to stimulation is assessed. Results indicate β-catenin translocalization and activation of TCF/LEF responsive transcription in response to MNP and magnetic fields, which result in dopaminergic marker expression when synergistically combined with differentiation factors retinoic acid and the phorbol ester phorbol 12-myristate 13-acetate. This approach is translated into ex vivo postnatal rat brain slices modeling the developing nigrostriatal pathway. Dopaminergic marker expression is maintained in MNP-labeled SH-SY5Y cells after injection and magnetic stimulation. These results demonstrate the translational value of remote control of signal transduction for controlling neuronal precursor cell behavior and highlight the potential applications for controlled cell differentiation as part of cell therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Michael Rotherham
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Tasmin Nahar
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Timothy Goodman
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Neil Telling
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Monte Gates
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Alicia El Haj
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK.,Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| |
Collapse
|
32
|
Sidrat T, Khan AA, Idrees M, Joo MD, Xu L, Lee KL, Kong IK. Role of Wnt Signaling During In-Vitro Bovine Blastocyst Development and Maturation in Synergism with PPARδ Signaling. Cells 2020; 9:cells9040923. [PMID: 32283810 PMCID: PMC7226827 DOI: 10.3390/cells9040923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Wnt/β-catenin signaling plays vital role in the regulation of cellular proliferation, migration, stem cells cell renewal and genetic stability. This pathway is crucial during the early developmental process; however, the distinct role of Wnt/β-catenin signaling during pre-implantation period of bovine embryonic development is obscure. Here, we evaluated the critical role of Wnt/β-catenin pathway in the regulation of bovine blastocyst (BL) development and hatching. 6 bromoindurbin-3’oxime (6-Bio) was used to stimulate the Wnt signaling. Treatment with 6-Bio induced the expression of peroxisome proliferator-activated receptor-delta (PPARδ). Interestingly, the PPARδ co-localized with β-catenin and form a complex with TCF/LEF transcription factor. This complex potentiated the expression of several Wnt directed genes, which regulate early embryonic development. Inhibition of PPARδ with selective inhibitor 4-chloro-N-(2-{[5-trifluoromethyl]-2-pyridyl]sulfonyl}ethyl)benzamide (Gsk3787) severely perturbed the BL formation and hatching. The addition of Wnt agonist successfully rescued the BL formation and hatching ability. Importantly, the activation of PPARδ expression by Wnt stimulation enhanced cell proliferation and fatty acid oxidation (FAO) metabolism to improve BL development and hatching. In conclusion, our study provides the evidence that Wnt induced PPARδ expression co-localizes with β-catenin and is a likely candidate of canonical Wnt pathway for the regulation of bovine embryonic development.
Collapse
Affiliation(s)
- Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.I.); (L.X.)
| | - Abdul Aziz Khan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA;
| | - Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.I.); (L.X.)
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.I.); (L.X.)
| | - Lianguang Xu
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.I.); (L.X.)
| | - Kyeong-Lim Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.I.); (L.X.)
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.I.); (L.X.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
33
|
Swanson GM, Estill M, Diamond MP, Legro RS, Coutifaris C, Barnhart KT, Huang H, Hansen KR, Trussell JC, Coward RM, Zhang H, Goodrich R, Krawetz SA. Human chromatin remodeler cofactor, RNA interactor, eraser and writer sperm RNAs responding to obesity. Epigenetics 2020; 15:32-46. [PMID: 31354029 PMCID: PMC6961666 DOI: 10.1080/15592294.2019.1644880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
In the United States almost 33% of adults are considered obese (BMI > 30 kg/m2). Both animal models and to a lesser extent human studies, have associated BMI, a measure of obesity, with alterations in sperm DNA methylation and RNAs. Sperm RNAs from the Assessment of Multiple Gestations from Ovarian Stimulation trial, were isolated and sequenced. A Generalized Linear Model identified 487 BMI associated human sperm RNA elements (short exon-sized sequences). They partitioned into four patterns; a continual increase with BMI, increase once obese (BMI>30 kg/m2); a steady decrease with BMI; and decrease once overweight (BMI 25 - 30 kg/m2). Gene Ontology revealed a unique relationship between BMI and transcripts associated with chromosome organization, adipogenesis, cellular stress and obesity-related inflammation. Coregulatory networks linked by Chromatin remodeler cofactors, RNA interactors, Erasers and Writers (CREWs) were uncovered to reveal a hierarchical epigenetic response pathway.
