1
|
Garipova S, Matyunina V, Chistoedova A, Markova O, Lubyanova A, Lastochkina O, Pedash E, Avalbaev A, Pusenkova L. Antioxidant System Activity in Roots and Shoots of Bean Cultivars in Response to Seed Treatment with Auxin as a Potential Model of Interaction with Endophytic Bacteria. PLANTS (BASEL, SWITZERLAND) 2024; 13:3365. [PMID: 39683157 DOI: 10.3390/plants13233365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Plant growth-promoting endophytic bacteria (PGPEB), producing auxins, are offered for a promising eco-friendly crop production. Precise bacterial strain selection is essential to ensure consistent and effective plant growth and resilience. Creating a model for the optimal dose-dependent interactions between PGPEB and hosts is necessary for understanding the mechanisms of high-precision selection of the inoculant composition to enhance bacterial preparations' efficacy. This study investigated the impact of pre-sowing treatment with exogenous auxin indole-3-acetic acid (IAA) at various concentrations (0, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001 mg L-1) on the growth and antioxidant responses of three cultivars (cvs) of Phaseolus vulgaris L. (bean): Ufimskaya, Elsa, and Zolotistaya. The findings showed dose-dependent and cultivar-specific responses of 7-day-old bean seedlings to exogenous IAA. Ufimskaya cv exhibited significant increases in shoot, main root, and total root lengths at 0.001 mg L-1 IAA, while higher and lower concentrations inhibited growth. The reduced catalase (CAT) activity in roots and the elevated CAT activity in shoots correlated with shoot length and total root length of Ufimskaya cv. Importantly, the growth parameters exhibited weak or no correlations with malondialdehyde (MDA) and H2O2 content in roots and shoots, which is a peculiarity of the Ufimskaya cv response to exogenic IAA in contrast to the shown earlier response to inoculation with endophytes. The growth of only the main root of Elsa cv peaked at 0.1 mg L-1 IAA, and there were neutral or inhibitory effects with other concentrations. The positive correlation between CAT activity in shoots and the main root length and total root length as well as positive correlation between MDA content in roots and the total root length of Elsa cultivar were revealed. The shoot length and total root length of Zolotistaya cv were neutral or negatively responded to all concentration IAA, but the number of roots increased by 2-4 times. For Zolotistaya cv, positive correlations were observed between CAT activity in roots and the length of the main root and the total root length. Overall, these cultivar-specific antioxidant responses to exogenous IAA may help create models for optimal dose-dependent interactions between auxin-producing PGPEB and plants, enhancing the effectiveness of microbial preparations for consistent bean growth promotion.
Collapse
Affiliation(s)
- Svetlana Garipova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Viktoriia Matyunina
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Aelita Chistoedova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Oksana Markova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Oksana Lastochkina
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Ekaterina Pedash
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Azamat Avalbaev
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Lyudmila Pusenkova
- Bashkir Research Institute of Agriculture, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str. 19, 450059 Ufa, Russia
| |
Collapse
|
2
|
Adeleke BS, Olowe OM, Ayilara MS, Fasusi OA, Omotayo OP, Fadiji AE, Onwudiwe DC, Babalola OO. Biosynthesis of nanoparticles using microorganisms: A focus on endophytic fungi. Heliyon 2024; 10:e39636. [PMID: 39553612 PMCID: PMC11564013 DOI: 10.1016/j.heliyon.2024.e39636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The concept of this review underscores a significant shift towards sustainable agricultural practices, particularly from the view point of microbial biotechnology and nanotechnology. The global food insecurity that causes increasing ecological imbalances is exacerbating food insecurity, and this has necessitated eco-friendly agricultural innovations. The chemical fertilizers usage aims at boosting crop yields, but with negative environmental impact, thus pushing for alternatives. Microbial biotechnology and nanotechnology fields are gaining traction for their potential in sustainable agriculture. Endophytic fungi promise to synthesize nanoparticles (NPs) that can enhance crop productivity and contribute to ecosystem stability. Leveraging on endophytic fungi could be key to achieving food security goals. Endophytic fungi explore diverse mechanisms in enhancing plant growth and resilience to environmental stresses. The application of endophytic fungi in agricultural settings is profound with notable successes. Hence, adopting interdisciplinary research approaches by combining mycology, nanotechnology, agronomy, and environmental science can meaningfully serve as potential pathways and hurdles for the commercialization of these biotechnologies. Therefore, setting regulatory frameworks for endophytic nanomaterials use in agriculture, by considering their safety and environmental impact assessments will potentially provide future research directions in addressing the current constraints and unlock the potential of endophytic fungi in agriculture.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Microbiology Programme, Department of Biological Sciences, School of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwaseun Adeyinka Fasusi
