1
|
Hashmi MZ, Khan S, Kavil YN, Alelyani SS, Al Sehemi AG, Hasnain A, Shakil S, Wang S, Ahmed Z. Spatial distribution and health risks assessment of heavy metals in e-waste dumping sites from Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:279. [PMID: 38958829 DOI: 10.1007/s10653-024-02052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
The present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.258, 2.284-6.587, 3.005-40.72, 8.67-36.88, 12.05-35.03, 1.03-2.43, and 33.13-60.05, respectively. The results revealed that Lahore site of Punjab province indicated more concentration of heavy metals as compared to other sites. The level of Cr at all sites whereas Hg at only two sites exceeds the World Health Organization standards (WHO) for soil. Soil enzyme activity exhibited dynamic trend among the sites. Maximum enzyme activity was observed for urease followed by phosphatase and catalase. Contamination factor (Cf), Pollution load index (PLI), and geo-accumulation index (Igeo) results showed that all the sites are highly contaminated with Cu, Cd, and Pb. Hazard index (HI) was less than 1 for children and adults suggesting non-carcinogenic health risk. Principle component analysis results depicted relation among Cr, Fr, catalase, and actinomycetes; Cd, OM, urease, and bacteria, and Pb, Cu, Zn, Hg, and phosphatase, suggesting soil enzymes and microbial community profiles were influenced by e-waste pollution. Therefore, there is a dire need to introduce sustainable e-waste recycling techniques as well as to make stringent e-waste management policies to reduce further environmental contamination.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Sohaib Khan
- Department of Physical Geography, Nanjing Normal University, Nanjing, China.
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Saeed Saad Alelyani
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Abdullah G Al Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Ahmad Hasnain
- Department of Atmospheric and Ocean Sciences, Institute of Atmospheric, Fudan University, Shanghai, 200438, China
| | - Sidra Shakil
- College of Earth and Environmental Sciences, University of Punjab, Quaid-e-Azam Campus, Lahore, 54000, Pakistan
| | - Shuhong Wang
- School of Resource and Civil Engineering, Northeastern University, Shenyang, China
| | - Zulkifl Ahmed
- School of Resource and Civil Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
2
|
Mazzon M, Bozzi Cionci N, Buscaroli E, Alberoni D, Baffoni L, Di Gioia D, Marzadori C, Barbanti L, Toscano A, Braschi I. Pot experimental trial for assessing the role of different composts on decontamination and reclamation of a polluted soil from an illegal dump site in Southern Italy using Brassica juncea and Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2640-2656. [PMID: 38066270 PMCID: PMC10791941 DOI: 10.1007/s11356-023-31256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
A pot experiment was carried out to evaluate the remediation potential of Brassica juncea and Sorghum bicolor in the decontamination of soil polluted with heavy metals such as copper, lead, tin, and zinc along with polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy hydrocarbons. Two composts obtained from different composting processes were tested as biostimulating agents. At the end of the trial, the effect of plant/compost combinations on soil microbial composition, contaminant removal, biochemical indicators, and plant biomass production was determined. The results highlighted that compost addition improved plant biomass despite slowing down plants' removal of organic and inorganic contaminants. In addition, compost partially enhanced the soil biochemical indicators and modified the relative abundance of the rhizosphere microorganisms. Sorghum showed better mitigation performance than Brassica due to its higher growth. The soil fertility level, the choice of plant species, and microbial richness were found fundamental to perform soil remediation. In contrast, compost was relevant for a higher crop biomass yield.
Collapse
Affiliation(s)
- Martina Mazzon
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Enrico Buscaroli
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy.
