1
|
Toma GA, Dos Santos N, Dos Santos R, Rab P, Kretschmer R, Ezaz T, Bertollo LAC, Liehr T, Porto-Foresti F, Hatanaka T, Tanomtong A, Utsunomia R, Cioffi MB. Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana Scleropages formosus. Int J Mol Sci 2023; 24:ijms24109005. [PMID: 37240350 DOI: 10.3390/ijms24109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.
Collapse
Affiliation(s)
- Gustavo A Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | | | | | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Tariq Ezaz
- Institute for Aplied Ecology, University of Canberra, Canberra 2617, Australia
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | | | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | | | - Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
2
|
Integrating Cytogenetics and Population Genomics: Allopatry and Neo-Sex Chromosomes May Have Shaped the Genetic Divergence in the Erythrinus erythrinus Species Complex (Teleostei, Characiformes). BIOLOGY 2022; 11:biology11020315. [PMID: 35205181 PMCID: PMC8869172 DOI: 10.3390/biology11020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Fish present astonishing diversity, comprising more species than the combined total of all other vertebrates. Here, we integrated cytogenetic and genomic data to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation in the fish species Erythrinus erythrinus. We hypothesized that the presence of multiple sex chromosomes has contributed to the genetic differentiation of populations, which could have potentially accelerated speciation. Abstract Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among populations in terms of different diploid chromosome numbers (2n), karyotype compositions and sex chromosome systems. Here, we analyzed three distinct populations (one of them cytogenetically investigated for the first time) that differed in terms of their chromosomal features (termed karyomorphs) and by the presence or absence of heteromorphic sex chromosomes. We combined cytogenetics with genomic approaches to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation. The results indicated the presence of high genetic differentiation among populations both from cytogenetic and genomic aspects, with long-distance allopatry potentially being the main agent of genetic divergence. One population showed a neo-X1X2Y sexual chromosome system and we hypothesize that this system is associated with enhanced inter-population genetic differentiation which could have potentially accelerated speciation compared to the effect of allopatry alone.
Collapse
|
3
|
Simanovsky S, Medvedev D, Tefera F, Golubtsov A. Derived karyotypes in two elephantfish genera ( Hyperopisus and Pollimyrus): lowest chromosome number in the family Mormyridae (Osteoglossiformes). COMPARATIVE CYTOGENETICS 2021; 15:345-354. [PMID: 34721818 PMCID: PMC8520028 DOI: 10.3897/compcytogen.v15.i4.67681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The African weakly electric elephantfish family Mormyridae comprises 22 genera and almost 230 species. Up-to-date cytogenetic information was available for 17 species representing 14 genera. Here we report chromosome number and morphology in Hyperopisusbebe (Lacepède, 1803) and Pollimyrusisidori (Valenciennes, 1847) collected from the White Nile system in southwestern Ethiopia. Both taxa displayed the diploid chromosome number 2n = 40, but they differed in fundamental numbers: FN = 66 in H.bebe and FN = 72 in P.isidori; previously the same diploid chromosome number 2n = 40 was reported in an undescribed species of Pollimyrus Taverne, 1971 (FN = 42) from the same region. Our results demonstrate that not only pericentric inversions, but fusions also played a substantial role in the evolution of the mormyrid karyotype structure. If the hypothesis that the karyotype structure with 2n = 50-52 and prevalence of the uni-armed chromosomes close to the ancestral condition for the family Mormyridae is correct, the most derived karyotype structures are found in the Mormyrus Linnaeus, 1758 species with 2n = 50 and the highest number of bi-armed elements in their compliments compared to all other mormyrids and in Pollimyrusisidori with the highest number of bi-armed elements among the mormyrids with 2n = 40.