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Deaprtment of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Oluwadara Pelumi Omotayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Hawkesbury Institute for Environment, Western Sydney University, Penrith, Australia
| | - Damian C. Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
3
|
Muhammad M, Wahab A, Waheed A, Mohamed HI, Hakeem KR, Li L, Li WJ. Harnessing bacterial endophytes for environmental resilience and agricultural sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122201. [PMID: 39142107 DOI: 10.1016/j.jenvman.2024.122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
In the current era of environmental disasters and the necessity of sustainable development, bacterial endophytes have gotten attention for their role in improving agricultural productivity and ecological sustainability. This review explores the multifaceted contributions of bacterial endophytes to plant health and ecosystem sustainability. Bacterial endophytes are invaluable sources of bioactive compounds, promising breakthroughs in medicine and biotechnology. They also serve as natural biocontrol agents, reducing the need for synthetic fertilizers and fostering environmentally friendly agricultural practices. It provides eco-friendly solutions that align with the necessity of sustainability since they can improve pest management, increase crop resilience, and facilitate agricultural production. This review also underscores bacterial endophytes' contribution to promoting sustainable and green industrial productions. It also presented how incorporating these microorganisms into diverse industrial sectors can harmonize humankind with ecological stability. The potential of bacterial endophytes has been largely untapped, presenting an opportunity for pioneering advancements in sustainable industrial applications. Their importance caught attention as they provided innovative solutions to the challenging problems of the new era. This review sheds light on the remarkable potential of bacterial endophytes in various industrial sectors. Further research is imperative to discover their multifaceted potential. It will be essential to delve deeper into their mechanisms, broaden their uses, and examine their long-term impacts.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China.
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Heba Ibrahim Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
AbuQamar SF, El-Saadony MT, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mathew BT, Aljasmi AN, Alhammadi HS, Salem HM, Abd El-Mageed TA, Zaghloul RA, Mosa WFA, Ahmed AE, Elrys AS, Saad AM, Alsaeed FA, El-Tarabily KA. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. MARINE POLLUTION BULLETIN 2024; 206:116613. [PMID: 39053258 DOI: 10.1016/j.marpolbul.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
Pesticide contamination has become a global concern. Pesticides can sorb onto suspended particles and deposit into the sedimentary layers of aquatic environments, resulting in ecosystem degradation, pollution, and diseases. Pesticides impact the behavior of aquatic environments by contaminating organic matter in water, which serves as the primary food source for aquatic food webs. Pesticide residues can increase ammonium, nitrite, nitrate, and sulfate in aquatic systems; thus, threatening ecological environment and human health. Several physical, chemical, and biological methodologies have been implemented to effectively remove pesticide traces from aquatic environments. The present review highlights the potential consequences of pesticide exposure on fish and humans, focusing on the (epi)genetic alterations affecting growth, behavior, and immune system. Mitigation strategies (e.g., bioremediation) to prevent/minimize the detrimental impacts of pesticides are also discussed. This review aims to shed light on the awareness in reducing the risk of water pollution for safe and sustainable pesticide management.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar S Alkafaas
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara S Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menoufia University, Shebin El Kom, Menofia, 32511, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Betty T Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Amal N Aljasmi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hajar S Alhammadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taia A Abd El-Mageed
- Department of Soil and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Fatimah A Alsaeed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
5
|