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Claudio Marzadori
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Attilio Toscano
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Ilaria Braschi
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| |
Collapse
|
3
|
Liang Q, Tian K, Li L, He Y, Zhao T, Liu B, Wu Q, Huang B, Zhao L, Teng Y. Ecological and human health risk assessment of heavy metals based on their source apportionment in cropland soils around an e-waste dismantling site, Southeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113929. [PMID: 35914396 DOI: 10.1016/j.ecoenv.2022.113929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
An accurate understanding of soil heavy metal (HM) pollution characteristics and source apportionment, and a recognition of the major factors influencing ecological and human health risks (HHRs) are essential for soil HM pollution control and remediation. In this study, 212 surface soils (0-20 cm) and 15 profile soils (0-100 cm) were collected from cropland soils around an e-waste dismantling site in Taizhou city, Zhejiang Province, China. Spatial analysis was used to evaluate the pollution characteristics of HMs (Cd, Cu, Pb, Zn, Cr and Ni). Principal component analysis (PCA) and positive matrix factorization (PMF) were also conducted to quantify their source contributions. A modified source-oriented HHR assessment integrated source-oriented ecological risk and source-oriented HHR assessment was developed to describe the major factors that influenced HHR. Results showed that 94.81 %, 88.21 %, 36.79 % and 47.17 % of Cd, Cu, Pb and Zn, respectively, in surface soils exceeded their screening values in the soil environmental quality standard for agricultural soils (GB 15618-2018). Spatial analysis indicated that high values of Cd, Cu, Pb and Zn were distributed near the e-waste dismantling site. The results of PCA and PMF showed that the primary sources of HMs in the study area are e-waste dismantling activities, natural sources and atmospheric deposition, which contribute 27 %, 46 % and 27 % of HM pollutants, respectively. The results of source-oriented ecological risk and HHR assessment indicated that e-waste dismantling activities and natural sources were primary sources for ecological risk and HHR. However, source-oriented HHR assessment may underestimate the contribution of e-waste dismantling activities by ignoring HM pollution levels. The modified source-oriented HHR assessment highlights that e-waste dismantling activities were major factor that affect noncarcinogenic risk. This study could provide important data support for subsequent environmental remediation of soil HM pollution in cropland soils around e-waste dismantling sites.
Collapse
Affiliation(s)
- Qiang Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kang Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ling Li
- Department of Ecology and Resource Engineering, Wuyi University, Nanping 354300, China
| | - Yue He
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China.
| | - Tiantian Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Benle Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiumei Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
4
|
Fang J, Zhang L, Rao S, Zhang M, Zhao K, Fu W. Spatial variation of heavy metals and their ecological risk and health risks to local residents in a typical e-waste dismantling area of southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:604. [PMID: 35867165 DOI: 10.1007/s10661-022-10296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing concern that soils in e-waste recycling regions are severely contaminated by unregulated e-waste dismantling activities. Hence, it is urgent to reveal the spatial variation of hazardous elements in arable lands close to e-waste stacking and dismantling areas and their potential risks to human beings. We collected 349 topsoil samples based on an intensive grid of 100 m × 100 m in southeastern China. The average concentrations of heavy metals were 1.25 (Cd), 35.44 (Ni), 77.68 (Cr), 77.38 (Pb), 122.14 (Cu), 203.39 (Zn), 0.21 (Hg), and 4.74 (As) mg kg-1, respectively. Compared to the risk screening values of hazardous elements in Chinese agricultural land, Cd and Cu were severely accumulated in the soils. The results of ecological risk analysis revealed that Cd posed the crucial risk among the studied elements. However, the levels of non-carcinogenic and carcinogenic risk were still within the acceptable quantity for adults. Spatial distribution by kriging interpolation displayed that the heavy metals were mainly distributed close to e-waste dismantling sites.
Collapse
Affiliation(s)
- Jia Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Luyao Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Shengting Rao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Minghua Zhang
- Department of Land, Air, and Water Resources, University of California, Davis, CA, 95616, USA
| | - Keli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Weijun Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
5
|
Hashmi MZ, Kaleem M, Farooq U, Su X, Chakraborty P, Rehman SU. Chemical remediation and advanced oxidation process of polychlorinated biphenyls in contaminated soils: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22930-22945. [PMID: 35064511 DOI: 10.1007/s11356-022-18668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated biphenyls (PCBs) are synthetic organic compounds ubiquitously distributed worldwide due to their persistence, long-range atmospheric transport, and bioaccumulation. Owing to teratogenic properties, PCBs are a global environmental problem. Different physical, biological, and chemical techniques are utilized for the remediation of PCBs. This review paper discusses the recent development in photocatalytic and chemical techniques for the remediation of PCBs in contaminated soils. In particular, the photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dichlorination, and advanced oxidation process (Fenton advance oxidation and persulfate oxidation) is discussed and reviewed in detail. The review suggested that advanced oxidation is an efficient remediation technique with 77-99% of removal efficiency of PCBs. Persulfate oxidation is the most suitable technique which could work at normal environmental conditions (such as pH, temperature, soil organic matter (SOM), etc.). Different environmental factors such as pH, temperature, and SOM affect the Fe-based reductive dechlorination and Fenton advance oxidation techniques. The surfactants and organic solvents used in soil washing combined with photocatalytic degradation affect the degradation capability of these techniques. This review will contribute to PCBs degradation by the detailed discussion of development in chemical technique future perspective and research needs.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Chemistry, COMSATS University, Islamabad, Pakistan.