Collapse
Affiliation(s)
- Grace M. Swanson
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| | - Molly Estill
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Augusta University, Augusta, USA
| | - Richard S. Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Kurt T. Barnhart
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Hao Huang
- Department of Biostatistics, Yale University School of Public Health, New Haven, USA
| | - Karl R. Hansen
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, USA
| | - J. C. Trussell
- Urology Department, Upstate Medical University, Syracuse, USA
| | - R. Matthew Coward
- Department of Urology, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, USA
| | - Robert Goodrich
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
34
|
Han F, Konkalmatt P, Mokashi C, Kumar M, Zhang Y, Ko A, Farino ZJ, Asico LD, Xu G, Gildea J, Zheng X, Felder RA, Lee REC, Jose PA, Freyberg Z, Armando I. Dopamine D 2 receptor modulates Wnt expression and control of cell proliferation. Sci Rep 2019; 9:16861. [PMID: 31727925 PMCID: PMC6856370 DOI: 10.1038/s41598-019-52528-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
The Wnt/β-catenin pathway is one of the most conserved signaling pathways across species with essential roles in development, cell proliferation, and disease. Wnt signaling occurs at the protein level and via β-catenin-mediated transcription of target genes. However, little is known about the underlying mechanisms regulating the expression of the key Wnt ligand Wnt3a or the modulation of its activity. Here, we provide evidence that there is significant cross-talk between the dopamine D2 receptor (D2R) and Wnt/β-catenin signaling pathways. Our data suggest that D2R-dependent cross-talk modulates Wnt3a expression via an evolutionarily-conserved TCF/LEF site within the WNT3A promoter. Moreover, D2R signaling also modulates cell proliferation and modifies the pathology in a renal ischemia/reperfusion-injury disease model, via its effects on Wnt/β-catenin signaling. Together, our results suggest that D2R is a transcriptional modulator of Wnt/β-catenin signal transduction with broad implications for health and development of new therapeutics.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Primary Cell Culture
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Transfection
- Wnt3A Protein/genetics
- Wnt3A Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Fei Han
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Prasad Konkalmatt
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Chaitanya Mokashi
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Megha Kumar
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Yanrong Zhang
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Allen Ko
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laureano D Asico
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Gaosi Xu
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - John Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiaoxu Zheng
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, 22904, USA
| | - Robin E C Lee
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pedro A Jose
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
35
|
Taleahmad S, Alikhani M, Mollamohammadi S, Yousefi M, Taei A, Hassani SN, Baharvand H, Salekdeh GH. Inhibition of Human Y Chromosome Gene, SRY, Promotes Naïve State of Human Pluripotent Stem Cells. J Proteome Res 2019; 18:4254-4261. [PMID: 31580082 DOI: 10.1021/acs.jproteome.9b00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although males and females have a variety of sexually dimorphic features related to hormonal effects, the genetic basis of dimorphism relies on early embryo development. Two pluripotent states, naïve and primed, emerge during early mammalian development. Identification of signaling pathways that induce differences between these two states can help to modulate conversion of primed cells to naïve cells. Naïve cells have a shorter doubling time and longer survival than their primed counterparts when passaged as single cells. In this study, we sought to explore the role of Y chromosome genes on human pluripotent stem cells (hPSCs) by investigating differential expressions of the male-specific region of the Y chromosome (MSY) genes in primed and naïve cells. Interestingly, we found that several MSY genes, including SRY, showed higher expression levels in primed compared to naïve human embryonic stem cells (hESCs). We hypothesize that SRY prevents WNT/β-catenin signaling by its interaction and inhibition of β-catenin activation in the nucleus. Results of the loss-of-function approach conducted by depletion of SRY indicated increased expressions of pluripotency marker genes and alkaline phosphatase (ALP) activity in the primed cells. SRY reduction was associated with overexpression of WNT signaling target genes AXIN2, Brachury, TCF1, TBX2, and TBX3. We suggest that inhibition of SRY may result in activation of β-catenin and up-regulation of the WNT signaling pathway, both of which are important to naïve conversion.