Oubohssaine M, Sbabou L, Aurag J. Potential of the plant growth-promoting rhizobacterium Rhodococcus qingshengii LMR356 in mitigating lead stress impact on Sulla spinosissima L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46002-46022. [PMID: 38980484 DOI: 10.1007/s11356-024-34150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Mining-related lead (Pb) pollution of the soil poses serious hazards to ecosystems and living organisms, including humans. Improved heavy metal phytoremediation efficacy, achieved by using phytostabilizing plants assisted by plant-growth-promoting (PGP) microorganisms, has been presented as an effective strategy for remediating polluted soils. The objective of this research was to examine the response and potential of the plant-growth-promoting bacterium LMR356, a Rhodococcus qingshengii strain isolated from an abandoned mining soil, under lead stress conditions. Compared to non-contaminated culture media, the presence of lead induced a significant decrease in auxin production (from 21.17 to 2.65 μg mL-1) and phosphate solubilization (from 33.60 to 8.22 mg L-1), whereas other PGP traits increased drastically, such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity (from 38.17 to 71.37 nmol mg-1 h-1 α-ketobutyrate), siderophore production (from 69 to 83%), exopolysaccharide production (from 1952.28 to 3637.72 mg mL-1), biofilm formation, and motility. We, therefore, investigated the behavior of Sulla spinosissima L. in the presence or absence of this strain under a variety of experimental conditions. Under hydroponic conditions, Sulla plants showed endurance to varying lead concentrations (500-1000 μM). Inoculation of plants with Rhodococcus qingshengii strain LMR356 enhanced plant tolerance, as demonstrated by the increase in plant biomass (ranging from 14.41 to 79.12%) compared to non-inoculated Pb-stressed and non-stressed control plants. Antioxidant enzyme activities (increasing by -42.71 to 126.8%) and chlorophyll (383.33%) and carotenoid (613.04%) content were also augmented. In addition to its impact on plant lead tolerance, strain LMR356 showed a growth-promoting effect on Sulla plants when cultivated in sterilized non-contaminated sand. Parameters such as plant biomass (16.57%), chlorophyll (24.14%), and carotenoid (30%) contents, as well as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, were all elevated compared to non-inoculated plants. Furthermore, when the same plant species was cultivated in highly polluted soil, inoculation increased plant biomass and improved its physiological properties. These findings demonstrate that LMR356 is a phytobeneficial bacterial strain capable of enhancing Sulla growth under normal conditions and improving its heavy metal tolerance in multi-polluted soils. Thus, it can be considered a promising biofertilizer candidate for growing Sulla spinosissima L. or other selected plants intended for application in restoration and stabilization initiatives aimed at reviving and safeguarding environmentally compromised and polluted soils after mining activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco.
| | - Laila Sbabou
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| |
Collapse
|
6
|
Guha T, Mandal Biswas S. Recent progress in the role of seed endophytic bacteria as plant growth-promoting microorganisms and biocontrol agents. World J Microbiol Biotechnol 2024; 40:218. [PMID: 38806849 DOI: 10.1007/s11274-024-04031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
The importance of microorganisms residing within the host plant for their growth and health is increasingly acknowledged, yet the significance of microbes associated with seeds, particularly seed endophytic bacteria, remains underestimated. Seeds harbor a wide range of bacteria that can boost the growth and resilience of their host plants against environmental challenges. These endophytic associations also offer advantages for germination and seedling establishment, as seed endophytic bacteria are present during the initial stages of plant growth and development. Furthermore, plants can selectively choose bacteria possessing beneficial traits, which are subsequently transmitted through seeds to confer benefits to future generations. Interestingly, even with the ongoing discovery of endophytes in seeds through high-throughput sequencing methods, certain endophytes remain challenging to isolate and culture from seeds, despite their high abundance. These challenges pose difficulties in studying seed endophytes, making many of their effects on plants unclear. In this article, a framework for understanding the assembly and function of seed endophytes, including their sources and colonization processes was outlined in detail and available research on bacterial endophytes discovered within the seeds of various plant species has also been explored. Thus, this current review aims to provide valuable insights into the mechanism of underlying seed endophytic bacteria-host plant interactions and offers significant recommendations for utilizing the seed endophytic bacteria in sustainable agriculture as plant growth promoters and enhancers of environmental stress tolerance.