- Pakistan Academy of Science, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.
| | - Muhammad Kaleem
- Department of Chemistry, COMSATS University, Islamabad, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Xiaomei Su
- Department of Environmental Sciences, Zhejiang Normal University, Hangzhou, China
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shams Ur Rehman
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
6
|
Hashmi MZ, Chen K, Khalid F, Yu C, Tang X, Li A, Shen C. Forty years studies on polychlorinated biphenyls pollution, food safety, health risk, and human health in an e-waste recycling area from Taizhou city, China: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4991-5005. [PMID: 34807384 DOI: 10.1007/s11356-021-17516-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
E-waste generation has become a serious environmental challenge worldwide. Taizhou of Zhejiang Province, situated on the southeast coastline of China, has been one of the major e-waste dismantling areas in China for the last 40 years. In this review, we focused on the polychlorinated biphenyl (PCB) trends in environmental compartments, burden and impact to humans, food safety, and health risk assessment from Taizhou, China. The review suggested that PCBs showed dynamic trends in air, soil, water, biodiversity, and sediments. Soils and fish samples indicated higher levels of PCBs than sediments, air, water, and food items. PCB levels decreased in soils with the passage of time. Agriculture soils near the e-waste recycling sites showed more levels of total PCBs than industrial soils and urban soils. Dioxin-like PCB levels were higher in humans near Taizhou, suggesting that e-waste pollution could influence humans. Compared with large-scale plants, simple household workshops contributed more pollution of PCBs to the environment. Pollution index, hazard quotient, and daily intake were higher for PCBs, suggesting Taizhou should be given priority to manage the e-waste pollution. The elevated body burden may have health implications for the next generation. The areas with stricter control measures, strengthened laws and regulations, and more environmentally friendly techniques indicated reduced levels of PCBs. For environment protection and health safety, proper e-waste dismantling techniques, environmentally sound management, awareness, and regular monitoring are very important.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Kezhen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Foqia Khalid
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xianjin Tang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Yasir MW, Siddique MBA, Shabbir Z, Ullah H, Riaz L, Nisa WU, Shah AA. Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: Individual and simultaneous prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146345. [PMID: 33752007 DOI: 10.1016/j.scitotenv.2021.146345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 05/26/2023]
Abstract
Co-existence of polychlorinated biphenyls (PCBs) and hexavalent chromium (Cr(VI)) in the environment due to effluent from industries has aggravated the pollution problem. Both contaminants can alter chemical interactions, processes and impair enzymatic activities in the ecosystem that results in negative impacts on aquatic and terrestrial life. Previously, research has been performed for the fate and transfer of these contaminants individually, but simultaneous removal approaches have not received much attention. Cr(VI) exists in a highly toxic form in the environment once released, whereas location of chlorine atoms in the ring determines PCBs toxicity. Lower chlorinated compounds are easily degradable whereas as high chlorinated compounds require sequential strategy for transformation. Microorganisms can develop different mechanism to detoxify both pollutants. However, occurrence of multiple contaminants in single system can alter the bioremediation efficiency of bacteria. Use of metal resistance bacterial for the degradation of organic compounds has been widely used bioaugmentation strategy. Along with that use of sorbents/bio sorbents, biosurfactants and phytoremediation approaches have already been well reported. Bioremediation strategy with dual potential to detoxify the Cr(VI) and PCBs would be a probable option for simultaneous biotreatment. Application of bioreactors and biofilms covered organic particles can be utilized as efficient bioaugmentation approach. In this review, biotreatment systems and bacterial oxidative and reductive enzymes/processes are explained and possible biotransformation pathway has been purposed for bioremediation of co-contaminated waters.