Collapse
Affiliation(s)
- Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran
| | - Mehdi Alikhani
- Department of Molecular Systems Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran
| | - Meisam Yousefi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran
| | - Seyedeh Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran.,Department of Developmental Biology , University of Science and Culture , Tehran 113145-871 , Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran 16635-148 , Iran.,Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia.,Department of Systems and Synthetic Biology , Agricultural Biotechnology Research Institute of Iran , Karaj 313593315 , Iran
| |
Collapse
|
36
|
Gomez GA, Prasad MS, Wong M, Charney RM, Shelar PB, Sandhu N, Hackland JOS, Hernandez JC, Leung AW, García-Castro MI. WNT/β-catenin modulates the axial identity of embryonic stem cell-derived human neural crest. Development 2019; 146:dev.175604. [PMID: 31399472 DOI: 10.1242/dev.175604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
WNT/β-catenin signaling is crucial for neural crest (NC) formation, yet the effects of the magnitude of the WNT signal remain ill-defined. Using a robust model of human NC formation based on human pluripotent stem cells (hPSCs), we expose that the WNT signal modulates the axial identity of NCs in a dose-dependent manner, with low WNT leading to anterior OTX+ HOX- NC and high WNT leading to posterior OTX- HOX+ NC. Differentiation tests of posterior NC confirm expected derivatives, including posterior-specific adrenal derivatives, and display partial capacity to generate anterior ectomesenchymal derivatives. Furthermore, unlike anterior NC, posterior NC exhibits a transient TBXT+/SOX2+ neuromesodermal precursor-like intermediate. Finally, we analyze the contributions of other signaling pathways in posterior NC formation, which suggest a crucial role for FGF in survival/proliferation, and a requirement of BMP for NC maturation. As expected retinoic acid (RA) and FGF are able to modulate HOX expression in the posterior NC. Surprisingly, early RA supplementation prohibits NC formation. This work reveals for the first time that the amplitude of WNT signaling can modulate the axial identity of NC cells in humans.
Collapse
Affiliation(s)
- Gustavo A Gomez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Man Wong
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Patrick B Shelar
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Nabjot Sandhu
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - James O S Hackland
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Jacqueline C Hernandez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Alan W Leung
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
37
|
Lin L, Wei H, Yi J, Xie B, Chen J, Zhou C, Wang L, Yang Y. Chronic CagA-positive Helicobacter pylori infection with MNNG stimulation synergistically induces mesenchymal and cancer stem cell-like properties in gastric mucosal epithelial cells. J Cell Biochem 2019; 120:17635-17649. [PMID: 31209915 DOI: 10.1002/jcb.29031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
A CagA-positive Helicobacter pylori (H. pylori) infection can cause malignant transformation of human gastric mucosal epithelial cells, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a chemical carcinogen that induces gastric carcinogenesis. Whether this environmental chemocarcinogen may synergistically enhance the risk of H. pylori-infected gastric cancer remains unclear. In this study, we adopted a chronic CagA-positive H. pylori infection with or without MNNG coinduction to establish a cellular model in GES-1 cells and an animal model in C57BL/6J mice. The proliferation, cell phenotype, apoptosis, epithelial-mesenchymal transition (EMT), stemness and tumorigenicity of gastric mucosal epithelial cells were analyzed in vitro and in vivo. The results showed that chronic H. pylori-infected GES-1 cells displayed inhibited apoptosis, abnormal proliferation, enhanced invasion, and migration, increased EMT/mesenchymal phenotype, colony formation and stem cell-like properties, and enhanced tumorsphere-formatting efficiency as well as CD44 expression, a known gastric cancer stem cell (CSC) marker. MNNG synergistically promoted the above actions of chronic H. pylori infection. Further studies in chronic H. pylori-infected C57BL/6J mice models showed that an increased incidence of premalignant lesions in the gastric mucosa tissue of the H. pylori-infected mice had occurred, the mouse gastric mucosa cells exhibited similar mesenchymal and CSC-like properties in the above GES-1 cells, and precancerous lesions and EMT/CSC-like phenotypes were reinforced by the synergistic action of MNNG stimulation. H. pylori infection and/or MNNG induction were capable of causing enhanced expression and activation of Wnt2 and β-catenin, indicating that the Wnt/β-catenin pathway is involved in the actions of H. pylori and MNNG. Taken together, these findings suggest that chronic CagA-positive H. pylori infection with MNNG stimulation synergistically induces mesenchymal and CSC-like properties of gastric mucosal epithelial cells.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.,Hematology Department, Gansu Provincial Cancer Hospital, Lanzhou, Gansu, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Cunmin Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