Collapse
Affiliation(s)
- Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Dmitry Medvedev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Fekadu Tefera
- National Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural Research, Sebeta, P.O. Box 64, EthiopiaEthiopian Institute of Agricultural ResearchSebetaEthiopia
| | - Alexander Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
4
|
Yamahira K, Ansai S, Kakioka R, Yaguchi H, Kon T, Montenegro J, Kobayashi H, Fujimoto S, Kimura R, Takehana Y, Setiamarga DHE, Takami Y, Tanaka R, Maeda K, Tran HD, Koizumi N, Morioka S, Bounsong V, Watanabe K, Musikasinthorn P, Tun S, Yun LKC, Masengi KWA, Anoop VK, Raghavan R, Kitano J. Mesozoic origin and 'out-of-India' radiation of ricefishes (Adrianichthyidae). Biol Lett 2021; 17:20210212. [PMID: 34343438 DOI: 10.1098/rsbl.2021.0212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Indian subcontinent has an origin geologically different from Eurasia, but many terrestrial animal and plant species on it have congeneric or sister species in other parts of Asia, especially in the Southeast. This faunal and floral similarity between India and Southeast Asia is explained by either of the two biogeographic scenarios, 'into-India' or 'out-of-India'. Phylogenies based on complete mitochondrial genomes and five nuclear genes were undertaken for ricefishes (Adrianichthyidae) to examine which of these two biogeographic scenarios fits better. We found that Oryzias setnai, the only adrianichthyid distributed in and endemic to the Western Ghats, a mountain range running parallel to the western coast of the Indian subcontinent, is sister to all other adrianichthyids from eastern India and Southeast-East Asia. Divergence time estimates and ancestral area reconstructions reveal that this western Indian species diverged in the late Mesozoic during the northward drift of the Indian subcontinent. These findings indicate that adrianichthyids dispersed eastward 'out-of-India' after the collision of the Indian subcontinent with Eurasia, and subsequently diversified in Southeast-East Asia. A review of geographic distributions of 'out-of-India' taxa reveals that they may have largely fuelled or modified the biodiversity of Eurasia.
Collapse
Affiliation(s)
- Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hajime Yaguchi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Takeshi Kon
- Center for Strategic Research Project, University of the Ryukyus, Okinawa, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shingo Fujimoto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Japan
| | - Davin H E Setiamarga
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Wakayama, Japan
| | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Ken Maeda
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hau D Tran
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Noriyuki Koizumi
- Strategic Planning Headquarters, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Shinsuke Morioka
- Fisheries Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan
| | | | - Katsutoshi Watanabe
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Sein Tun
- Inlay Lake Wildlife Sanctuary, Ministry of Natural Resources and Environmental Conservation, Nyaungshwe, Myanmar
| | - L K C Yun
- Inlay Lake Wildlife Sanctuary, Ministry of Natural Resources and Environmental Conservation, Nyaungshwe, Myanmar
| | | | - V K Anoop
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Rajeev Raghavan
- Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
5
|
Oliveira VCS, Altmanová M, Viana PF, Ezaz T, Bertollo LAC, Ráb P, Liehr T, Al-Rikabi A, Feldberg E, Hatanaka T, Scholz S, Meurer A, de Bello Cioffi M. Revisiting the Karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a Half-Century Delay: Bridging the Gap in the Chromosomal Evolution of Reptiles. Cells 2021; 10:cells10061397. [PMID: 34198806 PMCID: PMC8228166 DOI: 10.3390/cells10061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ hybridization with rDNA and repetitive motifs as a probe, whole chromosome painting (WCP), and comparative genome hybridization. All Caimaninae species have a diploid chromosome number (2n) 42 and karyotypes dominated by acrocentric chromosomes, in contrast to both species of Alligatorinae, which have 2n = 32 and karyotypes that are predominantly metacentric, suggesting fusion/fission rearrangements. Our WCP results supported this scenario by revealing the homeology of the largest metacentric pair present in both Alligator spp. with two smaller pairs of acrocentrics in Caimaninae species. The clusters of 18S rDNA were found on one chromosome pair in all species, except for Paleosuchus spp., which possessed three chromosome pairs bearing these sites. Similarly, comparative genomic hybridization demonstrated an advanced stage of sequence divergence among the caiman genomes, with Paleosuchus standing out as the most divergent. Thus, although Alligatoridae exhibited rather low species diversity and some level of karyotype stasis, their genomic content indicates that they are not as conserved as previously thought. These new data deepen the discussion of cytotaxonomy in this family.