Collapse
Affiliation(s)
- Muhammad Wahab Yasir
- Department of Environmental Sciences, PMAS-Arid Agriculture University Rawalpindi, Shamsabad Murree Road, Rawalpindi, 46300, Punjab, Pakistan.
| | - Muhammad Bashir Ahmed Siddique
- Department of Environmental Sciences, PMAS-Arid Agriculture University Rawalpindi, Shamsabad Murree Road, Rawalpindi, 46300, Punjab, Pakistan
| | - Zunera Shabbir
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, SD 57006, USA.
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Luqman Riaz
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Waqar-Un- Nisa
- Center for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Pakistan
| |
Collapse
|
8
|
Bungau S, Behl T, Aleya L, Bourgeade P, Aloui-Sossé B, Purza AL, Abid A, Samuel AD. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30528-30550. [PMID: 33905061 DOI: 10.1007/s11356-021-14127-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 05/26/2023]
Abstract
This article is an extensive collection of scientific literature related to the impact of fertilizers on soil microbial and enzymatic activity. Due to the significance of technology in quantitative and qualitative evaluation of agricultural production, this is a basic problem for the present and future of mankind, where the scientific data being of utmost importance related to the topic. The comparison, including pedo-enzymological evaluation of minerals along with organic fertilization, highlights significant differences between mineral and organic fertilizers, confirming the superiority of complex mineral-organic fertilization. Enzymatic indicators that describe and define the soil quality resulted from enzymatic activities value and provide valuable information regarding the soil fertility status. Moreover, soil enzyme responds to soil management as well as to environmental pollutants. Changes of environmental conditions and pollutants like heavy metals and other toxic substances result in a shift in the biological activity of the soil. These changes can destabilize the soil system and cause a decrease in the nutrient pools. To ensure the improvement of fertilization techniques, the properties of nanoparticles are exploited that can efficiently release nutrients to plant cells. Numerous researches were performed in order to follow the long-term effects of incorporating nanofertilizers into the soil, obtaining an exhaustive overview of this new technology over the development of sustainable agriculture.
Collapse
Affiliation(s)
- Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Pascale Bourgeade
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Badr Aloui-Sossé
- Laboratoire Chrono-environnement, CNRS 6249, Université de Franche-Comté, Besancon, France
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Alina Dora Samuel
- Department of Biology, Faculty of Sciences, University of Oradea, 410087, Oradea, Romania
| |
Collapse
|
9
|
Purchase D, Abbasi G, Bisschop L, Chatterjee D, Ekberg C, Ermolin M, Fedotov P, Garelick H, Isimekhai K, Kandile NG, Lundström M, Matharu A, Miller BW, Pineda A, Popoola OE, Retegan T, Ruedel H, Serpe A, Sheva Y, Surati KR, Walsh F, Wilson BP, Wong MH. Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC Technical Report). PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare Earth elements), and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern, due to widespread illegal shipments; weak environmental, as well as health and safety, regulations; lack of technology; and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan, and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora, and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders seeking to devise integrated management strategies to tackle this global environmental concern.
Collapse
Affiliation(s)
- Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | | | - Lieselot Bisschop
- Erasmus Initiative on Dynamics of Inclusive Prosperity & Erasmus School of Law , Erasmus University Rotterdam , P.O. Box 1738 – 3000 DR , Rotterdam , Netherlands
| | - Debashish Chatterjee
- Faculty of Analytical Chemistry , University of Kalyani , Kalyani , Nadia , 741235 , India
| | - Christian Ekberg
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Mikhail Ermolin
- National University of Science and Technology “MISiS” , 4 Leninsky Prospect , Moscow , 119049 , Russia
| | - Petr Fedotov
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry , Russian Academy of Sciences , 19 Kosygin Street , Moscow , 119991 , Russia
| | - Hemda Garelick
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | - Khadijah Isimekhai
- Ateda Ventures Limited , P.P. Box 13394 , Benin City , Edo State , Nigeria
| | - Nadia G. Kandile
- Department of Chemistry, Faculty of Women , Ain Shams University , Heliopolis , 11757 , Cairo , Egypt
| | - Mari Lundström
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Avtar Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry , University of York , York , YO10 5DD , UK
| | | | - Antonio Pineda
- Departamento de Química Orgánica , Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IVa, Km 396 , Córdoba , E-14014 , Spain
| | - Oluseun E. Popoola
- Department of Chemical Science , Yaba College of Technology , Lagos , Nigeria
| | - Teodora Retegan
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Heinz Ruedel
- Department Environmental Specimen Bank and Elemental Analysis , Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME) , Schmallenberg , 57392 , Germany
| | - Angela Serpe
- Department of Civil and Environmental Engineering and Architecture (DICAAR) and INSTM Unit , University of Cagliari and Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR) , Via Marengo 2 , Cagliari , 09123 , Italy
| | | | - Kiran R. Surati