38
|
Hua L, Wu N, Zhao R, He X, Liu Q, Li X, He Z, Yu L, Yan N. Sphingomyelin Synthase 2 Promotes Endothelial Dysfunction by Inducing Endoplasmic Reticulum Stress. Int J Mol Sci 2019; 20:ijms20122861. [PMID: 31212751 PMCID: PMC6627305 DOI: 10.3390/ijms20122861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Endothelial dysfunction (ED) is an important contributor to atherosclerotic cardiovascular disease. Our previous study demonstrated that sphingomyelin synthase 2 (SMS2) promotes ED. Moreover, endoplasmic reticulum (ER) stress can lead to ED. However, whether there is a correlation between SMS2 and ER stress is unclear. To examine their correlation and determine the detailed mechanism of this process, we constructed a human umbilical vein endothelial cell (HUVEC) model with SMS2 overexpression. These cells were treated with 4-PBA or simvastatin and with LiCl and salinomycin alone. The results showed that SMS2 can promote the phosphorylation of lipoprotein receptor-related protein 6 (LRP6) and activate the Wnt/β-catenin pathway and that activation or inhibition of the Wnt/β-catenin pathway can induce or block ER stress, respectively. However, inhibition of ER stress by 4-PBA can decrease ER stress and ED. Furthermore, when the biosynthesis of cholesterol is inhibited by simvastatin, the reduction in intracellular cholesterol coincides with a decrease in ER stress and ED. Collectively, our results demonstrate that SMS2 can activate the Wnt/β-catenin pathway and promote intracellular cholesterol accumulation, both of which can contribute to the induction of ER stress and finally lead to ED.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Na Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Ruilin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Qian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Xiatian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Lehan Yu
- School of Basic Medical Experiments Center, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
39
|
Pedone E, Marucci L. Role of β-Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes (Basel) 2019; 10:genes10020176. [PMID: 30823613 PMCID: PMC6410200 DOI: 10.3390/genes10020176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cells have developed numerous adaptation mechanisms to external cues by controlling signaling-pathway activity, both qualitatively and quantitatively. The Wnt/β-catenin pathway is a highly conserved signaling pathway involved in many biological processes, including cell proliferation, differentiation, somatic cell reprogramming, development, and cancer. The activity of the Wnt/β-catenin pathway and the temporal dynamics of its effector β-catenin are tightly controlled by complex regulations. The latter encompass feedback loops within the pathway (e.g., a negative feedback loop involving Axin2, a β-catenin transcriptional target) and crosstalk interactions with other signaling pathways. Here, we provide a review shedding light on the coupling between Wnt/β-catenin activation levels and fluctuations across processes and cellular systems; in particular, we focus on development, in vitro pluripotency maintenance, and cancer. Possible mechanisms originating Wnt/β-catenin dynamic behaviors and consequently driving different cellular responses are also reviewed, and new avenues for future research are suggested.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
40
|
Abstract
One critical determinant of levels of gene expression is binding of transcription factors to cognate DNA sequences in promoter and enhancer regions of target genes. Transcription factors are DNA-binding proteins to which transcriptional co-regulators are bound, ultimately resulting in histone modifications that change chromatin structure to regulate transcription. Examples of transcription factors include hormone-activated transcription factors such as the glucocorticoid receptor, transcription factors regulated by cell surface receptors such as FOXO1 and Smad2/Smad3, and many others. Promoter regions typically contain multiple, diverse transcription factor-binding sites. Binding sites for cell-type-specific transcription factors involved in cell fate determination such as Runx2, MyoD, or myogenin are frequently observed. Promoter regions are located within ~2 kb upstream of the transcriptional start site, whereas enhancers may be located at some distance from promoter sequences and exert long-range effects. Here, we will discuss classical and emerging technologies by which one can understand the role of binding of specific transcription factors in regulation of transcription of FOXO genes.