Collapse
Affiliation(s)
- Vanessa C. S. Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic;
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69083-000, Brazil; (P.F.V.); (E.F.)
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia;
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-36-41-939-68-50; Fax: +49-3641-93-96-852
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69083-000, Brazil; (P.F.V.); (E.F.)
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | | | | | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| |
Collapse
|
6
|
Mandal S, Singh A, Sah P, Singh RK, Kumar R, Lal KK, Mohindra V. Genetic and morphological assessment of a vulnerable large catfish, Silonia silondia (Hamilton, 1822), in natural populations from India. JOURNAL OF FISH BIOLOGY 2021; 98:430-444. [PMID: 33044745 DOI: 10.1111/jfb.14587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Silonia silondia is a commercially important fish distributed in Asian countries, which is under threat due to overexploitation. This study focuses on the morphological analysis and genetic variation of S. silondia individuals, through truss network and sequencing of two mitochondrial regions, respectively, from six wild populations of the Ganga and Mahanadi river systems in India. A total of 38 haplotypes was observed by analysing combined mitochondrial genes (cytochrome b + ATPase 6/8) in 247 individuals of S. silondia collected from six populations. Average haplotype and nucleotide diversities were 0.8508 and 0.00231, respectively. Genetic structure analysis showed the predominant cause of genetic variation to be within populations. The two clades were observed among the haplotypes and time of divergence from their most probable ancestor was estimated to be around 0.3949 mya. Analysis of combined mitochondrial genes in six populations of S. silondia resulted into three management units or genetic stocks. The truss network analysis was carried out by interconnecting 12 landmarks from digital images of specimens to identify phenotypic stocks. Sixty-five truss morphometric variables were analysed for geometric shape variation which revealed morphological divergence in River Son specimens. The present study presents molecular markers and genetic diversity data which can be critical input for conservation and management of differentiated populations and future monitoring of the genetic bottleneck. The morphological shape analysis clearly shows that variation in the insertion of adipose fin is an important parameter influencing the morphological discrimination.
Collapse
Affiliation(s)
- Sangeeta Mandal
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Achal Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Priyanka Sah
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Raj Kumar
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Kuldeep K Lal
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| | - Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India
| |
Collapse
|
7
|
de Sousa RPC, Silva-Oliveira GC, Furo IO, de Oliveira-Filho AB, de Brito CDB, Rabelo L, Guimarães-Costa A, de Oliveira EHC, Vallinoto M. The role of the chromosomal rearrangements in the evolution and speciation of Elopiformes fishes (Teleostei; Elopomorpha). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Dutta N, Singh RK, Pathak A, Mohindra V, Mandal S, Kaur G, Lal KK. Mitochondrial DNA markers reveal genetic connectivity among populations of Osteoglossiform fish Chitala chitala. Mol Biol Rep 2020; 47:8579-8592. [PMID: 33083948 DOI: 10.1007/s11033-020-05901-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Genetic diversity and population structure in Indian featherback fish, Chitala chitala (Hamilton, 1822) was investigated by combined analyses of two full mitochondrial genes, ATPase 6/8 and Cytochrome b. A total of 403 individuals, collected from 14 rivers yielded 61 haplotypes. Hierarchical partitioning analysis identified 19.01% variance 'among' and 80.99% variance 'within groups and populations'. The mean coefficient of genetic differentiation (FST) was observed to be significant 0.26 (p < 0.05). Mantel tests rejected the hypothesis that genetic and geographic distances were correlated. The patterns of genetic differentiation, AMOVA and principal coordinate analyses indicated that natural populations were sub-structured and comprised of four genetic stocks of C. chitala in Indian rivers. The results also supported the higher resolution potential of concatenated gene sequences. The knowledge of genetic variation and divergence, from this study, can be utilized for its scientific conservation and management in the wild.