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar , Anand , Gujarat , 388120 , India
| | - Fiona Walsh
- Maynooth University , Maynooth , Co Kildare , Ireland
| | - Benjamin P. Wilson
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control , Southern University of Science and Technology, Shenzhen, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong , Tai Po , Hong Kong , China
| |
Collapse
|
10
|
Wang C, Wei M, Wang S, Wu B, Du D. Cadmium influences the litter decomposition of Solidago canadensis L. and soil N-fixing bacterial communities. CHEMOSPHERE 2020; 246:125717. [PMID: 31918081 DOI: 10.1016/j.chemosphere.2019.125717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
It is important to illuminate the effects of litter decomposition of invasive alien species on soil N-fixing bacterial communities (SoNiBa), especially under heavy metal pollution to better outline the mechanisms for invasion success of invasive alien species. This study attempts to identify the effects of litter decomposition of Solidago canadensis L. on SoNiBa under cadmium (Cd) pollution with different concentrations (i.e., low concentration, 7.5 mg/kg soil; high concentration, 15 mg/kg soil) via a polyethylene litterbags-experiment. Electrical conductivity and total N of soil were the most important environmental factors for determining the variations of SoNiBa composition. S. canadensis did not significantly affect the alpha diversity of SoNiBa but significantly affect the beta diversity of SoNiBa and SoNiBa composition. Thus, SoNiBa composition, rather than alpha diversity of SoNiBa, was the most important determinant of the invasion success of S. canadensis. Cd with 15 mg/kg soil did not address distinct effects on alpha diversity of SoNiBa, but Cd with 7.5 mg/kg soil noticeably raised the number of species and species richness of SoNiBa mainly due to the hormonal effects. The combined S. canadensis and Cd with 15 mg/kg soil obviously decreased cumulative mass losses and the rate of litter decomposition (k) of S. canadensis, but the combined S. canadensis and Cd with 7.5 mg/kg soil evidently accelerated cumulative mass losses and k of S. canadensis. Thus, Cd with 7.5 mg/kg soil can accelerate litter decomposition of S. canadensis, but Cd with 15 mg/kg soil can decline litter decomposition of S. canadensis.
Collapse
Affiliation(s)
- Congyan Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China.
| | - Mei Wei
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shu Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bingde Wu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Daolin Du
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
11
|
Li Z, Guo C, Li X, Wang Z, Wu J, Qian Y, Wei Y. Associations between metal exposure and global DNA methylation in potentially affected people in E-Waste recycling sites in Taizhou City, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135100. [PMID: 32000340 DOI: 10.1016/j.scitotenv.2019.135100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Electronic waste (e-waste) has been an emerging environmental health issue, and it has already provoked all aspects of attention. Taizhou is one of the three largest e-waste recycling locations in China. Atpresent, to prevent the environmental problems stem from e-waste dismantling, the local government has shut down all the industries in 2015. In this study, we collected blood samples of residents living near e-waste dismantling factories, and in matched reference areas in Taizhou, in December 2017, after the factories have been shut down for two years. Twenty-five metals were quantified in all blood samples. Among them, the concentrations of As, Ni, Ag, La, and Ce were statistically significant higher in individuals in e-waste recycling locations than those in reference location. Global DNA methylation was measured in blood as a marker of human health. Pearson correlation and multiple linear regression analysis between the changed metals and global DNA methylation in blood were performed. The result showed that only blood Ce was negatively correlated with global DNA methylation level significantly in pre-workers exposed e-waste workers (r = -0.51, p = 0.01). Our findings indicated that high concentrations of exposure to Ce in e-waste dismantling site could have sustained effects on the DNA methylation in blood although the e-waste industry had been closed for 2 years.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
12
|
Abstract
The ability of endophytes to colonize every plant tissue has led to the opportunity of using the microorganism in a lot of biological applications. Endophytes are beneficial to their host cells as such its application is observed in every aspects of life. This study therefore endeavored to give an analysis of endophytes, what they were and what they had been used for till the present time. Sampling of several literature studies in endophytes was done in this study to enable a complete understanding of the mechanism of application of the actions of endophytes, so as to be able to do a thorough assessment of the current state in the knowledge of the microbes. From the complete analysis of the literature on the application and use of endophytes, in nutrient asquition and increase the stress tolerance in plants. This study provided a platform for further research gaps through the presentation of what endophytes were, what they had been used for till date, the mechanism of operation of the micro-organism and the type of interaction between them and their hosts. There are still ways to improve on the methods of application of endophytes as a type of biological organism. This will be done by adjusting to the current trends in biological studies using molecular mechanization, following an intensive further study on endophyte mechanisms.