Collapse
Affiliation(s)
- Titir Guha
- Agricultural & Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Suparna Mandal Biswas
- Agricultural & Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
| |
Collapse
|
7
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
8
|
Babalola OO, Adedayo AA. Endosphere microbial communities and plant nutrient acquisition toward sustainable agriculture. Emerg Top Life Sci 2023; 7:207-217. [PMID: 37975608 PMCID: PMC10754323 DOI: 10.1042/etls20230069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Endophytic microbial communities have essential information for scientists based on their biological contribution to agricultural practices. In the external plant environment, biotic and abiotic factors affect microbial populations before getting into plant tissues. Endophytes are involved in mutualistic and antagonistic activities with the host plant. Microbial communities inhabiting the internal tissues of plant roots depend on their ability to live and contend with other plant microflora. The advantageous ones contribute to soil health and plant growth either directly or indirectly. The microbial communities move via soil-root environment into the endosphere of plants promoting plant growth features like antibiosis, induced systemic resistance, phytohormone synthesis, and bioremediation. Therefore, the existence of these microorganisms contributes to plant genomes, nutrient availability in the soil, the presence of pathogens, and abiotic factors. This review aims at how endophytic microorganisms have displayed great interest in contributing to abundant crop production and phytopathogen inhibition.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag 2046, Mmabatho, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag 2046, Mmabatho, South Africa
| |
Collapse
|
9
|
Sun Z, Adeleke BS, Shi Y, Li C. The seed microbiomes of staple food crops. Microb Biotechnol 2023; 16:2236-2249. [PMID: 37815330 PMCID: PMC10686132 DOI: 10.1111/1751-7915.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
The scientific community increasingly recognized that seed microbiomes are important for plant growth and nutrition. The versatile roles and modulating properties that microbiomes hold in the context of seeds seem to be an inherited approach to avert adverse conditions. These discoveries attracted extensive interest, especially in staple food crops (SFCs) where grain was consumed as food. Along with the rapid expansion of population and industrialization that posed a severe challenge to the yield of SFCs, microbiologists and botanists began to explore and engineer seed microbiomes, for safer and more fruitful grain production. To utilize seed microbiomes, we present an overall review of the most updated scientific literature on three representative SFCs (wheat, rice and maize) using the 5W1H (Which, Where, What, Why, When and How) method that provides a comprehensive understanding of the issue. These include which factors determine the composition of seed microbiomes? Where do seed microbiomes come from? What are these seed microbes? Why do these microbes choose seeds as their destination and when do microbes settle down and become seed communists? In addition, how do seed microbiomes work and can be manipulated effectively? Therefore, answering the aforementioned questions regarding SFCs seed microbiomes remain fundamental in bridging endophytic research gaps and harnessing their ecological services.
Collapse
Affiliation(s)
- Zhongke Sun
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Food Laboratory of ZhongyuanLuoheChina
| | - Bartholomew Saanu Adeleke
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Department of Biological Sciences, School of ScienceOlusegun Agagu University of Science and TechnologyOkitipupaNigeria
| | - Yini Shi
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| | - Chengwei Li
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| |
Collapse
|
10
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
11
|
Sharma I, Raina A, Choudhary M, Apra, Kaul S, Dhar MK. Fungal endophyte bioinoculants as a green alternative towards sustainable agriculture. Heliyon 2023; 9:e19487. [PMID: 37662754 PMCID: PMC10472071 DOI: 10.1016/j.heliyon.2023.e19487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Over the past half century, limited use of synthetic fertilizers, pesticides, and conservation of the environment and natural resources have become the interdependent goals of sustainable agriculture. These practices support agriculture sustainability with less environmental and climatic impacts. Therefore, there is an upsurge in the need to introduce compatible booster methods for maximizing net production. The best straightforward strategy is to explore and utilize plant-associated beneficial microorganisms and their products. Bioinoculants are bioformulations consisting of selected microbial strains on a suitable carrier used in the enhancement of crop production. Fungal endophytes used as bioinoculants confer various benefits to the host, such as protection against pathogens by eliciting immune response, mineralization of essential nutrients, and promoting plant growth. Besides, they also produce various bioactive metabolites, phytohormones, and volatile organic compounds. To design various bioformulations, transdisciplinary approaches like genomics, transcriptomics, metabolomics, proteomics, and microbiome modulation strategies like gene editing and metabolic reconstruction have been explored. These studies will refine the existing knowledge on the diversity, phylogeny and beneficial traits of the microbes. This will also help in synthesizing microbial consortia by evaluating the role of structural and functional elements of communities in a controlled manner. The present review summarizes the beneficial aspects associated with fungal endophytes for capitalizing agricultural outputs, enlists various multi-omics techniques for understanding and modulating the mechanism involved in endophytism and the generation of new bioformulations for providing novel solutions for the enhancement of crop production.