Collapse
Affiliation(s)
- Nimisha Dutta
- National Bureau of Fish Genetic Resources, Lucknow, India.,Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, India
| | | | - Abhinav Pathak
- National Bureau of Fish Genetic Resources, Lucknow, India
| | | | | | - Gurjeet Kaur
- Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, India
| | | |
Collapse
|
9
|
Lavoué S, Zafirah Ghazali S, Amirul Firdaus Jamaluddin J, Azizah Mohd Nor S, Zain KM. Genetic evidence for the recognition of two allopatric species of Asian bronze featherback Notopterus (Teleostei, Osteoglossomorpha, Notopteridae). ZOOSYST EVOL 2020. [DOI: 10.3897/zse.96.51350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fish genus Notopterus Lacepède, 1800 (Notopteridae) currently includes only one species, the Asian bronze featherback Notopterus notopterus (Pallas, 1769). This common freshwater species is widely distributed in the Oriental region, from the Indus basin in the west, the Mekong basin in the east and Java Island in the south. To examine the phylogeographic structure of N. notopterus across its range, we analysed 74 publicly available cytochrome oxidase I (COI) sequences, 72 of them determined from known-origin specimens, along with four newly-determined sequences from Peninsular Malaysian specimens. We found that N. notopterus is a complex of two allopatric species that diverge from each other by 7.5% mean p-distance. The first species is endemic to South Asia (from Indus basin to Ganga-Brahmaputra system), whereas the distribution of the second species is restricted to Southeast Asia. The exact limit between the distributions of these two species is not known, but it should fall somewhere between the Ganga-Brahmaputra and Salween basins, a region already identified as a major faunal boundary in the Oriental region. The name N. notopterus is retained for the Southeast Asian species, while the name Notopterus synurus (Bloch & Schneider, 1801) should be applied to the South Asian species. A comparative morphological study is needed to reveal the degree of morphological differentiation between the two species.
Collapse
|
10
|
Simanovsky S, Medvedev D, Tefera F, Golubtsov A. First cytogenetic information for five Nilotic elephantfishes and a problem of ancestral karyotype of the family Mormyridae (Osteoglossiformes). COMPARATIVE CYTOGENETICS 2020; 14:387-397. [PMID: 32904050 PMCID: PMC7449985 DOI: 10.3897/compcytogen.14i3.52727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 05/17/2023]
Abstract
The elephantfish family Mormyridae is the most diverse lineage of the primitive teleostean clade Osteoglossomorpha distributed in inland waters of all continents except Antarctica and Europe. The family Mormyridae is endemic to Africa and includes 22 genera and almost 230 species. The evolutionary radiation of mormyrids most probably should be attributed to their capability of both generating and receiving weak electric signals. Up-to-date cytogenetic studies have revealed substantial karyotype differentiation among the nine investigated elephantfish species and genera (a single species studied per each genus). In the present study, karyotypes of five species representing five mormyrid genera (four unexplored ones) collected from the White Nile system in southwestern Ethiopia are described for the first time. The results show substantial variety of the diploid chromosome and fundamental numbers: 2n = 48 and FN = 54 in Brevimyrus niger (Günther, 1866), 2n = 50 and FN = 72 in Cyphomyrus petherici (Boulenger, 1898), 2n = 50 and FN = 78 in Hippopotamyrus pictus (Marcusen, 1864), 2n = 50 and FN = 76 in Marcusenius cyprinoides (Linnaeus, 1758), 2n = 52 and FN = 52 in Mormyrops anguilloides (Linnaeus, 1758). Karyotype structure in the latter species seems to be close to the ancestral condition for the family. This hypothesis is discussed in the light of available data on karyotype diversity and phylogeny of mormyrids.