Collapse
|
13
|
Ge F, Wang X, Zhang K, Jin X, Guo R, Liu Y, Qiao X, Zhao X, Zheng B, Zheng X. The correlation study between PCBs and δ 15N values or FAs in fish collected from Dongting Lake. CHEMOSPHERE 2019; 234:763-768. [PMID: 31238272 DOI: 10.1016/j.chemosphere.2019.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 05/27/2023]
Abstract
The toxicity of polychlorinated biphenyls (PCBs) and their transformation have been intensively investigated in recent years. However, the potential mechanisms of biotransformation in a lake food web remain unclear. To explore the correlation between the PCBs and δ15N values or FAs, six fish species were collected from Dongting Lake, and various tissues were dissected to analyze the δ15N values, FAs and PCBs. Based on the wet weight (ww), the concentration of ∑PCBs115 ranged from 0.04 to 9.77 ng g-1, and the highest level was found in the gonad of Cyprinus carpio. The toxicity equivalent (TEQ) of PCBs ranged from 0.003 to 2.39 pg g-1, and the highest level was found in the fat of Silurus asotusy. The PCB levels in fish collected from Dongting Lake were at the low end of the global range. PCB28, 52, 95, 99, 101, 105 110, 118, 138, 153, 155 and 209 were found in all tissues. PCBs were distributed in a tissue-specific and species-specific manner in fish. PCB153 and 138 had a positive correlation with the TEQ in liver, gill, intestine and skin of fish on the basis of lipid weight (lw). Docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) and polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) had a positive correlation with some PCB congeners in the intestine. PCB52, ∑tetra-PCBs and Ind-PCBs had a positive correlation with the δ15N values in liver of fish on the basis of ww. PUFA/SFA and DHA/EPA might be indicators for the transfer of PCB congeners.
Collapse
Affiliation(s)
- Fangfang Ge
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Hebei Normal University, Shijiazhuang, 050024, China
| | - Xing Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kexin Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoling Jin
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rui Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaocui Qiao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xingru Zhao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | | |
Collapse
|
14
|
Wu Z, Gao G, Wang Y. Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:705-714. [PMID: 31151067 DOI: 10.1016/j.ecoenv.2019.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals and polybrominated diphenyl ethers (PBDEs) are ubiquitous pollutants at electronic waste (e-waste) contaminated sites, their individual impacts on soil microbial community has attracted wide attention, however, limited research is available on the combined effects of heavy metals and PBDEs on microbial community of e-waste contaminated. Therefore, combined effects of heavy metals and PBDEs on the microbial community in the e-waste contaminated soil were investigated in this study. Samples were collected from Ziya e-waste recycling area in Tianjin, northern China, and the soil microbial communities were then analyzed by the high-throughput MiSeq 16S rRNA sequencing to assess the effects of soil properties, heavy metals, and PBDEs on the soil microbial community. Candidatus Nitrososphaera, Steroidobacter and Kaistobacter were the dominant microbial species in the soils. Similar microbial metabolic functions, including amino acid metabolism, carbohydrate metabolism and membrane transport, were found in all soil samples. Redundancy analysis and variation partition analysis revealed that the microbial community was mainly influenced by PBDEs (including BDE 183, BDE 99, BDE 100 and BDE 154) in horizontal soil samples. However, TN, biomass, BDE 100, BDE 99 and BDE 66 were the major drivers shaping the microbial community in vertical soil samples.