Collapse
Affiliation(s)
- Itika Sharma
- Fungal Biotechnology Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Ashish Raina
- Fungal Biotechnology Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Malvi Choudhary
- Fungal Biotechnology Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Apra
- Fungal Biotechnology Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Sanjana Kaul
- Fungal Biotechnology Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| | - Manoj K. Dhar
- Plant Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, 180006, India
| |
Collapse
|
12
|
Chaudhary R, Kumar V, Gupta S, Naik B, Prasad R, Mishra S, Saris PEJ, Kumar V. Finger Millet ( Eleusine coracana) Plant-Endophyte Dynamics: Plant Growth, Nutrient Uptake, and Zinc Biofortification. Microorganisms 2023; 11:microorganisms11040973. [PMID: 37110396 PMCID: PMC10143119 DOI: 10.3390/microorganisms11040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Endophytic fungi and bacteria were isolated from finger millet and their effects on finger millet growth parameters and zinc and NPK contents in grains were studied. Out of 70 fungal and 112 bacterial endophytes, the two best fungal and bacterial isolates were selected on the basis of zinc solubilization and plant-growth-promoting attributes. The fungal isolates identified were Aspergillus terreus and Lecanicillium sp., and the bacterial isolates were Pseudomonas bijieensis and Priestia megaterium. The endophytic zinc, NPK mobilization, and plant-growth-promoting efficacy were determined in a pot experiment with zinc carbonate as the zinc source. Endophytic-primed plants showed enhanced shoot and root lengths compared to the unprimed control. Endophytes increased the zinc content in grains by between 12.12% and 18.80% compared to control plants. Endophytes also augmented the NPK concentrations in seeds compared to control plants and exhibited stability in a diverse range of pHs, temperatures, and NaCl concentrations, and exhibited growth on various carbohydrate and nitrogen sources. This is the first study reporting the interaction of Aspergillus terreus, Lecanicillium sp., Pseudomonas bijieensis, and Priestia megaterium with finger millet for grain Zn biofortification and NPK concentration enhancement. This study indicated that zinc-dissolving endophytes possess the potential for enhancing the zinc and NPK content in grains in addition to the plant-growth-promoting attributes.
Collapse
Affiliation(s)
- Renu Chaudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| | - Bindu Naik
- Department of Life Sciences, Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun 248002, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100 Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, India
| |
Collapse
|
13
|
Devi R, Verma R, Dhalaria R, Kumar A, Kumar D, Puri S, Thakur M, Chauhan S, Chauhan PP, Nepovimova E, Kuca K. A systematic review on endophytic fungi and its role in the commercial applications. PLANTA 2023; 257:70. [PMID: 36856911 DOI: 10.1007/s00425-023-04087-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
MAIN CONCLUSION EF have been explored for its beneficial impact on environment and for its commercial applications. It has proved its worth in these sectors and showed an impact on biological properties of plants by producing various bioactive molecules and enzymes. Endophytes are plant mutualists that live asymptomatically within plant tissues and exist in almost every plant species. Endophytic fungi benefit from the host plant nutrition, and the host plant gains improved competitive abilities and tolerance against pathogens, herbivores, and various abiotic stresses. Endophytic fungi are one of the most inventive classes which produce secondary metabolites and play a crucial role in human health and other biotic aspects. This review is focused on systematic study on the biodiversity of endophytic fungi in plants, and their role in enhancing various properties of plants such as antimicrobial, antimycobacterial, antioxidant, cytotoxic, anticancer, and biological activity of secondary metabolites produced by various fungal endophytes in host plants reported from 1994 to 2021. This review emphasizes the endophytic fungal population shaped by host genotype, environment, and endophytic fungi genotype affecting host plant. The impact of endophytic fungi has been discussed in detail which influences the commercial properties of plants. Endophytes also have an influence on plant productivity by increasing parameters such as nutrient recycling and phytostimulation. Studies focusing on mechanisms that regulate attenuation of secondary metabolite production in EF would provide much needed impetus on ensuring continued production of bioactive molecules from a indubitable source. If this knowledge is further extensively explored regarding fungal endophytes in plants for production of potential phytochemicals, then it will help in exploring a keen area of interest for pharmacognosy.