Collapse
Affiliation(s)
- Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| | - Dmitry Medvedev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| | - Fekadu Tefera
- National Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural Research, Sebeta, P.O. Box 64, EthiopiaEthiopian Institute of Agricultural ResearchSebetaEthiopia
| | - Alexander Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| |
Collapse
|
11
|
Toma GA, de Moraes RLR, Sassi FDMC, Bertollo LAC, de Oliveira EA, Rab P, Sember A, Liehr T, Hatanaka T, Viana PF, Marinho MMF, Feldberg E, Cioffi MDB. Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family. PLoS One 2019; 14:e0226746. [PMID: 31856256 PMCID: PMC6922430 DOI: 10.1371/journal.pone.0226746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022] Open
Abstract
Lebiasinidae is a small fish family composed by miniature to small-sized fishes with few cytogenetic data (most of them limited to descriptions of diploid chromosome numbers), thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing, the first cytogenetic data for the red spotted tetra, Copeina guttata, including the standard karyotype, C-banding, repetitive DNA mapping by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH), providing chromosomal patterns and novel insights into the karyotype differentiation of the family. Males and females share diploid chromosome number 2n = 42 and karyotype composed of 2 metacentric (m), 4 submetacentric (sm) and 36 subtelocentric to acrocentric (st-a) chromosomes. Blocks of constitutive heterochromatin were observed in the centromeric and interstitial regions of several chromosomes, in addition to a remarkably large distal block, heteromorphic in size, which fully corresponded with the 18S rDNA sites in the fourth chromosomal pair. This overlap was confirmed by 5S/18S rDNA dual-color FISH. On the other hand, 5S rDNA clusters were situated in the long and short arms of the 2nd and 15th pairs, respectively. No sex-linked karyotype differences were revealed by male/female CGH experiments. The genomic probes from other two lebiasinid species, Lebiasina melanoguttata and Pyrrhulina brevis, showed positive hybridization signals only in the NOR region in the genome of C. guttata. We demonstrated that karyotype diversification in lebiasinids was accompanied by a series of structural and numeric chromosome rearrangements of different types, including particularly fusions and fissions.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Renata Luiza Rosa de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ezequiel Aguiar de Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Secretaria de Estado de Educação de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
12
|
Souza FHSD, Perez MF, Bertollo LAC, Oliveira EAD, Lavoué S, Gestich CC, Ráb P, Ezaz T, Liehr T, Viana PF, Feldberg E, Cioffi MDB. Interspecific Genetic Differences and Historical Demography in South American Arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum). Genes (Basel) 2019; 10:genes10090693. [PMID: 31505864 PMCID: PMC6771150 DOI: 10.3390/genes10090693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
The South American arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum) are emblematic species widely distributed in the Amazon and surrounding basins. Arowana species are under strong anthropogenic pressure as they are extensively exploited for ornamental and food purposes. Until now, limited genetic and cytogenetic information has been available, with only a few studies reporting to their genetic diversity and population structure. In the present study, cytogenetic and DArTseq-derived single nucleotide polymorphism (SNP) data were used to investigate the genetic diversity of the two Osteoglossum species, the silver arowana O. bicirrhosum, and the black arowana O. ferreirai. Both species differ in their 2n (with 2n = 54 and 56 for O. ferreirai and O. bicirrhosum, respectively) and in the composition and distribution of their repetitive DNA content, consistent with their taxonomic status as different species. Our genetic dataset was coupled with contemporary and paleogeographic niche modeling, to develop concurrent demographic models that were tested against each other with a deep learning approach in O. bicirrhosum. Our genetic results reveal that O. bicirrhosum colonized the Tocantins-Araguaia basin from the Amazon basin about one million years ago. In addition, we highlighted a higher genetic diversity of O. bicirrhosum in the Amazon populations in comparison to those from the Tocantins-Araguaia basin.