Collapse
Affiliation(s)
- Zhineng Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Xinxiang Medical University, School of Public Health, Xinxiang, 453003, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Hydroscience and Engineering, Tsinghua University, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Salam M, Varma A. Bacterial community structure in soils contaminated with electronic waste pollutants from Delhi NCR, India. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
16
|
Wu Q, Du Y, Huang Z, Gu J, Leung JYS, Mai B, Xiao T, Liu W, Fu J. Vertical profile of soil/sediment pollution and microbial community change by e-waste recycling operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:1001-1010. [PMID: 30970449 DOI: 10.1016/j.scitotenv.2019.03.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The present study aims to assess the effect of electronic waste (e-waste) recycling on microbial community and the underlying modulation mechanism. Core soil/sediment samples were collected from an abandoned e-waste burning site and neighboring farmland/stream sites in Guiyu, China. High concentrations and health risks of toxic heavy metals, particularly, Sb and Sn, and halogenated flame retardants (HFRs), including decabromodiphenyl ether (BDE 209) and decabromodiphenyl ethane (DBDPE) were mostly retained at the top surface layers of soils/sediments (0-30cm) after more than one year of natural vertical diffusion and microbe-facilitated biodegradation. Heavy metals, such as Ag, Cd, Cu, Pb, Sb, and Sn, played a critical role for the reduction of microbial diversity. This is the first study reporting the open burning of e-waste caused an obvious heat effect and enriched thermophilic/mesophilic microbes in local area. The acid washing during e-waste recycling process may result in the enrichment of acidophilic microbes. This investigation showed that e-waste processing operation resulted in not only severe pollution of the soils/sediments by various pollutants, but also reduction of microbial diversity that was difficult to self-store by the local ecosystem.
Collapse
Affiliation(s)
- Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yongming Du
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhuying Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jidong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | - Jonathan Y S Leung
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Jie Fu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
17
|
Effects of Pretreatment Methods of Wheat Straw on Adsorption of Cd(II) from Waterlogged Paddy Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020205. [PMID: 30642075 PMCID: PMC6352147 DOI: 10.3390/ijerph16020205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 11/21/2022]
Abstract
Two types of pretreatment categories, namely microwave-assisted alkalization and microwave-assisted acid oxidation, were used to synthesize novel wheat straw adsorbents for the effective removal of Cd(II) in simulated waterlogged paddy soil. A systematic adsorption behavior study, including adsorption kinetics and adsorption isotherms was conducted. Results showed that wheat straw pretreated by microwave-assisted soaking of NaOH and ethanol solution obtained the highest Cd(II) removal efficiency of 96.4% at a reaction temperature of 25 ℃, pH of 7.0, initial Cd(II) concentration of 50 mg/L, and adsorbent/adsorbate ratio of 10 g/L. Sequential extraction experiment was carried out to analyze the changes of different of Cd(II) in soil, the aim of which was to study the mobility of Cd(II) and then evaluate the toxicity that Cd(II) might bring to plants. A 60-day incubation was performed to investigate the dynamic variations of soil pH and dissolved organic carbon content over incubation time. Characterization analyses revealed the morphological changes of wheat straw adsorbents, which suggested that those pretreatment methods were of significance. This study provided an environmentally friendly way to reuse agricultural wastes and remedy Cd(II) contaminated soil.
Collapse
|
18
|
Han W, Gao G, Geng J, Li Y, Wang Y. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. CHEMOSPHERE 2018; 197:325-335. [PMID: 29366953 DOI: 10.1016/j.chemosphere.2018.01.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Ziya Circular Economy Park is the biggest e-waste recycle park in North China before 2011, its function was then transformed in response to regulations and rules. In this paper, investigation was conducted to research the residual concentrations of 14 analytes (12 heavy metals and 2 non-metals) in the surface soil of Ziya Circular Economy Park and surrounding area. Both ecological and health assessments were evaluated using GI (geo-accumulation index) and NPI (Nemerow pollution index), and associated health risk was assessed by using USEPA model. According to the ecological risk assessment, Cu, Sb, Cd, Zn and Co were seriously enriched in the soil of the studied area. The health risk assessment proposed by USEPA indicated no significant health risks to the population. Soil properties, such as pH and organic matter, were found to correlate with the enrichment of heavy metals. Arsenic concentrations in the soil were found positively correlated to dead bacteria concentrations. Spatial distribution of heavy metals revealed that Ziya Circular Economy Park was the dominant pollution source in the studied area. Findings in this study suggest that enough attention should be payed to the heavy metal pollution in Ziya Circular Economy Park.