Collapse
Affiliation(s)
- Reema Devi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, 249405, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, H.P., 173229, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Monika Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Saurav Chauhan
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, H.P., 173229, India
| | - Prem Parkash Chauhan
- Lal Bahadur Shastri Government Degree College, Saraswati Nagar, Shimla, H.P., 171206, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
14
|
Ayilara MS, Adeleke BS, Akinola SA, Fayose CA, Adeyemi UT, Gbadegesin LA, Omole RK, Johnson RM, Uthman QO, Babalola OO. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol 2023; 14:1040901. [PMID: 36876068 PMCID: PMC9978502 DOI: 10.3389/fmicb.2023.1040901] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Over the years, synthetic pesticides like herbicides, algicides, miticides, bactericides, fumigants, termiticides, repellents, insecticides, molluscicides, nematicides, and pheromones have been used to improve crop yield. When pesticides are used, the over-application and excess discharge into water bodies during rainfall often lead to death of fish and other aquatic life. Even when the fishes still live, their consumption by humans may lead to the biomagnification of chemicals in the body system and can cause deadly diseases, such as cancer, kidney diseases, diabetes, liver dysfunction, eczema, neurological destruction, cardiovascular diseases, and so on. Equally, synthetic pesticides harm the soil texture, soil microbes, animals, and plants. The dangers associated with the use of synthetic pesticides have necessitated the need for alternative use of organic pesticides (biopesticides), which are cheaper, environment friendly, and sustainable. Biopesticides can be sourced from microbes (e.g., metabolites), plants (e.g., from their exudates, essential oil, and extracts from bark, root, and leaves), and nanoparticles of biological origin (e.g., silver and gold nanoparticles). Unlike synthetic pesticides, microbial pesticides are specific in action, can be easily sourced without the need for expensive chemicals, and are environmentally sustainable without residual effects. Phytopesticides have myriad of phytochemical compounds that make them exhibit various mechanisms of action, likewise, they are not associated with the release of greenhouse gases and are of lesser risks to human health compared to the available synthetic pesticides. Nanobiopesticides have higher pesticidal activity, targeted or controlled release with top-notch biocompatibility and biodegradability. In this review, we examined the different types of pesticides, the merits, and demerits of synthetic pesticides and biopesticides, but more importantly, we x-rayed appropriate and sustainable approaches to improve the acceptability and commercial usage of microbial pesticides, phytopesticides, and nanobiopesticides for plant nutrition, crop protection/yield, animal/human health promotion, and their possible incorporation into the integrated pest management system.