Collapse
Affiliation(s)
- Fernando Henrique Santos de Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil
| | - Manolo Fernandez Perez
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil
- Secretaria de Estado de Educação de Mato Grosso-SEDUC-MT, Cuiabá, MT 78049-909, Brazil
| | - Sebastien Lavoué
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Carla Cristina Gestich
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07740 Jena, Germany.
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Laboratório de Genética Animal, Av. André Araújo 2936, Petrópolis, CEP 69067-375, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Laboratório de Genética Animal, Av. André Araújo 2936, Petrópolis, CEP 69067-375, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
13
|
Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics. Int J Mol Sci 2019; 20:ijms20174296. [PMID: 31480792 PMCID: PMC6747201 DOI: 10.3390/ijms20174296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Arowanas (Osteoglossinae) are charismatic freshwater fishes with six species and two genera (Osteoglossum and Scleropages) distributed in South America, Asia, and Australia. In an attempt to provide a better assessment of the processes shaping their evolution, we employed a set of cytogenetic and genomic approaches, including i) molecular cytogenetic analyses using C- and CMA3/DAPI staining, repetitive DNA mapping, comparative genomic hybridization (CGH), and Zoo-FISH, along with ii) the genotypic analyses of single nucleotide polymorphisms (SNPs) generated by diversity array technology sequencing (DArTseq). We observed diploid chromosome numbers of 2n = 56 and 54 in O. bicirrhosum and O. ferreirai, respectively, and 2n = 50 in S. formosus, while S. jardinii and S. leichardti presented 2n = 48 and 44, respectively. A time-calibrated phylogenetic tree revealed that Osteoglossum and Scleropages divergence occurred approximately 50 million years ago (MYA), at the time of the final separation of Australia and South America (with Antarctica). Asian S. formosus and Australian Scleropages diverged about 35.5 MYA, substantially after the latest terrestrial connection between Australia and Southeast Asia through the Indian plate movement. Our combined data provided a comprehensive perspective of the cytogenomic diversity and evolution of arowana species on a timescale.
Collapse
|
14
|
de Oliveira EA, Bertollo LAC, Rab P, Ezaz T, Yano CF, Hatanaka T, Jegede OI, Tanomtong A, Liehr T, Sember A, Maruyama SR, Feldberg E, Viana PF, Cioffi MDB. Cytogenetics, genomics and biodiversity of the South American and African Arapaimidae fish family (Teleostei, Osteoglossiformes). PLoS One 2019; 14:e0214225. [PMID: 30908514 PMCID: PMC6433368 DOI: 10.1371/journal.pone.0214225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/09/2019] [Indexed: 11/19/2022] Open
Abstract
Osteoglossiformes represents one of the most ancestral teleost lineages, currently widespread over almost all continents, except for Antarctica. However, data involving advanced molecular cytogenetics or comparative genomics are yet largely limited for this fish group. Therefore, the present investigations focus on the osteoglossiform family Arapaimidae, studying a unique fish model group with advanced molecular cytogenetic genomic tools. The aim is to better explore and clarify certain events and factors that had impact on evolutionary history of this fish group. For that, both South American and African representatives of Arapaimidae, namely Arapaima gigas and Heterotis niloticus, were examined. Both species differed markedly by diploid chromosome numbers, with 2n = 56 found in A. gigas and 2n = 40 exhibited by H. niloticus. Conventional cytogenetics along with fluorescence in situ hybridization revealed some general trends shared by most osteoglossiform species analyzed thus far, such as the presence of only one chromosome pair bearing 18S and 5S rDNA sites and karyotypes dominated by acrocentric chromosomes, resembling thus the patterns of hypothetical ancestral teleost karyotype. Furthermore, the genomes of A. gigas and H. niloticus display remarkable divergence in terms of repetitive DNA content and distribution, as revealed by comparative genomic hybridization (CGH). On the other hand, genomic diversity of single copy sequences studied through principal component analyses (PCA) based on SNP alleles genotyped by the DArT seq procedure demonstrated a very low genetic distance between the South American and African Arapaimidae species; this pattern contrasts sharply with the scenario found in other osteoglossiform species. Underlying evolutionary mechanisms potentially explaining the obtained data have been suggested and discussed.