Collapse
Affiliation(s)
- Wei Han
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guanghai Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jinyao Geng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Song M, Cheng Z, Luo C, Jiang L, Zhang D, Yin H, Zhang G. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9904-9914. [PMID: 29374376 DOI: 10.1007/s11356-018-1323-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
We performed the study of rhizospheric effects on soil microbial community structure, including bacteria, fungi, actinomycete, and archaea, at an electronic waste (e-waste) recycling site by analyzing the phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether (GDGT) contents. By comparing PLFA and isoprenoid GDGT profiles of rhizospheric and surrounding bulk soils of 11 crop species, we observed distinct microbial community structures. The total PLFA concentration was significantly higher in rhizospheric soils than in non-rhizospheric soils, whereas no obvious difference was found in the total isoprenoid GDGT concentrations. The microbial community structure was also different, with higher ratios of fungal-to-bacterial PLFAs (F/B) and lower relative abundance of Gram-positive bacteria in rhizospheric soils. The extent of rhizospheric effects varied among plant species, and Colocasia esculenta L. had the greatest positive effects on the total microbial biomass. Dissolved organic carbon and pH were the main environmental factors affecting the microbial community represented by PLFAs, while the archaeal community was influenced by copper and zinc in all soils. These results offer a comprehensive view of rhizospheric effects on microbes in heavy metal and persistent organic pollutant co-contaminated soil, and provide fundamental knowledge regarding microbial ecology in e-waste-contaminated soils.
Collapse
Affiliation(s)
- Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhineng Cheng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hua Yin
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
20
|
Zhang X, Yang H, Cui Z. Assessment on cadmium and lead in soil based on a rhizosphere microbial community. Toxicol Res (Camb) 2017; 6:671-677. [PMID: 30090534 PMCID: PMC6061146 DOI: 10.1039/c7tx00048k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/16/2017] [Indexed: 01/03/2023] Open
Abstract
The soil ecosystem is easily polluted by heavy metals. Cadmium (Cd) and lead (Pb), as the main pollutants of heavy metals, cause much harm to the soil ecosystem. However, the impact of the two chemicals on rhizosphere microorganisms remains almost unknown. The change of catalase (CAT) activity was consistent with the microbial biomass. 16S rRNA gene sequencing was performed on soil samples to study the toxic effect of heavy metals. On performing sequence analysis at the phylum and family taxonomic levels, 32 identified phyla and 303 families were observed. The dominant phylum was Proteobacteria followed by Bacteroidetes, Acidobacteria, and Actinobacteria. The relative abundance of the dominant phyla was obviously changed under the stress of Cd and Pb, suggesting that the heavy metal input had affected the microbial community structure. At the Order and Family levels, there was different variation of richness and diversity in Cd and Pb group as compared to those in the control group. Furthermore, abundance and similarity analysis showed the differences between Cd and Pb, indicating different toxicology effect on rhizosphere microbial communities because of the unique properties. This study provided a novel insight into the composition of microbial communities of rhizosphere, which could be used to evaluate the soil environment.
Collapse
Affiliation(s)
- Xu Zhang
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| | - Huanhuan Yang
- School of Life Science , Shandong University , Ji'nan 250100 , China
| | - Zhaojie Cui
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| |
Collapse
|
21
|
Peng A, Liu J, Ling W, Chen Z, Gao Y. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites. Sci Rep 2015; 5:12173. [PMID: 26184609 PMCID: PMC4505310 DOI: 10.1038/srep12173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/22/2015] [Indexed: 11/18/2022] Open
Abstract
This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg−1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.
Collapse
Affiliation(s)
- Anping Peng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zeyou Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
22
|
Liu J, He XX, Lin XR, Chen WC, Zhou QX, Shu WS, Huang LN. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6438-6447. [PMID: 25919421 DOI: 10.1021/es5049804] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.
Collapse
Affiliation(s)
- Jun Liu
- †State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiao-Xin He
- †State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xue-Rui Lin
- ‡South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Wen-Ce Chen
- †State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qi-Xing Zhou
- §Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Wen-Sheng Shu
- †State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Li-Nan Huang
- †State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|