Collapse
Affiliation(s)
- Modupe S. Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Bartholomew S. Adeleke
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Biological Sciences, Microbiology Unit, School of Science, Olusegun Agagu University of Science and Technology, Okitipupa, Nigeria
| | - Saheed A. Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Chris A. Fayose
- Department of Agricultural Technology, Ekiti State Polytechnic, Isan-Ekiti, Nigeria
| | - Uswat T. Adeyemi
- Department of Agricultural Economics and Farm Management, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Lanre A. Gbadegesin
- Institute of Mountain Hazards and Environment, University of Chinese Academy of Sciences, Chengdu, China
| | - Richard K. Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | | | - Qudus O. Uthman
- Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Olubukola O. Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
15
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
16
|
Huang B, Chen Y, Pei Z, Jiang L, Zhang Y, Wang J, Wang J. Application of microbial organic fertilizers promotes the utilization of nutrients and restoration of microbial community structure and function in rhizosphere soils after dazomet fumigation. Front Microbiol 2023; 13:1122611. [PMID: 36741882 PMCID: PMC9891460 DOI: 10.3389/fmicb.2022.1122611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Soil fumigant dazomet is a broad-spectrum nematicide and fungicide that can kill non-target microbes. Fungicides or organic fertilizers are often added after fumigation to improve the recovery of soil microbes. However, the effect of adding microbial organic fertilizers (MOF) after fumigation on the structure and function of rhizosphere soil microbial communities of crops is unclear. Methods Therefore, we investigated the effects of adding Junweinong and Junlisu MOFs after dazomet fumigation on the structure and function of rhizosphere microbial communities and its relationship with soil properties and enzyme activities. Results and discussion The results showed that the addition of these two MOFs after dazomet fumigation significantly reduced the rhizosphere soil available phosphorus, available potassium, organic matter content, and urease, alkaline phosphatase, and catalase activities, but increased the soil pH compared with the fumigation treatment. The application of MOFs after fumigation resulted in significant enrichment of bacteria such as Gaiella, norank_f_Vicinamibacteraceae, and Flavisolibacter and fungi such as Peroneutypa, Olpidium, and Microascus in the rhizosphere soil of the crop and increased the relative abundance of functional genes of 13 kinds of amino acids metabolism, pyruvate metabolism, TCA cycle, and pentose phosphate pathway as well as endophytic and epiphytic functional groups in the rhizosphere soil. In particular, NH4 +-N, pH, and AK had the greatest effect on rhizosphere microorganisms. Overall, the addition of MOFs after fumigation promoted crop root nutrient uptake, enhanced rhizosphere soil microbial metabolism, allowed more beneficial communities to colonize the roots, and promoted soil microbiological health.
Collapse
Affiliation(s)
- Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuxuan Chen
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhouyang Pei
- Xuancheng Modern Agricultural Industrial Park, Xuancheng, China
| | - Lianqiang Jiang
- Sichuan Provincial Tobacco Company Liangshanzhou Company, Liangshanzhou, China
| | - Yu Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
17
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
|
18
|
Alsaedi ZS, Ashy RA, Shami AY, Majeed MA, Alswat AM, Baz L, Baeshen MN, Jalal RS. Metagenomic study of the communities of bacterial endophytes in the desert plant Senna Italica and their role in abiotic stress resistance in the plant. BRAZ J BIOL 2022; 82:e267584. [DOI: 10.1590/1519-6984.267584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/22/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract Plant leaves and roots are home to diverse communities of bacteria, which play a significant role in plant health and growth. Although one of the most unfriendly environments for plant growth is deserts, desert plants can influence their surrounding microbial population and choose favorable bacteria that encourage their growth under these severe circumstances. Senna italica is known for its excellent medicinal values as a traditional medical plant, but little is known about its associated endophytic bacterial community under extreme conditions. In the present study, metagenomic sequencing of 16S rRNA was used to report the diversity of endophytic bacterial communities associated with the leaves and roots of the desert medicinal plant Senna italica that was collected from the Asfan region in northeast Jeddah, Saudi Arabia. Analyses of the 16S rRNA sequences at the taxonomic phylum level revealed that bacterial communities in the roots and leaves samples belonged to five phyla, including Cyanobacteria, Proteobacteria, Actinobacteria, Firmicutes, and unclassified phyla. Results indicated that the most common phyla were Cyanobacteria/Chloroplast and Actinobacteria. Analysis of the 16S rRNA sequences at the taxonomic phylum level revealed that bacterial communities in the roots and leaves samples belonged to twelve genera at the taxonomic genus level. The most abundant ones were highlighted for further analysis, including Okibacterium and Streptomyces found in Actinobacteria, which were the dominant genus in roots samples. However, Streptophyta found in Cyanobacteria/Chloroplast was the dominant genus in leaf samples. Metagenomic analysis of medicinal plants leads to identifying novel organisms or genes that may have a role in abiotic stress resistance in the plant. The study of endophytic microbiome taxonomic, phylogenetic, and functional diversity will better know innovative candidates that may be selected as biological agents to enhance agricultural and industrial processes, especially for crop desert agricultural improvement.
Collapse
Affiliation(s)
| | | | - A. Y. Shami
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | - L. Baz
- King Abdulaziz University, Saudi Arabia
| | | | | |
Collapse
|