Collapse
Affiliation(s)
- Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
- Secretaria de Estado de Educação de Mato Grosso–SEDUC-MT, Cuiabá, MT, Brazil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | | | - Alongklod Tanomtong
- Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University, Muang, KhonKaen, Thailand
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Czech Republic
| | - Sandra Regina Maruyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Laboratório de Genética Animal, Petrópolis, CEP: Manaus, AM, Brazil
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Laboratório de Genética Animal, Petrópolis, CEP: Manaus, AM, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, SP, Brazil
| |
Collapse
|
15
|
Barby FF, Bertollo LAC, de Oliveira EA, Yano CF, Hatanaka T, Ráb P, Sember A, Ezaz T, Artoni RF, Liehr T, Al-Rikabi ABH, Trifonov V, de Oliveira EHC, Molina WF, Jegede OI, Tanomtong A, de Bello Cioffi M. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH). Sci Rep 2019; 9:1112. [PMID: 30718776 PMCID: PMC6361938 DOI: 10.1038/s41598-019-38617-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022] Open
Abstract
Notopteridae (Teleostei, Osteoglossiformes) represents an old fish lineage with ten currently recognized species distributed in African and Southeastern Asian rivers. Their karyotype structures and diploid numbers remained conserved over long evolutionary periods, since African and Asian lineages diverged approximately 120 Mya. However, a significant genetic diversity was already identified for these species using molecular data. Thus, why the evolutionary relationships within Notopteridae are so diverse at the genomic level but so conserved in terms of their karyotypes? In an attempt to develop a more comprehensive picture of the karyotype and genome evolution in Notopteridae, we performed comparative genomic hybridization (CGH) and cross-species (Zoo-FISH) whole chromosome painting experiments to explore chromosome-scale intergenomic divergence among seven notopterid species, collected in different African and Southeast Asian river basins. CGH demonstrated an advanced stage of sequence divergence among the species and Zoo-FISH experiments showed diffuse and limited homology on inter-generic level, showing a temporal reduction of evolutionarily conserved syntenic regions. The sharing of a conserved chromosomal region revealed by Zoo-FISH in these species provides perspectives that several other homologous syntenic regions have remained conserved among their genomes despite long temporal isolation. In summary, Notopteridae is an interesting model for tracking the chromosome evolution as it is (i) ancestral vertebrate group with Gondwanan distribution and (ii) an example of animal group exhibiting karyotype stasis. The present study brings new insights into degree of genome divergence vs. conservation at chromosomal and sub-chromosomal level in representative sampling of this group.
Collapse
Affiliation(s)
- Felipe Faix Barby
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
| | - Roberto Ferreira Artoni
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Thomas Liehr
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | | | - Vladimir Trifonov
- Molecular and Cellular Biology, Russian Academy of Sciences, Novosibirsk, Russia
| | - Edivaldo H C de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Belém, Brazil
| | - Wagner Franco Molina
- Department of Cellular Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Oladele Ilesanmi Jegede
- Department of Fisheries and Aquaculture, Adamawa State University, P.M.B. 25, Mubi, Adamawa State, Nigeria
| | - Alongklod Tanomtong
- Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University, Muang, KhonKaen, 40002, Thailand
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
16
|
Hatanaka T, de Oliveira EA, Ráb P, Yano CF, Bertollo LAC, Ezaz T, Jegede OOI, Liehr T, Olaleye VF, de Bello Cioffi M. First chromosomal analysis in Gymnarchus niloticus (Gymnarchidae: Osteoglossiformes): insights into the karyotype evolution of this ancient fish order. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Ezequiel A de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Secretaria de Estado de Educação de Mato Grosso – SEDUC-MT, Cuiabá, MT, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Cassia F Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Canberra, ACT, Australia
| | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Victor F Olaleye
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|