Collapse
Affiliation(s)
- Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J Peters Medical Center, Bronx, NY, USA.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Zhang P, Hua L, Hou H, Du X, He Z, Liu M, Hu X, Yan N. Sphingomyelin synthase 2 promotes H2O2-induced endothelial dysfunction by activating the Wnt/β-catenin signaling pathway. Int J Mol Med 2018; 42:3344-3354. [PMID: 30272329 PMCID: PMC6202097 DOI: 10.3892/ijmm.2018.3888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS) is the primary cause of various cardiovascular and cerebrovascular diseases and has high morbidity and mortality rates. Oxidative stress-induced endothelial cells (ECs) dysfunction is the pathological basis of AS. In addition, sphingomyelin (SM) and the Wnt/β-catenin signaling pathway are considered to be closely associated with AS; however, the specific mechanism is not clear. Therefore, the present study investigated whether SM may induce ECs dysfunction through the Wnt/β-catenin signaling pathway. Firstly, a sphingomyelin synthase 2 (SMS2) overexpression cell model was constructed. It was identified that the expression of SMS2 was increased when ECs were treated with H2O2. In addition, these results demonstrated that SMS2 overexpression promoted apoptosis and macrophage adhesion of H2O2-induced ECs, thereby increasing the expression of β-catenin. Furthermore, SMS activity was inhibited with Dy105, combined with simultaneous treatment with LiCl or H2O2. This additionally confirmed that Dy105 significantly inhibited SMS activity and decreased the level of ECs dysfunction and β-catenin content; however, LiCl served a key role in activating the Wnt/β-catenin signaling pathway to promote ECs dysfunction. Collectively, these results suggested that SMS2 overexpression may promote ECs dysfunction by activating the Wnt/β-catenin signaling pathway, while Dy105 may inhibit the evolution of oxidative stress-induced dysfunction.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyue Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingyue Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojuan Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
42
|
Strome B, Hsu IS, Li Cheong Man M, Zarin T, Nguyen Ba A, Moses AM. Short linear motifs in intrinsically disordered regions modulate HOG signaling capacity. BMC SYSTEMS BIOLOGY 2018; 12:75. [PMID: 29970070 PMCID: PMC6029073 DOI: 10.1186/s12918-018-0597-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/22/2018] [Indexed: 02/04/2023]
Abstract
Background The effort to characterize intrinsically disordered regions of signaling proteins is rapidly expanding. An important class of disordered interaction modules are ubiquitous and functionally diverse elements known as short linear motifs (SLiMs). Results To further examine the role of SLiMs in signal transduction, we used a previously devised bioinformatics method to predict evolutionarily conserved SLiMs within a well-characterized pathway in S. cerevisiae. Using a single cell, reporter-based flow cytometry assay in conjunction with a fluorescent reporter driven by a pathway-specific promoter, we quantitatively assessed pathway output via systematic deletions of individual motifs. We found that, when deleted, 34% (10/29) of predicted SLiMs displayed a significant decrease in pathway output, providing evidence that these motifs play a role in signal transduction. Assuming that mutations in SLiMs have quantitative effects on mechanisms of signaling, we show that perturbations of parameters in a previously published stochastic model of HOG signaling could reproduce the quantitative effects of 4 out of 7 mutations in previously unknown SLiMs. Conclusions Our study suggests that, even in well-characterized pathways, large numbers of functional elements remain undiscovered, and that challenges remain for application of systems biology models to interpret the effects of mutations in signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12918-018-0597-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bob Strome
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Ian Shenyen Hsu
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Mitchell Li Cheong Man
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Taraneh Zarin
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Alex Nguyen Ba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada. .,Center for Analysis of Genome Evolution and Function, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
43
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|